Plant Growth Optimization Using Amber Light Supplemented with Different Blue Light Spectra
<p>The relative spectral photosynthetic photon flux density (PPFD) of each light experimental treatment. HPS (<b>A</b>): single-ended high-pressure sodium; B + BA (<b>B</b>): blue + broad amber (455–602 nm); RB-NA (<b>C</b>): royal blue + narrow amber (430–602 nm); RB-BA (<b>D</b>): royal blue + broad amber (423–595 nm) light treatment.</p> "> Figure 2
<p>Effect of different light treatments [HPS: single-ended high-pressure sodium, B-BA: blue + broad amber (460–595 nm), RB-BA: royal blue + broad amber (430–595 nm), and RB-NA: royal blue + narrow amber (430–595 nm)] on tomato and lettuce plant growth parameters, including (<b>A</b>) fresh mass (FM) and dry mass (DM) for tomato plants, (<b>B</b>) fresh mass (FM) and dry mass (DM) for lettuce plants, (<b>C</b>) chlorophyll (Chl) content in leaves [SPAD value (Soil Plant Analysis Development)] for tomato plants, and (<b>D</b>) chlorophyll (Chl) content in leaves (SPAD value) for lettuce plants. Data represent the means of three replicates ± standard error (S.E.). Different superscript letters represent significant (<span class="html-italic">p</span> < 0.05) differences using Tukey’s post hoc test.</p> "> Figure 3
<p>Total chlorophyll content per leaf area (µmol m<sup>−2</sup>) measured for tomato plants (<b>A</b>), and total chlorophyll content (g of chlorophyll/100 g fresh tissue) measured for lettuce plants (<b>B</b>). Data represent the means of three replicates ± standard error (S.E.). Different superscript letters represent significant (<span class="html-italic">p</span> < 0.05) differences using Tukey’s post hoc test.</p> "> Figure 4
<p>Correlation among light waveband (50 nm intervals) and growth parameters of tomato plants, including fresh mass (FM), dry mass (DM), Chl (SPAD), flower number, stem diameter (SD), and height (H). The number in each cell is the correlation coefficient. Colors reflect changes in the correlation coefficient: red represents the correlation coefficient with high and positive correlation; blue indicates high and negative correlation.</p> "> Figure 5
<p>Correlation among light waveband (50 nm intervals) and growth parameters of lettuce plants, including fresh mass (FM), dry mass (DM), and chl (SPAD). The number in each cell is the correlation coefficient. The colors reflect the changes in the correlation coefficient: red represents the correlation coefficient with high and positive correlation; blue indicates high and negative correlation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Light Treatments and Greenhouse Growing Conditions
2.3. Plant Growth Parameters (Postharvest) and Statistical Analysis
3. Results
3.1. Growth Responses under Different Supplemental Blue Wavelengths
3.2. Other Growth Parameters in Tomato Plants
3.3. Pearson Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pattison, P.; Tsao, J.; Brainard, G.; Bugbee, B. LEDs for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Arcel, M.M.; Lin, X.; Huang, J.; Wu, J.; Zheng, S. The application of LED illumination and intelligent control in plant factory, a new direction for modern agriculture: A Review. J. Phys. Conf. Ser. 2021, 1732, 012178. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef]
- Wu, B.-S.; Hitti, Y.; MacPherson, S.; Orsat, V.; Lefsrud, M.G. Comparison and perspective of conventional and LED lighting for photobiology and industry applications. Environ. Exp. Bot. 2019, 171, 103953. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Marcone, M.F.; Tsao, R. Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. J. Agric. Food Chem. 2019, 67, 6075–6090. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Niu, G.; Gu, M. Photosynthesis, morphology, yield, and phytochemical accumulation in basil plants influenced by substituting green light for partial red and/or blue light. HortScience 2019, 54, 1769–1776. [Google Scholar] [CrossRef]
- Wu, B.-S.; Rufyikiri, A.-S.; Orsat, V.; Lefsrud, M.G. Re-interpreting the photosynthetically action radiation (PAR) curve in plants. Plant Sci. 2019, 289, 110272. [Google Scholar] [CrossRef] [PubMed]
- Thwe, A.A.; Kasemsap, P.; Vercambre, G.; Gay, F.; Phattaralerphong, J.; Gautier, H. Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill.). Sci. Hortic. 2020, 264, 109185. [Google Scholar] [CrossRef]
- Díaz-Galián, M.V.; Torres, M.; Sanchez-Pagán, J.D.; Navarro, P.J.; Weiss, J.; Egea-Cortines, M. Enhancement of strawberry production and fruit quality by blue and red LED lights in research and commercial greenhouses. S. Afr. J. Bot. 2020, 140, 268–275. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, M.O.K. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.-n.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 2010, 45, 1809–1814. [Google Scholar] [CrossRef]
- He, R.; Wei, J.; Zhang, J.; Tan, X.; Li, Y.; Gao, M.; Liu, H. Supplemental blue light frequencies improve ripening and nutritional qualities of tomato fruits. Front. Plant Sci. 2022, 13, 888976. [Google Scholar] [CrossRef] [PubMed]
- Kinet, J. Effect of light conditions on the development of the inflorescence in tomato. Sci. Hortic. 1977, 6, 15–26. [Google Scholar] [CrossRef]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1972, 9, 191–216. [Google Scholar] [CrossRef]
- Inada, K. Action spectra for photosynthesis in higher plants. Plant Cell Physiol. 1976, 17, 355–365. [Google Scholar] [CrossRef]
- Ouzounis, T.; Heuvelink, E.; Ji, Y.; Schouten, H.; Visser, R.; Marcelis, L. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Hortic. 2016, 134, 251–258. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Cui, J. The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica 2015, 53, 213–222. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Wientjes, E.; Douwstra, P.; Trouwborst, G.; van Ieperen, W.; Croce, R.; Harbinson, J. Photosynthetic quantum yield dynamics: From photosystems to leaves. Plant Cell 2012, 24, 1921–1935. [Google Scholar] [CrossRef]
- Brodersen, C.R.; Vogelmann, T.C. Do changes in light direction affect absorption profiles in leaves? Funct. Plant Biol. 2010, 37, 403–412. [Google Scholar] [CrossRef]
- Hristozkova, M.; Geneva, M.; Stancheva, I.; Velikova, V. LED spectral composition effects on mycorrhizal symbiosis formation with tomato plants. Appl. Soil Ecol. 2017, 120, 189–196. [Google Scholar] [CrossRef]
- Dieleman, J.A.; De Visser, P.H.; Meinen, E.; Grit, J.G.; Dueck, T.A. Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3D modeling. Front. Plant Sci. 2019, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.-S.; Mansoori, M.; Trumpler, K.; Addo, P.W.; MacPherson, S.; Lefsrud, M. Effect of amber (595 nm) light supplemented with narrow blue (430 nm) light on tomato biomass. Plants 2023, 12, 2457. [Google Scholar] [CrossRef]
- Wu, B.-S.; MacPherson, S.; Lefsrud, M. Filtering light-emitting diodes to investigate amber and red spectral effects on lettuce growth. Plants 2021, 10, 1075. [Google Scholar] [CrossRef]
- Mansoori, M.; Wu, B.-S.; Addo, P.W.; MacPherson, S.; Lefsrud, M. Growth responses of tomato plants to different wavelength ratios of amber, red, and blue light. Sci. Hortic. 2023, 322, 112459. [Google Scholar] [CrossRef]
- Yavari, N.; Tripathi, R.; Wu, B.-S.; MacPherson, S.; Singh, J.; Lefsrud, M. The effect of light quality on plant physiology, photosynthetic, and stress response in Arabidopsis thaliana leaves. PLoS ONE 2021, 16, e0247380. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-H.; Wheeler, R.M.; Sager, J.C.; Gains, G.; Naikane, J. Evaluation of lettuce growth using supplemental green light with red and blue light-emitting diodes in a controlled environment-a review of research at Kennedy Space Center. Acta Hortic. 2005, 711, 111–120. [Google Scholar] [CrossRef]
- Boros, I.F.; Székely, G.; Balázs, L.; Csambalik, L.; Sipos, L. Effects of LED lighting environments on lettuce (Lactuca sativa L.) in PFAL systems–A review. Sci. Hortic. 2023, 321, 112351. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 23–32. [Google Scholar]
- Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 2015, 5, 13389. [Google Scholar] [CrossRef]
- Ling, Q.; Huang, W.; Jarvis, P. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosyn. Res. 2011, 107, 209–214. [Google Scholar] [CrossRef]
- León, A.P.; Viña, S.Z.; Frezza, D.; Chaves, A.; Chiesa, A. Estimation of chlorophyll contents by correlations between SPAD-502 meter and chroma meter in butterhead lettuce. Commun. Soil Sci. Plant Anal. 2007, 38, 2877–2885. [Google Scholar] [CrossRef]
- Wojciechowska, R.; Długosz-Grochowska, O.; Kołton, A.; Żupnik, M. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci. Hortic. 2015, 187, 80–86. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, Y.H. Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Korean J. Hortic. Sci. Technol. 2014, 32, 330–339. [Google Scholar] [CrossRef]
- Kelly, N.; Runkle, E.S. End-of-production ultraviolet A and blue light similarly increase lettuce coloration and phytochemical concentrations. HortScience 2023, 58, 525–531. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Cho, K.M.; Lee, H.Y.; Cho, D.Y.; Lee, G.O.; Jang, S.N.; Lee, Y.; Kim, D.; Son, K.-H. Effects of white LED lighting with specific shorter blue and/or green wavelength on the growth and quality of two lettuce cultivars in a vertical farming system. Agronomy 2021, 11, 2111. [Google Scholar] [CrossRef]
- Lewis, D. Some factors affecting flower production in the tomato. J. Hortic. Sci. 1953, 28, 207–220. [Google Scholar] [CrossRef]
- Adams, S.; Cockshull, K.; Cave, C. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 2001, 88, 869–877. [Google Scholar] [CrossRef]
- Hornyák, M.; Słomka, A.; Sychta, K.; Dziurka, M.; Kopeć, P.; Pastuszak, J.; Szczerba, A.; Płażek, A. Reducing flower competition for assimilates by half results in higher yield of Fagopyrum esculentum. Int. J. Mol. Sci. 2020, 21, 8953. [Google Scholar] [CrossRef]
- Ashenafi, E.L.; Nyman, M.C.; Holley, J.M.; Mattson, N.S. The influence of LEDs with different blue peak emission wavelengths on the biomass, morphology, and nutrient content of kale cultivars. Sci. Hortic. 2023, 317, 111992. [Google Scholar] [CrossRef]
- Reddy, S.; McCartney, L.; Wu, B.-S.; Addo, P.W.; MacPherson, S.; Lefsrud, M. Amber LEDs outperform red, blue, and red-blue-amber LEDs for lettuce. J. Hortic. Sci. Biotechnol. 2024, 99, 1–17. [Google Scholar] [CrossRef]
- Wu, B.-S.; Mansoori, M.; Schwalb, M.; Islam, S.; Naznin, M.T.; Addo, P.W.; MacPherson, S.; Orsat, V.; Lefsrud, M. Light emitting diode effect of red, blue, and amber light on photosynthesis and plant growth parameters. J. Photochem. Photobiol. B Biol. 2024, 256, 112939. [Google Scholar] [CrossRef] [PubMed]
- Naznin, M.; Lefsrud, M.; Gravel, V.; Hao, X. Using different ratios of red and blue LEDs to improve the growth of strawberry plants. Acta Hortic. 2016, 1134, 125–130. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of different ratios of blue and red led light on brassicaceae microgreens under a controlled environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Morrow, R.C. LED lighting in horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.-H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Hasan, M.; Hanafiah, M.M.; Aeyad Taha, Z.; AlHilfy, I.H.; Said, M.N.M. Laser irradiation effects at different wavelengths on phenology and yield components of pretreated maize seed. Appl. Sci. 2020, 10, 1189. [Google Scholar] [CrossRef]
- Ooi, A.; Wong, A.; Ng, T.K.; Marondedze, C.; Gehring, C.; Ooi, B.S. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. Sci. Rep. 2016, 6, 33885. [Google Scholar] [CrossRef]
Light Treatment | ||||
---|---|---|---|---|
HPS (Control) | B-BA | RB-NA | RB-BA | |
Single-band photon flux density (µmol m−2 s−1) | ||||
400–450 nm | 4.24 | 4.96 | 47.53 | 6.38 |
451–500 nm | 10.72 | 9.01 | 4.44 | 1.55 |
501–550 nm | 5.60 | 25.16 | 1.76 | 7.11 |
551–600 nm | 161.88 | 82.43 | 99.49 | 100.93 |
601–650 nm | 53.66 | 89.91 | 94.45 | 101.08 |
651–700 nm | 13.90 | 38.54 | 2.34 | 32.95 |
701–750 nm | 7.27 | 12.79 | 1.59 | 8.55 |
751–800 nm | 13.12 | 5.72 | 1.36 | 2.77 |
Integrated photon flux density (µmol m−2 s−1) | ||||
PPFD | 250.00 | 250.00 | 250.00 | 250.00 |
TPFD | 270.38 | 268.51 | 252.94 | 261.33 |
Wavelength | Light Treatment | |||
---|---|---|---|---|
HPS (Control) | B-BA | RB-NA | RB-BA | |
Blue | - | 455 nm (28.5 nm) | 430 (21.5 nm) | 423.5 nm (24 nm) |
Amber | - | 602.5 (107.5 nm) | 602 nm (20 nm) | 594.5 nm (80.5 nm) |
Green/amber/red | 590 (30.5 nm) | - | - | - |
Light Treatments | Flower Number (Count) | Stem Diameter (mm) | Height (cm) |
---|---|---|---|
HPS | 6.88 ± 0.74 ab | 8.03 ± 0.19 a | 71.98 ± 3.12 a |
B-BA | 5.41 ± 0.76 ab | 7.69 ± 0.22 a | 67.44 ± 3.36 a |
RB-NA | 4.41 ± 0.99 b | 7.68 ± 0.24 a | 53.11 ± 4.01 b |
RB-BA | 8.19 ± 0.94 a | 8.06 ± 0.23 a | 71.89 ± 2.84 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trumpler, K.; Wu, B.-S.; Addo, P.W.; MacPherson, S.; Lefsrud, M. Plant Growth Optimization Using Amber Light Supplemented with Different Blue Light Spectra. Horticulturae 2024, 10, 1097. https://doi.org/10.3390/horticulturae10101097
Trumpler K, Wu B-S, Addo PW, MacPherson S, Lefsrud M. Plant Growth Optimization Using Amber Light Supplemented with Different Blue Light Spectra. Horticulturae. 2024; 10(10):1097. https://doi.org/10.3390/horticulturae10101097
Chicago/Turabian StyleTrumpler, Keli, Bo-Sen Wu, Philip Wiredu Addo, Sarah MacPherson, and Mark Lefsrud. 2024. "Plant Growth Optimization Using Amber Light Supplemented with Different Blue Light Spectra" Horticulturae 10, no. 10: 1097. https://doi.org/10.3390/horticulturae10101097
APA StyleTrumpler, K., Wu, B. -S., Addo, P. W., MacPherson, S., & Lefsrud, M. (2024). Plant Growth Optimization Using Amber Light Supplemented with Different Blue Light Spectra. Horticulturae, 10(10), 1097. https://doi.org/10.3390/horticulturae10101097