Toward Utilizing Similarity in Hydrologic Data Assimilation
<p><math display="inline"><semantics> <mrow> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msubsup> <mrow> <mi>X</mi> </mrow> <mrow> <mi>A</mi> </mrow> <mrow> <mo>+</mo> </mrow> </msubsup> </mrow> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>A</mi> <mo>,</mo> <mi>T</mi> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </semantics></math> in Equation (12) as a function of the phase error <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>P</mi> </mrow> </msub> </mrow> </semantics></math> and the length of the assimilation window <math display="inline"><semantics> <mrow> <mi>L</mi> </mrow> </semantics></math>. With <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>P</mi> <mo>,</mo> <mi>T</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> in Equations (8)–(10), negative <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>P</mi> </mrow> </msub> </mrow> </semantics></math> values render the modeled sine curve leading the observations, and positive <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>P</mi> </mrow> </msub> </mrow> </semantics></math> values make the modeled sine curve trailing the observations.</p> "> Figure 2
<p>Percent reduction in the error in <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>X</mi> </mrow> <mrow> <mi>A</mi> </mrow> <mrow> <mo>+</mo> </mrow> </msubsup> </mrow> </semantics></math> as quantified by <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mn>1</mn> <mo>−</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <mfenced open="|" close="|" separators="|"> <mrow> <msubsup> <mrow> <mi>X</mi> </mrow> <mrow> <mi>A</mi> </mrow> <mrow> <mo>+</mo> </mrow> </msubsup> <mo>−</mo> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>A</mi> <mo>,</mo> <mi>T</mi> </mrow> </msub> </mrow> </mfenced> </mrow> <mrow> <mfenced open="|" close="|" separators="|"> <mrow> <msubsup> <mrow> <mi>X</mi> </mrow> <mrow> <mi>A</mi> <mo>,</mo> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>P</mi> </mrow> </msub> <mo>=</mo> <mn>0.25</mn> <mi>π</mi> </mrow> <mrow> <mo>+</mo> </mrow> </msubsup> <mo>−</mo> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>A</mi> <mo>,</mo> <mi>T</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </mfrac> </mstyle> </mrow> </mfenced> <mo>×</mo> <mn>100</mn> </mrow> </semantics></math> when the phase error <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>P</mi> </mrow> </msub> </mrow> </semantics></math> is reduced from <math display="inline"><semantics> <mrow> <mn>0.25</mn> <mi>π</mi> </mrow> </semantics></math> prior to the assimilation in the case of <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mi>π</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>The selected event from 1998 in the Madisonville basin in Texas for the assimilation experiment, with similarity information at an hourly time step.</p> "> Figure 4
<p>A schematic of implementing data assimilation with or without similarity information, where <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">Δ</mi> </mrow> <mrow> <mi>k</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>X</mi> </mrow> <mrow> <mi>k</mi> </mrow> <mrow> <mo>−</mo> </mrow> </msubsup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>X</mi> </mrow> <mrow> <mi>k</mi> </mrow> <mrow> <mo>+</mo> </mrow> </msubsup> </mrow> </semantics></math> denote a transform model, a state forecast, and a state analysis, respectively.</p> "> Figure 5
<p>Comparison of streamflow and SAC soil moisture states with or without utilizing similarity information in assimilating streamflow observations.</p> ">
Abstract
:1. Introduction
2. Formalism for Utilizing Similarity Within the Existing Theoretical Data Assimilation Framework
3. Examples
3.1. Example 1: A Sine Function
3.2. Example 2: A Flood Event
3.2.1. Hydrologic Models
3.2.2. The Transform Model That Addresses Streamflow Timing
3.2.3. Results
4. Discussions
5. Concluding Remark
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the Amplitude Estimate in the Sine Function Example in Section 3.1
Appendix B. The Conditional Bias-Penalized Ensemble Kalman Filter (CBEnKF)
References
- Giere, R.N. How models are used to represent reality. Philos. Sci. 2004, 71, 742–752. [Google Scholar] [CrossRef]
- Giere, R.N. Scientific Perspectivism; The University of Chicago Press: Chicago, IL, USA, 2006; p. 151. [Google Scholar]
- Giere, R.N. An agent-based conception of models and scientific representation. Synthese 2010, 172, 269–281. [Google Scholar] [CrossRef]
- Warren, H.C. A History of the Association Psychology; Scribner: New York, NY, USA, 1921; p. 328. [Google Scholar]
- Quine, W.V. Natural kinds. In Essays in Honor of Carl G. Hempel; Volume 24 of the Series Synthese Library; Springer: Dordrecht, The Netherlands, 1969; pp. 5–23. [Google Scholar]
- Ahmed, K.; Shahid, S.; Sachindra, D.A.; Nawaz, N.; Chung, E.-S. Fidelity assessment of general circulation model simulated precipitation and temperature over Pakistan using a feature selection method. J. Hydrol. 2019, 573, 281–298. [Google Scholar] [CrossRef]
- Vereecken, H.; Pachepsky, Y.; Simmer, C.; Rihani, J.; Kunoth, A.; Korres, W.; Graf, A.; Franssen, H.J.H.; Thiele-Eiche, I.; Shao, Y. On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems. Adv. Water Resour. 2016, 542, 63–86. [Google Scholar] [CrossRef]
- Lamb, R.; Beven, K.; Myrabo, S. Shallow groundwater response at Minifelt. In Chapter 11 in Spatial Patterns in Catchment Hydrology: Observations and Modelling; Grayson, R., Bloschl, G., Eds.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Grayson, R.B.; Bloschl, G.; Western, A.W.; McMahon, T.A. Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour. 2002, 25, 1313–1334. [Google Scholar] [CrossRef]
- Ravela, S.; Emanuel, K.; McLaughlin, D. Data assimilation by field alignment. Phys. D 2007, 230, 127–145. [Google Scholar] [CrossRef]
- Nehrkorn, T.; Woods, B.K.; Hoffman, R.N. Correcting for position errors in variational data assimilation. Mon. Weather Rev. 2015, 143, 1368–1381. [Google Scholar] [CrossRef]
- Western, A.W.; Bloschl, G.; Grayson, R.B. Toward capturing hydrologically significant connectivity in spatial patterns. Water Resour. Res. 2001, 37, 83–97. [Google Scholar] [CrossRef]
- James, A.L.; Roulet, N.T. Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed. Hydrol. Process. 2007, 21, 3391–3408. [Google Scholar] [CrossRef]
- Ali, G.A.; Roy, A.G. Shopping for hydrologically representative connectivity metrics in a humid temperate forested catchment. Water Resour. Res. 2010, 46, W12544. [Google Scholar] [CrossRef]
- Renard, P.; Allard, D. Connectivity metrics for subsurface flow and transport. Adv. Water Resour. 2013, 51, 168–196. [Google Scholar] [CrossRef]
- Tyukhova, A.R.; Willmann, M. Conservative transport upscaling based on information of connectivity. Water Resour. Res. 2016, 52, 6867–6880. [Google Scholar] [CrossRef]
- Yu, F.; Harbor, J.M. The effects of topographic depressions on multiscale overland flow connectivity: A high-resolution spatiotemporal pattern analysis approach based on connectivity statistics. Hydrol. Process. 2019, 33, 1403–1419. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Martinez, G.; Pan, F.; Wagener, T.; Nicholson, T. Evaluating hydrological model performance using information theory-based metrics. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–24. [Google Scholar] [CrossRef]
- Safaie, A.; Dang, C.; Qiu, H.; Radha, H.; Phanikumar, M.S. Manifold methods for assimilating geophysical and meteorological data in earth system models and their components. J. Hydrol. 2016, 544, 383–396. [Google Scholar] [CrossRef]
- Morzfeld, M.; Adams, J.; Lunderman, S.; Orozco, R. Feature-based data assimilation in geophysics. Nonlin. Process. Geophys. Discuss. 2018, 25, 355–374. [Google Scholar] [CrossRef]
- Beezley, J.D.; Mandel, J. Morphing ensemble Kalman filters. Tellus 2008, 60A, 131–140. [Google Scholar] [CrossRef]
- Chen, Y.; Snyder, C. Assimilating vortex position with an ensemble Kalman filter. Mon. Weather Rev. 2007, 135, 1828–1845. [Google Scholar] [CrossRef]
- Hoffman, R.N.; Grassotti, C. A technique for assimilating SSM/I observations of marine atmospheric storms: Tests with ECMWF analyses. J. Appl. Meteorol. 1996, 35, 1177–1188. [Google Scholar] [CrossRef]
- Brewster, K.A. Phase-correcting data assimilation and application to storm-scale numerical weather prediction. Part I: Method description and simulation testing. Mon. Weather Rev. 2003, 131, 480–492. [Google Scholar]
- Li, L.; Srinivasan, S.; Zhou, H.; Gomez-Hernandez, J.J. Two-point or multiple-point statistics? A comparison between the ensemble Kalman filtering and the ensemble pattern matching inverse methods. Adv. Water Resour. 2015, 86, 297–310. [Google Scholar] [CrossRef]
- Wealands, S.R.; Grayson, R.B.; Walker, J.P. Quantitative comparison of spatial fields for hydrological model assessment—Some promising approaches. Adv. Water Resour. 2005, 28, 15–32. [Google Scholar] [CrossRef]
- Panu, U.S.; Unny, T.E. A feature prediction model in synthetic hydrology based on concepts of pattern recognition. Water Resour. Res. 1978, 14, 335–344. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E. Series distance—An intuitive metric to quantify hydrograph similarity in terms of occurrence. amplitude and timing of hydrological events. Hydrol. Earth Syst. Sci. 2011, 15, 877–896. [Google Scholar] [CrossRef]
- Liu, Y.; Brown, J.; Demargne, J.; Seo, D.-J. A wavelet-based approach to assessing timing errors in hydrologic predictions. J. Hydrol. 2011, 397, 210–224. [Google Scholar] [CrossRef]
- Ewen, J. Hydrograph matching method for measuring model performance. J. Hydrol. 2011, 408, 178–187. [Google Scholar] [CrossRef]
- Davis, C.A.; Brown, B.G.; Bullock, R.; Halley-Gotway, J. The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC spring program. Weather Forecast. 2009, 24, 1252–1267. [Google Scholar] [CrossRef]
- Kumar, P.; Foufoula-Georgiou, E. Fourier domain shape analysis methods: A brief review and an illustrative application to rainfall area evolution. Water Resour. Res. 1990, 26, 2219–2227. [Google Scholar] [CrossRef]
- Jarvis, R.S. Classification of nested tributary basins in analysis of drainage basin shape. Water Resour. Res. 1976, 12, 1151–1164. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Nijssen, B.; Lettenmaier, D.P.; Liang, X.; Wood, E.F.; Wetzel, S.W. Streamflow simulation for continental-scale watersheds. Water Resour. Res. 1997, 33, 711–724. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef]
- Borgogno, F.; D’Odorico, P.; Laio, F.; Ridolfi, L. Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophys. 2009, 47, 1–36. [Google Scholar] [CrossRef]
- Helm, A.; Kalamees, R.; Zobel, M. Vegetation patterns and their underlying processes: Where are we now? J. Veg. Sci. 2014, 25, 1113–1116. [Google Scholar] [CrossRef]
- Sanchez-Vila, X.; Carrera, J.; Girardi, J.P. Scale effects in transmissivity. J. Hydrol. 1996, 183, 1–22. [Google Scholar] [CrossRef]
- Cloke, H.L.; Pappenberger, F. Ensemble flood forecasting: A review. J. Hydrol. 2009, 375, 613–626. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G. Changes in the timing of high river flows in New England over the 20th Century. J. Hydrol. 2003, 278, 244–252. [Google Scholar] [CrossRef]
- Kirchner, J.W. Catchments as simple dynamical systems: Catchment characterization. rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. 2009, 45, W02429. [Google Scholar] [CrossRef]
- Toon, A. Similarity and scientific representation. Int. Stud. Philos. Sci. 2012, 26, 241–257. [Google Scholar] [CrossRef]
- Gupta, H.V.; Clark, M.P.; Vrugt, J.A.; Abramowitz, G.; Ye, M. Towards a comprehensive assessment of model structural adequacy. Water Resour. Res. 2012, 48, W08301. [Google Scholar] [CrossRef]
- Ashby, F.G.; Perrin, N.A. Toward a unified theory of similarity and recognition. Psychol. Rev. 1988, 95, 124–150. [Google Scholar] [CrossRef]
- Brown, L.G. A survey of image registration techniques. ACM Comput. Surv. 1992, 24, 325–376. [Google Scholar] [CrossRef]
- Jain, A.K. Statistical pattern recognition: A review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37. [Google Scholar] [CrossRef]
- Rubner, Y.; Tomasi, C.; Guibas, L.J. The Earth Mover’s Distance as a metric for image retrieval. Int. J. Comput. Vis. 2000, 40, 99–121. [Google Scholar] [CrossRef]
- Walia, E.; Suneja, A. A conceptual study on image matching techniques. Glob. J. Comput. Sci. Technol. 2010, 10, 83–88. [Google Scholar]
- Gribovszki, Z.; Szilagyi, J.; Kalicz, P. Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation—A review. J. Hydrol. 2010, 385, 371–383. [Google Scholar] [CrossRef]
- Lohmann, G.P. Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape. J. Int. Assoc. Math. Geol. 1983, 15, 659–672. [Google Scholar] [CrossRef]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture as a remotely sensed measure of vegetation structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- Rubner, Y.; Tomasi, C.; Guibas, L.J. A Metric for Distributions with Applications to Image Databases. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay, India, 7 January 1998; pp. 59–66. [Google Scholar]
- Kuglin, C.D.; Hines, D.C. The Phase Correlation Image Alignment Method. Proc. Int. Conf. Cybern Soc. 1975, 163–165. [Google Scholar]
- Salarpour, A.; Khotanlou, H. Direction-based similarity measure to trajectory clustering. IET Signal Process. 2019, 13, 70–76. [Google Scholar] [CrossRef]
- Nester, T.; Kirnbauer, R.; Gutknecht, D.; Bloschl, G. Climate and catchment controls on the performance of regional flood simulations. J. Hydrol. 2011, 402, 340–356. [Google Scholar] [CrossRef]
- Gourley, J.J.; Flamig, Z.L.; Vergara, H.; Kirstetter, P.-E.; Clark, R.A., III; Argyle, E.; Arthur, A.; Martinaitis, S.; Terti, G.; Erlingis, J.M.; et al. The flash project: Improving the tools for flash flood monitoring and prediction across the united states. Bull. Am. Meteorol. Soc. 2017, 98, 361–372. [Google Scholar] [CrossRef]
- Jazwinski, A.H. Stochastic Processes and Filtering Theory; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Wikle, C.K.; Berliner, L.M. A Bayesian tutorial for data assimilation. Phys. D 2007, 230, 1–16. [Google Scholar] [CrossRef]
- Lewis, J.M.; Lakshmivarahan, S.; Dhall, S.K. Dynamic data assimilation: A least squares approach. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: New York, NY, USA, 2006; Volume 104, p. 654. [Google Scholar]
- Kottegoda, N.T.; Rosso, R. Statistics, Probability, and Reliability for Civil and Environmental Engineers; The McGraw-Hill Companies, Inc.: New York, NY, USA, 1997; p. 735. [Google Scholar]
- Kass, R.E.; Wasserman, L. The selection of prior distributions by formal rules. J. Am. Stat. Assoc. 1996, 91, 1343–1370. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 2nd ed.; Chapman & Hall: London, UK, 2003. [Google Scholar]
- Duan, Q.; Ajami, N.K.; Gao, X.; Sorooshian, S. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour. 2007, 30, 1371–1386. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Robinson, B.A. Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res. 2007, 43, W01411. [Google Scholar] [CrossRef]
- Hausdorff, F. Grundzüge der Mengenlehre; Reprinted by Chelsea in 1949; Veit: Leipzig, Germany, 1914; ISBN 978-0-8284-0061-9. [Google Scholar]
- Lee, H.; Seo, D.-J.; Noh, S.J. A weakly-constrained data assimilation approach to address rainfall-runoff model structural inadequacy in streamflow prediction. J. Hydrol. 2016, 542, 373–391. [Google Scholar] [CrossRef]
- Lee, H.; Shen, H.; Noh, S.J.; Kim, S.; Seo, D.-J.; Zhang, Y. Improving flood forecasting using conditional bias-penalized ensemble Kalman filte. J. Hydrol. 2019, 575, 596–611. [Google Scholar] [CrossRef]
- Seo, D.-J.; Saifuddin, M.M.; Lee, H. Conditional bias-penalized Kalman filter for improved estimation and prediction of extremes. Stoch. Environ. Res. Risk Assess 2018, 32, 183–201, Erratum in Stoch. Environ. Res. Risk Assess. 2018, 32, 3561–3562. [Google Scholar] [CrossRef]
- Burnash, R.J.C.; Ferral, R.L.; McGuire, R.A. A Generalized Streamflow Simulation System-Conceptual Modeling for Digital Computers; Technical Report; United States Department of Commerce, National Weather Service and State of California, Department of Water Resources: Sacramento, CA, USA, 1973; 204p. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill, Inc.: Singapore, 1988. [Google Scholar]
- Koren, V.; Reed, S.; Smith, M.; Zhang, Z.; Seo, D.-J. Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. J. Hydrol. 2004, 291, 297–318. [Google Scholar] [CrossRef]
- Seo, D.-J.; Cajina, L.; Corby, R.; Howieson, T. Automatic state updating for operational streamflow forecasting via variational data assimilation. J. Hydrol. 2009, 367, 255–275. [Google Scholar] [CrossRef]
- Dee, D.P. Bias and data assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3323–3343. [Google Scholar] [CrossRef]
- Geer, A.J.; Bauer, P. Observation errors in all-sky data assimilation. Q. J. R. Meteorol. Soc. 2011, 137, 2024–2037. [Google Scholar] [CrossRef]
- Fowler, A.; Van Leeuwen, P.J. Observation impact in data assimilation: The effect of non-Gaussian observation error. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2013, 65, 20035. [Google Scholar] [CrossRef]
- Hira, Z.M.; Gillies, D.F. A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform. 2015, 2015, 198363. [Google Scholar] [CrossRef] [PubMed]
- Zebari, R.R.; Abdulazeez, A.M.; Zeebaree, D.Q.; Zebari, D.A.; Saeed, J.N. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Daley, R. The effect of serially correlated observation and model error on atmospheric data assimilation. Mon. Weather Rev. 1992, 120, 164–177. [Google Scholar] [CrossRef]
- Zupanski, D.; Hou, A.Y.; Zhang, S.Q.; Zupanski, M.; Kummerow, C.D.; Cheung, S.H. Applications of information theory in ensemble data assimilation. Q. J. R. Meteorol. Soc. 2007, 133, 1533–1545. [Google Scholar] [CrossRef]
- Nearing, G.S.; Gupta, V. The quantity and quality of information in hydrologic models. Water Resour. Res. 2015, 51, 524–538. [Google Scholar] [CrossRef]
- Shi, Y.; Baldwin, D.C.; Davis, K.J.; Yu, X.; Duffy, C.J.; Lin, H. Simulating high resolution soil moisture patterns in the shale hills watershed using a land surface hydrologic model. Hydrol. Process. 2015, 29, 4624–4637. [Google Scholar] [CrossRef]
- Kumar, S.V.; Wang, S.; Mocko, D.M.; Peters-Lidard, C.D.; Xia, Y. Similarity assessment of land surface model outputs in the North American Land Data Assimilation System. Water Resour. Res. 2017, 53, 8941–8965. [Google Scholar] [CrossRef]
- Jiang, S.; Zheng, Y.; Babovic, V.; Tian, Y.; Han, F. A computer vision-based approach to fusing spatiotemporal data for hydrological modeling. J. Hydrol. 2018, 567, 25–40. [Google Scholar] [CrossRef]
- Renner, M.; Brenner, C.; Mallick, K.; Wizemann, H.-D.; Conte, L.; Trebs, I.; Wei, J.; Wulfmeyer, V.; Schulz, K.; Kleidon, A. Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: A case study in Luxembourg. Hydrol. Earth Syst. Sci. 2019, 23, 515–535. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Cheng, C.-T.; Zhao, M.-Y.; Chau, K.W.; Wu, X.-Y. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. J. Hydrol. 2006, 316, 129–140. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental science: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Shaffi, M.; Tolson, B.A. Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resour. Res. 2015, 51, 3796–3814. [Google Scholar] [CrossRef]
- Dembélé, M.; Hrachowitz, M.; Savenije, H.H.G.; Mariéthoz, G.; Schaefli, B. Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets. Water Resour. Res. 2020, 56, e2019WR026085. [Google Scholar] [CrossRef]
- Gilleland, E.; Ahijevych, D.A.; Brown, B.G.; Ebert, E.E. Verifying forecasts spatially. BAMS 2010, 91, 1365–1373. [Google Scholar] [CrossRef]
- Gilleland, E. Spatial forecast verification: Baddeleys delta metric applied to the ICP test cases. Weather Forecast. 2011, 26, 409–415. [Google Scholar] [CrossRef]
- Mehmet, C.D.; Juliane, M.; Gorka, M.; Julian, K.; Luis, S.; Simon, S. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrol. Earth Syst. Sci. 2018, 22, 1299–1315. [Google Scholar] [CrossRef]
- Moslehi, M.; de Barros, F.P.J. Using color coherence vectors to evaluate the performance of hydrologic data assimilation. Water Resour. Res. 2019, 55, 1717–1729. [Google Scholar] [CrossRef]
- Yang, Z.; Burn, D.H. Automatic feature selection and weighting for the formation of homogeneous groups for regional IDF estimation. J. Hydrol. 2019, 575, 292–307. [Google Scholar] [CrossRef]
- Oudin, L.; Andreassian, V.; Perrin, C.; Michel, C.; Le Moine, N. Spatial proximity, physical similarity, regression and ungauged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resour. Res. 2008, 44, W03413. [Google Scholar] [CrossRef]
- Reichl, J.P.C.; Western, A.W.; McIntyre, N.R.; Chiew, F.H.S. Optimization of a similarity measure for estimating ungauged streamflow. Water Resour. Res. 2009, 45, W10423. [Google Scholar] [CrossRef]
- Chang, C.-F.; Rubin, Y. Regionalization with hierarchical hydrologic similarity and ex situ data in the context of groundwater recharge estimation at ungauged watersheds. Hydrol. Earth Syst. Sci. 2019, 23, 2417–2438. [Google Scholar] [CrossRef]
- Robin, Y.; Vrac, M.; Naveau, P.; Yiou, P. Multivariate stochastic bias corrections with optimal transport. Hydrol. Earth Syst. Sci. 2019, 23, 773–786. [Google Scholar] [CrossRef]
- Pechlivanidis, I.G.; Jackson, B.; McMillan, H.; Gupta, H. Use of an entropy-based metric in multiobjective calibration to improve model performance. Water Resour. Res. 2014, 50, 8066–8083. [Google Scholar] [CrossRef]
- Rosenblueth, A.; Wiener, N. Role of models in science. Philos. Sci. 1945, 7, 316–321. [Google Scholar] [CrossRef]
- Korn, G.A.; Korn, T.M. Mathematical Handbook for Scientists and Engineers; McGraw-Hill, Inc.: New York, NY, USA, 1968. [Google Scholar]
Similarity Object | Description | Example |
---|---|---|
Gradient | A change in the magnitude from one point to another | Streamflow fluctuation |
Shape | Characristic surface configuration | Rainfall area |
Pattern | Recurring feature | Vegetation |
Timing | A particular (period of) time of an event | Peak flow timing |
Distribution | Distribution of values of a physical variable over a space and/or time domain | Soil moisture |
Connectivity | State of being (inter)connected | River network |
Position | Place located | Hurricane center |
Direction | Course of movement | Wind direction |
Name | Description | Similarity Object | Reference |
---|---|---|---|
Discharge change rate | Fluctuation in discharge at a given time interval | Gradient, e.g., streamflow fluctuations | [44,52] |
Eigenshape analysis | A morphometric procedure for describing changes in shape | Shape, e.g., soil moisture or rainfall fields | [53] |
Shannon’s diversity index | A measure of variety of different kinds within a domain | Pattern, e.g., vegetation spatial structure | [54] |
Cross wavelet transform (XWT)-based timing error estimation | Technique to estimate a timing difference between two time series based on the phase information from the XWT of the two time series into a two-dimensional time-scale space | Timing, e.g., streamflow timing | [29] |
Earth Mover’s distance (EMD) | The minimum cost to turn a probability distribution (assumed as a pile of dirt) to another where the cost is estimated by the amount of dirt moved multiplied by its moving distance | Distribution, e.g., soil moisture or rainfall fields | [55] |
Connectivity function | Lag-dependent probability that a pixel is spatially connected to another pixel by the continuous path of neighboring pixels exceeding a given threshold | Connectivity, e.g., soil moisture fields | [12] |
Phase correlation | A method based on the Fourier transform to align two images with a displacement error | Position, e.g., hurricane | [56] |
Direction-based similarity measure | A direction-based similarity measure for trajectory clustering | Direction, e.g., wind | [57] |
Metrics | Open Loop | CBEnKF | CBEnKF with a Flow Timing Error Correction Scheme |
---|---|---|---|
RMSE (m3/s) | 32 | 10 | 6 |
MAE (m3/s) | 25 | 5 | 3 |
EP (m3/s) | −11 | −23 | −11 |
ET (h) | −7 | 5 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Shen, H.; Liu, Y. Toward Utilizing Similarity in Hydrologic Data Assimilation. Hydrology 2024, 11, 177. https://doi.org/10.3390/hydrology11110177
Lee H, Shen H, Liu Y. Toward Utilizing Similarity in Hydrologic Data Assimilation. Hydrology. 2024; 11(11):177. https://doi.org/10.3390/hydrology11110177
Chicago/Turabian StyleLee, Haksu, Haojing Shen, and Yuqiong Liu. 2024. "Toward Utilizing Similarity in Hydrologic Data Assimilation" Hydrology 11, no. 11: 177. https://doi.org/10.3390/hydrology11110177
APA StyleLee, H., Shen, H., & Liu, Y. (2024). Toward Utilizing Similarity in Hydrologic Data Assimilation. Hydrology, 11(11), 177. https://doi.org/10.3390/hydrology11110177