Interplay of Sensor Quantity, Placement and System Dimension in POD-Based Sparse Reconstruction of Fluid Flows
<p>Schematic illustration of <math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> (<b>a</b>) and <math display="inline"><semantics> <msub> <mi>l</mi> <mn>1</mn> </msub> </semantics></math> (<b>b</b>) minimization reconstruction for sparse recovery using a single-pixel measurement matrix. The numerical values in <span class="html-italic">C</span> are represented by colors: black (1) and white (0). The other colors represent numbers that are neither 0 nor 1. In the above schematics, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>x</mi> <mo>˜</mo> </mover> <mo>∈</mo> <msup> <mi mathvariant="double-struck">R</mi> <mi>P</mi> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>∈</mo> <msup> <mi mathvariant="double-struck">R</mi> <mrow> <mi>P</mi> <mo>×</mo> <mi>N</mi> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="bold-sans-serif">Φ</mi> <mo>∈</mo> <msup> <mi mathvariant="double-struck">R</mi> <mrow> <mi>N</mi> <mo>×</mo> <msub> <mi>N</mi> <mi>b</mi> </msub> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>∈</mo> <msup> <mi mathvariant="double-struck">R</mi> <msub> <mi>N</mi> <mi>b</mi> </msub> </msup> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>b</mi> </msub> <mo>≤</mo> <mi>N</mi> </mrow> </semantics></math>. The number of colored cells in <span class="html-italic">a</span> represents the system sparsity <span class="html-italic">K</span>. We note that, for <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <msub> <mi>N</mi> <mi>b</mi> </msub> </mrow> </semantics></math>, the method of choice is <math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> and, for <span class="html-italic">K</span> smaller than <math display="inline"><semantics> <msub> <mi>N</mi> <mi>b</mi> </msub> </semantics></math>, the method of choice is <math display="inline"><semantics> <msub> <mi>l</mi> <mn>1</mn> </msub> </semantics></math>.</p> "> Figure 2
<p>Schematic illustration of sparse sensor placement. The pastel colored rectangles represent rows activated by the sensors denoted in the measurement matrix through dark squares.</p> "> Figure 3
<p>Schematic of GPOD formulation for sparse recovery. The numerical values represented by the colored blocks: black (1), white (0), and color (other numbers).</p> "> Figure 4
<p>Isocontour plots of the stream-wise velocity component for the cylinder flow at <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>25</mn> <mo>,</mo> <mn>68</mn> <mo>,</mo> <mn>200</mn> </mrow> </semantics></math> show evolution of the flow field. Here, <span class="html-italic">T</span> represents the time non-dimensionalized by the advection time-scale.</p> "> Figure 5
<p>Isocontours of the three most energetic modes (first row from left to right) and time evolution of the first three POD coefficients (second row) for the cylinder wake flow at <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Singular value spectrum of the data matrix for both the cylinder wake flow at <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> and the sea surface temperature (SST) data.</p> "> Figure 7
<p>Sensor locations generated using the different methods considered in this work including both random as well as smart algorithms for the cylinder wake flow (<math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>). These image show the most relevant 200 sensors, i.e., (<math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>), while (<b>e</b>) represents the grid distribution.</p> "> Figure 7 Cont.
<p>Sensor locations generated using the different methods considered in this work including both random as well as smart algorithms for the cylinder wake flow (<math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>). These image show the most relevant 200 sensors, i.e., (<math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>), while (<b>e</b>) represents the grid distribution.</p> "> Figure 8
<p>Visualization of the first three POD modes (top left to right) and POD coefficients (bottom) for the sea surface temperature data.</p> "> Figure 8 Cont.
<p>Visualization of the first three POD modes (top left to right) and POD coefficients (bottom) for the sea surface temperature data.</p> "> Figure 9
<p>Illustration of the 200 most relevant sensor locations (red dots) generated using: (<b>a</b>) random; (<b>b</b>) QR-pivot; and (<b>c</b>) DEIM methods for the sea surface temperature (in °C) data.</p> "> Figure 10
<p>Comparison of the sparse reconstruction using both <math display="inline"><semantics> <msub> <mi>l</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> minimization methods for basis that is ordered in terms of energy content. The reconstructed and actual flowfields at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> are compared: (<b>a</b>) for <math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math>; and (<b>b</b>) for <math display="inline"><semantics> <msub> <mi>l</mi> <mn>1</mn> </msub> </semantics></math>. The corresponding POD features from both methods are shown in (<b>c</b>).</p> "> Figure 11
<p>Schematic shows the cumulative energy capture corresponding to different system dimension, <span class="html-italic">K</span> (i.e., the number of POD modes), for cylinder flow at <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> (<b>top</b>) and sea surface temperature (SST) data (<b>bottom</b>).</p> "> Figure 12
<p>Isocontours of the normalized mean squared POD-based sparse reconstruction errors (<math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> norm) corresponding to the sensor placement with maximum and minimum errors from the chosen ensemble of random sensor arrangements. The average error across the entire ensemble of ten random sensor placements is also shown. Subfigures (<b>a</b>,<b>c</b>,<b>e</b>) show the normalized absolute error metric, <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> and subfigures (<b>b</b>,<b>d</b>,<b>f</b>) show the normalized relative error metric, <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math>. Top row corresponds to the case with maximum error; middle row shows the case with minimum error and the bottom row shows the averaged error across different seeds.</p> "> Figure 13
<p>Isocontours of the normalized mean squared POD-based sparse reconstruction errors (<math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> norm) corresponding to the different greedy sensor placement methods, namely, QR with column pivoting (<b>a</b>,<b>b</b>), DEIM (<b>c</b>,<b>d</b>) and minimum condition number (<b>e</b>,<b>f</b>). Subfigures (<b>a</b>,<b>c</b>,<b>e</b>), show the normalized absolute error metric, <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> and subfigures (<b>b</b>,<b>d</b>,<b>f</b>) show the normalized relative error metric, <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 14
<p>First row (Random <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>101</mn> </mrow> </semantics></math>), third row (QR-Pivot), fifth row (DEIM) and seventh (MCN) row: we show the line contour comparison of streamwise velocity between the actual CFD solution field (blue) and the POD-based SR reconstruction (red) for <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msup> <mi>P</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> and (<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>. Second row (Random <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>101</mn> </mrow> </semantics></math>), fourth row (QR with column pivoting), sixth row (DEIM) and eighth row (MCN) show the corresponding projected (full reconstruction) and sparse recovered coefficients <span class="html-italic">a</span> from the SR algorithm.</p> "> Figure 15
<p>Dissection of instantaneous snapshot reconstruction for a marginally oversampled case (<math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>5</mn> <mo>,</mo> <msup> <mi>P</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>). The figure shows the different sensor locations, namely random sensors with seed <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math> (<b>a</b>), QR factorization with column pivoting (<b>b</b>), DEIM (<b>c</b>) and minimum condition number (MCN) (<b>d</b>) along with the corresponding overlaid true and reconstructed solutions (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>), and the recovered coefficients <span class="html-italic">a</span> (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>) using POD-based SR for <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>. The corresponding error quantifications for the different cases are as follows. First row: <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>2.46</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math> = 8.18. Second row: <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>5.20</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math> = 2.37. Third row: <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>4.44</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math> = 1.47. Fourth row: <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>8.04</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math> = 2.67.</p> "> Figure 16
<p>Dissection of instantaneous snapshot reconstruction for a highly oversampled case (<math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>6</mn> <mo>,</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <msup> <mi>P</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>). The figure shows the different sensor locations, namely random sensors with seed <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math> (<b>a</b>), QR factorization with column pivoting (<b>b</b>), DEIM (<b>c</b>) and minimum condition number (MCN) (<b>d</b>) along with the corresponding overlaid true and reconstructed solutions (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>), and the recovered coefficients <span class="html-italic">a</span> (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>) using POD-based SR for <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>e</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>. The corresponding error quantifications for the above cases are as follows. First row: <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>5.73</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math> = 3.43. Second row: <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>3.01</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math> = 1.80. Third row: <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>1.98</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math> = 1.19. Fourth row: <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> = <math display="inline"><semantics> <mrow> <mn>9.77</mn> <mo>×</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math> = 58.60.</p> "> Figure 17
<p>Isocontours of the normalized mean squared POD-based sparse reconstruction errors (<math display="inline"><semantics> <msub> <mi>l</mi> <mn>2</mn> </msub> </semantics></math> norm) of sea surface temperature data corresponding to the Random (<b>a</b>,<b>b</b>), QR (<b>c</b>,<b>d</b>) and DEIM (<b>e</b>,<b>f</b>) sensor placement methods. Subfigures (<b>a</b>,<b>b</b>,<b>e</b>) show the normalized absolute error metric, <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>1</mn> </msub> </semantics></math> and subfigures (<b>b</b>,<b>d</b>,<b>f</b>) show the normalized relative error metric, <math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 18
<p>Comparison of relative error (<math display="inline"><semantics> <msub> <mi>ϵ</mi> <mn>2</mn> </msub> </semantics></math>) decrease with increasing sensor budget for both wake and SST data. The figure shows three curves for different values of <math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics></math> for both DEIM (<b>a</b>) and QR-pivoting (<b>b</b>) based sensor placement.</p> "> Figure 19
<p>Comparison of the sparse reconstruction using Random, QR and DEIM sensor placement method on instantaneous snapshot for a marginally oversampled case (<math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msup> <mi>P</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>). The left subfigures show the reconstructed solutions for different sensor placement methods namely, random placement (<b>a</b>), QR with column pivoting (<b>c</b>) and DEIM (<b>e</b>) whereas the corresponding reconstructed coefficients using POD-based SR are shown in subfigures (<b>b</b>,<b>d</b>,<b>f</b>). Red dots on the contour plots represent sensor locations.</p> "> Figure 20
<p>Comparison of the sparse reconstruction using Random, QR and DEIM sensor placement method on instantaneous snapshot for a highly oversampled case (<math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msup> <mi>P</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>). The left subfigures show the reconstructed solutions for different sensor placement methods namely, random placement (<b>a</b>), QR with column pivoting (<b>c</b>) and DEIM (<b>e</b>) whereas the corresponding reconstructed coefficients using POD-based SR are shown in subfigures (<b>b</b>,<b>d</b>,<b>f</b>). Red dots on the contour plots represent sensor locations.</p> "> Figure 20 Cont.
<p>Comparison of the sparse reconstruction using Random, QR and DEIM sensor placement method on instantaneous snapshot for a highly oversampled case (<math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msup> <mi>P</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>). The left subfigures show the reconstructed solutions for different sensor placement methods namely, random placement (<b>a</b>), QR with column pivoting (<b>c</b>) and DEIM (<b>e</b>) whereas the corresponding reconstructed coefficients using POD-based SR are shown in subfigures (<b>b</b>,<b>d</b>,<b>f</b>). Red dots on the contour plots represent sensor locations.</p> ">
Abstract
:1. Introduction
2. Formulating the Sparse Reconstruction Problem
2.1. Sparse Reconstruction Theory
2.1.1. Case 1: For
2.1.2. Case 2: For
2.2. Data-Driven Basis Computation Using POD
2.3. Measurement Locations, Data Basis and Incoherence
2.4. Algorithms for Sensor Placement
2.4.1. Random Sensor Placement
2.4.2. Minimization of Matrix Condition Number (MCN)
- (i)
- Starting with the first sensor, consider each possible choice of sensor location to evaluate and identify the location with least as the chosen sensor placement.
- (ii)
- With the previous sensor location(s) set, loop over all possible remaining locations to identify the rest of the budgeted sensors as above.
2.4.3. QR Factorization with Column Pivoting
Algorithm 1: Greedy sensor selection using QR factorization with column pivoting. |
2.4.4. Discrete Empirical Interpolation Method (DEIM)
Algorithm 2: Discrete Empirical Interpolation Method (DEIM). |
2.5. Sparse Recovery (SR) Framework
Algorithm 3: Least squares () sparse reconstruction with basis . |
2.6. Algorithmic Complexity
3. Data Generation for Numerical Experiments
3.1. Low-Dimensional Cylinder Wake Flows
3.1.1. Cylinder Wake Limit-Cycle Dynamics
3.1.2. Smart Sensor Placement in Cylinder Wake
3.2. Global Sea Surface Temperature (SST) Data
3.2.1. Sea Surface Temperature (SST) Dynamics
3.2.2. Smart Sensor Placement for SST Fields
4. Sparse Reconstruction of Flow Fields
4.1. Sparse Reconstruction (SR) Experiments and Analysis
4.2. Comparison of and Sparse Reconstruction Using Energy-Ordered POD Basis
4.3. Sparsity and Energy Metrics
4.4. Sparse Reconstruction of Low-Dimensional Wake Flow
4.4.1. Sparse Reconstruction Accuracy
4.4.2. Assessment of Sensor Placement
4.4.3. Sparse Reconstruction with Marginally Oversampled Sensors
4.4.4. Sparse Reconstruction with Highly Oversampled Sensors
4.5. Sparse Reconstruction of Sea Surface Temperature Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Matrices | |
Two-point correlation matrix | |
Low dimensional basis matrix | |
Linear map between basis coefficients and sparse measurments | |
Matrix of POD coefficients | |
Measurement matrix | |
Unitary matrix from QR factorization | |
Upper triangular matrix from QR factorization | |
Eigenvalues of correlation matrix | |
Identity matrix | |
or | |
V | Eigenvectors of correlation matrix |
Mathematical Operators | |
+ | Pseudo-inverse |
∇ | Laplacian operator |
∏ | Multiplication operator |
Scalars | |
Regularization parameter | |
Random seed | |
Normalized absolute error | |
Normalized relative error | |
Condition number | |
Singular value of correlation tensor | |
Cumulative energy fraction | |
error | |
Coherency number | |
Kinematic viscosity | |
Cost function | |
K | Reconstruction dimension |
Number of modes normalized by | |
Number of modes needed for 95% energy capture | |
Number of modes needed 99% energy capture | |
M | Snapshot dimension |
N | Full state dimension |
Candidate basis dimension | |
P | Number of sparse measurements |
Sensor budget normalized by | |
Reynolds number | |
T | Non-dimensional time |
t | Time |
Vectors | |
Basis vector | |
Compressed data vector | |
a | POD coefficient vector |
m | Mask vector |
u | x Component of velocity |
v | y Component of velocity |
w | z Component of velocity |
x | Data snapshot vector |
References
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics New York; Springer Publishing: New York City, NY, USA, 2001; Volume 1. [Google Scholar]
- Holmes, P. Turbulence, Coherent Structures, Dynamical Systems and Symmetry; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Berkooz, G.; Holmes, P.; Lumley, J.L. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 1993, 25, 539–575. [Google Scholar] [CrossRef]
- Taira, K.; Brunton, S.L.; Dawson, S.; Rowley, C.W.; Colonius, T.; McKeon, B.J.; Schmidt, O.T.; Gordeyev, S.; Theofilis, V.; Ukeiley, L.S. Modal analysis of fluid flows: An overview. AIAA J. 2017, 55, 4013–4041. [Google Scholar] [CrossRef]
- Jayaraman, B.; Lu, C.; Whitman, J.; Chowdhary, G. Sparse Convolution-based Markov Models for Nonlinear Fluid Flows. arXiv 2018, arXiv:1803.08222b. [Google Scholar]
- Bai, Z.; Wimalajeewa, T.; Berger, Z.; Wang, G.; Glauser, M.; Varshney, P.K. Low-dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA J. 2014. [Google Scholar] [CrossRef]
- Bright, I.; Lin, G.; Kutz, J.N. Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements. Phys. Fluids 2013, 25, 127102. [Google Scholar] [CrossRef]
- Candès, E.J. Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; Volume 3, pp. 1433–1452. [Google Scholar]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Proc. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Needell, D.; Tropp, J.A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 2009, 26, 301–321. [Google Scholar] [CrossRef] [Green Version]
- Bui-Thanh, T.; Damodaran, M.; Willcox, K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J. 2004, 42, 1505–1516. [Google Scholar] [CrossRef]
- Willcox, K. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids 2006, 35, 208–226. [Google Scholar] [CrossRef] [Green Version]
- Venturi, D.; Karniadakis, G.E. Gappy data and reconstruction procedures for flow past a cylinder. J. Fluid Mech. 2004, 519, 315–336. [Google Scholar] [CrossRef] [Green Version]
- Gunes, H.; Sirisup, S.; Karniadakis, G.E. Gappy data: To Krig or not to Krig? J. Comput. Phys. 2006, 212, 358–382. [Google Scholar] [CrossRef] [Green Version]
- Gunes, H.; Rist, U. On the use of kriging for enhanced data reconstruction in a separated transitional flat-plate boundary layer. Phys. Fluids 2008, 20, 104109. [Google Scholar] [CrossRef]
- Everson, R.; Sirovich, L. Karhunen–Loeve procedure for gappy data. JOSA A 1995, 12, 1657–1664. [Google Scholar] [CrossRef]
- Chaturantabut, S.; Sorensen, D.C. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 2010, 32, 2737–2764. [Google Scholar] [CrossRef]
- Dimitriu, G.; Ştefănescu, R.; Navon, I.M. Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems. J. Comput. Appl. Math. 2017, 310, 32–43. [Google Scholar] [CrossRef]
- Zimmermann, R.; Willcox, K. An accelerated greedy missing point estimation procedure. SIAM J. Sci. Comput. 2016, 38, A2827–A2850. [Google Scholar] [CrossRef]
- Erichson, N.B.; Mathelin, L.; Yao, Z.; Brunton, S.L.; Mahoney, M.W.; Kutz, J.N. Shallow Learning for Fluid Flow Reconstruction with Limited Sensors and Limited Data. arXiv 2019, arXiv:1902.07358. [Google Scholar]
- Loiseau, J.C.; Noack, B.R.; Brunton, S.L. Sparse reduced-order modelling: Sensor-based dynamics to full-state estimation. J. Fluid Mech. 2018, 844, 459–490. [Google Scholar] [CrossRef]
- Mathelin, L.; Kasper, K.; Abou-Kandil, H. Observable dictionary learning for high-dimensional statistical inference. Arch. Comput. Methods Eng. 2018, 25, 103–120. [Google Scholar] [CrossRef]
- Saini, P.; Arndt, C.M.; Steinberg, A.M. Development and evaluation of gappy-POD as a data reconstruction technique for noisy PIV measurements in gas turbine combustors. Exp. Fluids 2016, 57, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Rowley, C.W.; Dawson, S.T. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 2017, 49, 387–417. [Google Scholar] [CrossRef]
- Mallet, S. A Wavelet Tour of Signal Processing; Academic Press: Cambridge, UK, 1998. [Google Scholar]
- Brunton, S.L.; Proctor, J.L.; Tu, J.H.; Kutz, J.N. Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2015, 2, 165–191. [Google Scholar]
- Brunton, S.L.; Tu, J.H.; Bright, I.; Kutz, J.N. Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM J. Appl. Dyn. Syst. 2014, 13, 1716–1732. [Google Scholar] [CrossRef]
- Bai, Z.; Brunton, S.L.; Brunton, B.W.; Kutz, J.N.; Kaiser, E.; Spohn, A.; Noack, B.R. Data-driven methods in fluid dynamics: Sparse classification from experimental data . In Whither Turbulence and Big Data in the 21st Century? Springer: Berlin, Germany, 2017; pp. 323–342. [Google Scholar]
- Kramer, B.; Grover, P.; Boufounos, P.; Nabi, S.; Benosman, M. Sparse sensing and DMD-based identification of flow regimes and bifurcations in complex flows. SIAM J. Appl. Dyn. Syst. 2017, 16, 1164–1196. [Google Scholar] [CrossRef]
- Al Mamun, S.; Lu, C.; Jayaraman, B. Extreme Learning Machines as Encoders for Sparse Reconstruction. Fluids 2018, 3, 88. [Google Scholar] [CrossRef]
- Trefethen, L.N.; Bau, D., III. Numerical Linear Algebra; SIAM: Bangkok, Thailand, 1997; Volume 50. [Google Scholar]
- Manohar, K.; Brunton, B.W.; Kutz, J.N.; Brunton, S.L. Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns. IEEE Control Syst. Mag. 2018, 38, 63–86. [Google Scholar]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; SIAM: Bangkok, Thailand, 2005; Volume 89. [Google Scholar]
- Arridge, S.R.; Schotland, J.C. Optical tomography: Forward and inverse problems. Inverse Probl. 2009, 25, 123010. [Google Scholar] [CrossRef]
- Tarantola, A.; Valette, B. Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. 1982, 20, 219–232. [Google Scholar] [CrossRef]
- Neelamani, R. Inverse Problems in Image Processing. Ph.D. Thesis, Rice University, Houston, TX, USA, 2004. [Google Scholar]
- Khemka, A. Inverse Problems in Image Processing. Ph.D. Thesis, Purdue University, West Lafayette, Indiana, 2009. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Baraniuk, R.G. Compressive sensing [lecture notes]. IEEE Signal Proc. Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Baraniuk, R.G.; Cevher, V.; Duarte, M.F.; Hegde, C. Model-based compressive sensing. IEEE Trans. Inf. Theory 2010, 56, 1982–2001. [Google Scholar] [CrossRef]
- Sarvotham, S.; Baron, D.; Wakin, M.; Duarte, M.F.; Baraniuk, R.G. Distributed compressed sensing of jointly sparse signals. In Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 30 October–2 November 2005; pp. 1537–1541. [Google Scholar]
- Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Kim, S.J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An Interior-Point Method for Large-Scale L1 Regularized Least Squares. IEEE J. Sel. Top. Signal Process. 2007, 1, 606–617. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 201517384. [Google Scholar] [CrossRef]
- Lumley, J. Stochastic Tools in Turbulence; Academic: New York, NY, USA, 1970. [Google Scholar]
- Sirovich, L. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 1987, 45, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Brunton, S.L.; Rowley, C.W.; Williams, D.R. Reduced-order unsteady aerodynamic models at low Reynolds numbers. J. Fluid Mech. 2013, 724, 203–233. [Google Scholar] [CrossRef]
- Candès, E.; Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Probl. 2007, 23, 969. [Google Scholar] [CrossRef]
- Csató, L.; Opper, M. Sparse on-line Gaussian processes. Neural Comput. 2002, 14, 641–668. [Google Scholar] [CrossRef]
- Cohen, K.; Siegel, S.; McLaughlin, T. Sensor placement based on proper orthogonal decomposition modeling of a cylinder wake. In Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, FL, USA, 23–26 June 2003; p. 4259. [Google Scholar]
- Kubrusly, C.S.; Malebranche, H. Sensors and controllers location in distributed systems—A survey. Automatica 1985, 21, 117–128. [Google Scholar] [CrossRef]
- Chaturantabut, S.; Sorensen, D.C. A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J. Numer. Anal. 2012, 50, 46–63. [Google Scholar] [CrossRef]
- Yildirim, B.; Chryssostomidis, C.; Karniadakis, G. Efficient sensor placement for ocean measurements using low-dimensional concepts. Ocean Model. 2009, 27, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Hanagud, S.; de Noyer, M.B.; Luo, H.; Henderson, D.; Nagaraja, K. Tail buffet alleviation of high-performance twin-tail aircraft using piezostack actuators. AIAA J. 2002, 40, 619–627. [Google Scholar] [CrossRef]
- Barrault, M.; Maday, Y.; Nguyen, N.C.; Patera, A.T. An empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations. Compt. Rendus Math. 2004, 339, 667–672. [Google Scholar] [CrossRef]
- Bui-Thanh, T.; Damodaran, M.; Willcox, K. Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. In Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlando, FL, USA, 23–26 June 2003; p. 4213. [Google Scholar]
- Roshko, A. On the Development of Turbulent Wakes from Vortex Streets; NACA-TR-1191; NASA: Washington, DC, USA, 1954.
- Williamson, C. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 1989, 206, 579–627. [Google Scholar] [CrossRef] [Green Version]
- Noack, B.R.; Afanasiev, K.; Morzynski, M.; Tadmor, G.; Thiele, F. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 2003, 497, 335–363. [Google Scholar] [CrossRef] [Green Version]
- Cantwell, C.D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.E.; Ekelschot, D.; et al. Nektar++: An open-source spectral/hp element framework. Comput. Phys. Commun. 2015, 192, 205–219. [Google Scholar] [CrossRef]
Case | Relationship | Relationship | Algorithm | Reconstructed Dimension |
---|---|---|---|---|
1 | least squares | K | ||
2 | min. norm recons. or | P | ||
3 | min. norm recons. | K |
Method | K | P | |||
---|---|---|---|---|---|
100 | 10 | 40 | 10 | 101 | |
100 | 10 | 40 | 20 | 101 |
Method | K | P | ||||||
---|---|---|---|---|---|---|---|---|
Random () | 2 | 20 | 1.0 | 10.0 | 2.548 | 2.306 | 1.08 | 1.08 |
4 | 20 | 2.0 | 10.0 | 2.548 | 3.247 | 1.23 | ||
6 | 20 | 3.0 | 10.0 | 2.548 | 4.186 | 1.96 | ||
QR-Pivoting | 2 | 20 | 1.0 | 10.0 | 2.520 | 3.794 | 1.04 | 1.04 |
4 | 20 | 2.0 | 10.0 | 3.917 | 3.794 | 1.11 | ||
6 | 20 | 3.0 | 10.0 | 3.917 | 4.506 | 1.16 | ||
DEIM | 2 | 20 | 1.0 | 10.0 | 2.323 | 3.720 | 1.00 | 1.00 |
4 | 20 | 2.0 | 10.0 | 3.685 | 3.867 | 1.02 | ||
6 | 20 | 3.0 | 10.0 | 3.685 | 4.562 | 1.05 | ||
MCN | 2 | 20 | 1.0 | 10.0 | 1.090 | 2.213 | 1.15 | 1.15 |
4 | 20 | 2.0 | 10.0 | 1.476 | 3.502 | 1.59 | ||
6 | 20 | 3.0 | 10.0 | 1.476 | 3.725 | 1.71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayaraman, B.; Al Mamun, S.M.A.; Lu, C. Interplay of Sensor Quantity, Placement and System Dimension in POD-Based Sparse Reconstruction of Fluid Flows. Fluids 2019, 4, 109. https://doi.org/10.3390/fluids4020109
Jayaraman B, Al Mamun SMA, Lu C. Interplay of Sensor Quantity, Placement and System Dimension in POD-Based Sparse Reconstruction of Fluid Flows. Fluids. 2019; 4(2):109. https://doi.org/10.3390/fluids4020109
Chicago/Turabian StyleJayaraman, Balaji, S M Abdullah Al Mamun, and Chen Lu. 2019. "Interplay of Sensor Quantity, Placement and System Dimension in POD-Based Sparse Reconstruction of Fluid Flows" Fluids 4, no. 2: 109. https://doi.org/10.3390/fluids4020109
APA StyleJayaraman, B., Al Mamun, S. M. A., & Lu, C. (2019). Interplay of Sensor Quantity, Placement and System Dimension in POD-Based Sparse Reconstruction of Fluid Flows. Fluids, 4(2), 109. https://doi.org/10.3390/fluids4020109