Integrating UAVs and RISs in Future Wireless Networks: A Review and Tutorial on IoTs and Vehicular Communications
<p>Organization of the paper based on the taxonomy of the UAV-enabled, RIS-assisted communication into quintuple studied and topics.</p> "> Figure 2
<p>Illustration of direct LoS path and multi-path.</p> "> Figure 3
<p>UAV-enabled, RIS-assisted communication: (<b>a</b>) RISeUAV with a UPA of the RIS aligned in the XY plane facing the ground; (<b>b</b>) UAV-BS as an active aerial (airborne) BS.</p> "> Figure 4
<p>Schematic of RISeUAV-assisted communication for channel modeling: (<b>a</b>) geometry of system in 3D coordinates; (<b>b</b>) UPA of the RIS in XY plane; <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>v</mi> </mrow> <mrow> <mi>R</mi> <mi>U</mi> </mrow> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>u</mi> </mrow> <mrow> <mi>R</mi> <mi>U</mi> </mrow> </msup> </mrow> </semantics></math> denote UAV’s horizontal and vertical linear velocities, respectively; <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>ω</mi> </mrow> <mrow> <mi>R</mi> <mi>U</mi> </mrow> </msup> </mrow> </semantics></math> denotes the UAV’s horizontal rotational velocity and <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>R</mi> <mi>U</mi> </mrow> </msup> </mrow> </semantics></math> denotes the UAV heading (angle) with respect to the X-axis. The UAV motion is studied in <a href="#sec4-futureinternet-16-00433" class="html-sec">Section 4</a>.</p> "> Figure 5
<p>Schematic of UAV-enabled, RIS-assisted wireless communication for intelligent vehicles (IVs) in IoVs with mMIMO BSs. Notice that, for the sake of illustration, the sizes of the mMIMO BS and RISeUAV are exaggerated compared with the distances.</p> "> Figure 6
<p>Aerial backhauling through the RISeUAV to UAV-BSs.</p> "> Figure 7
<p>The schematic of the actor-critic deep deterministic policy gradient DRL agent.</p> "> Figure 8
<p>The geometry of the SLAPS for RISeUAV.</p> ">
Abstract
:1. Introduction
- Power transmission for propagating communication signals and/or power allocation to multiple UEs, where the power transmit is implemented by the terrestrial BS or UAV as the airborne BS.
- UAV energy-efficient path planning and trajectory optimization, taking into account communication performance and quality of service (QoS) requirements.
- Design of BS beamforming (BS-BF) and RIS phase shift (RIS-PhSh) to enhance signal quality and communication reliability.
- A new paradigm is required for channel modeling in the context of UAV-enabled, RIS-assisted communication for IoT sensors and particularly for mobile IoVs in dense urban environments. Notably, the channel modeling is based on localization-aware communication, which is promising due to the intrinsic characteristics of future B5G and 6G WCNs with mmWave signals, particularly considering dynamic IoTs and IoVs networks for vehicular communications.
- Kinodynamic-aware, obstacle-free trajectory optimization for crash avoidance and navigation in dense urban areas has been largely overlooked in the wireless communication community and requires further exploration.
- The emergence and applications of RIS-equipped UAVs (RISeUAVs).
- A new perspective of optimization algorithms regarding the impact of trajectory optimization with LoS links.
- Investigating integrated localization and communication within UAV-enabled, RIS-assisted communication systems for IoVs.
2. Organization and Contribution of the Paper
- Section 3 delves into communication and channel modeling, examining key aspects such as channel modeling, network performance, and modern multiple-access communication technologies. UAV deployment and navigation are considered as strategies for augmenting existing terrestrial cellular networks or delivering on-demand or remote coverage. In these scenarios, the channel model, path loss, and phase shift significantly influence the performance of RIS-assisted, UAV-enabled communication and must be integrated into the optimization framework. Unlike conventional ground-to-ground (G2G) channels, air-to-ground (A2G) channel modeling presents unique challenges and characteristics [29]. Therefore, this Section reviews channel modeling specific to UAV-enabled, RIS-assisted communication, highlighting its distinct aspects. Additionally, network performance indices, such as QoS, throughput, coverage, and weighted sum rate (WSR), are mathematically formulated and incorporated into the optimization problem. Recent advancements in multiple-access communication technologies for cognitive networks are also explored, showcasing their ability to enhance spectrum and energy efficiency, thereby improving overall network performance and connectivity. Moreover, relevant works consider the coding and decoding order of these multiple-access techniques as part of the optimization problem.
- Section 4 explores UAV navigation and control, a topic of significant importance from two critical perspectives. Firstly, energy efficiency is a major concern; UAV navigation, including localization, path planning, path tracking, and trajectory design for generating motion primitives, affects the UAV’s energy input and consequently its propulsion energy consumption. Therefore, studies should incorporate UAV navigation considerations to enhance energy efficiency. Secondly, from a practical standpoint, generated paths and trajectories must be both dynamically and kinematically (kinodynamically) feasible. This means that UAV motion must adhere to kinematic constraints such as speed, acceleration, and nonholonomic limitations (e.g., rate of heading change). Moreover, in dense urban environments where paths are often obstructed and maintaining LoS links is crucial, the trajectory should also account for the UAV’s rotational dynamics. This practical aspect is frequently overlooked in the current literature within the wireless communication field.
- Applications of UAVs and RISs in wireless networks are discussed in Section 5, where various services involving UAV deployment in communication networks, UAV design, and RIS technologies are reviewed. Each application, whether it involves UAVs as airborne BS, IoT sensor data collection, support for V2X communication in IoVs, maritime communication, etc., comes with its own unique environment and network characteristics. These differences necessitate distinct objectives and constraints in the optimization problems and significantly influence UAV navigation and control models. Additionally, depending on the application or available resources, the aerial package, comprising the UAV and communication module, can vary in design. For example, UAVs may be deployed as active aerial base stations (UAV-BS) or equipped with RIS (RISeUAV) to enhance energy efficiency and reduce system complexity.
- Solutions to the optimization problems are discussed in Section 6, covering convex programming, machine (deep) learning, and game theory approaches. Convex programming is a widely used solution for optimization problems. However, optimization challenges in UAV navigation, such as joint energy-efficient trajectory design and communication performance, are typically highly nonlinear and non-convex. As a result, alternating optimization (AO) techniques, including sequential convex programming (SCP) and successive convex approximation (SCA), are employed after applying convex relaxation methods. These techniques provide computationally tractable solutions, albeit at the cost of suboptimality [36]. Additionally, with recent advancements in artificial intelligence (AI), deep learning, and particularly deep reinforcement learning (DRL) agents, these methods have garnered significant attention.
- Section 7 explores integrated localization and communication. The radio frequency sensor (radar) has been employed for object detection and tracking. In future WCNs, mmWave communication and beamforming are expected to enable higher angular resolution, leading to more accurate centimeter-level localization. As a result, mmWave localization technology has garnered significant attention for autonomous unmanned vehicles [37]. Additionally, RISs are increasingly valuable for creating smart radio environments, where the propagation and scattering of communication signals can be controlled, reducing multipath interference. Furthermore, localization-assisted communication is instrumental in transmitting and propagating directional communication signals, enhancing the efficiency and effectiveness of communication. The integration of sensing (localization) and communication (ISAC) serves as a powerful technique to optimize resource utilization, network capacity, and spectrum efficiency.
3. Communication and Channel Modeling
3.1. Channel Modeling
3.1.1. Deployment of UAV-BS and RISeUAV
3.1.2. Position-Aware Directional Beam-Steering
3.1.3. MIMO Beamforming
3.1.4. Obstructed LoS and Outage Probability
3.1.5. Imperfect CSI
3.1.6. Codebook Design
3.2. Communication Performance
3.2.1. Quality of Service (QoS)
3.2.2. Secrecy, Security and Reliability
3.3. Efficiency with Multiple-Access Technologies and Cognitive Radio Communication
3.3.1. Non-Orthogonal Multiple Access
3.3.2. Rate-Splitting Multiple Access
Refs. | Navigation and Control | Application | Communication | Optimization Problem | |||||
---|---|---|---|---|---|---|---|---|---|
Service | UAV Type RIS Tech. | Channel Model | MA Technique | OF | Formulation | Constraints | Optimizer | ||
[39] | 2D Path RIS-PhSh | Ground UE | UAV-BS | Rician channel | − | Max Ave. Ach. rate | Convex Programming | − | Convex solver CVX |
[47] | 2D Path RIS-PhSh | multi-cell multi-mobile-user | RISeUAV | Rician channel | − | Min Ave. ergodic rate | SCA | BS power | Convex solver CVX |
[48] | 2D Path RIS-PhSh, | Throughput maximization | RISeUAV | Deterministic LoS | − | Max throughput | Iterative optimization | Speed, Power | Convex programming |
[50] | 3D path+speed RIS-PhSh | IoTs | UAV-BS | Probabilistic LoS | − | Max Ach. rate | Block coordinate descent- SCA | Velocity Acceleration | Interior-point method |
[51] | 2D Path+Speed RIS-PhSh | MTC | UAV-BS | Probabilistic LoS | − | EE | SCA | QoS Latency | Convex solver CVX |
[52] | 2D Path RIS-PhSh | Ground nodes | RISeUAV | Probabilistic LoS | − | Max Ach. rate | MINP | Elevation angle | Interior point CVX solver |
[69] | 2D Path RIS-PhSh, | Security | RISeUAV | Free space loss | − | EE Ach. rate | MDP | Power | Gradient DRL-DDPG |
[70] | 2D Path RIS-PhSh, | Physical layer security | RISeUAV | Probabilistic LoS | − | Ergodic Secrecy | Non-convex | QoS, SINR | Convex solver CVX, PSO, SA |
[75] | 3D Placement, RIS-PhSh, | Multiple UEs | RISeUAV | LoS path loss | NOMA | Max Achi rate | SCA SDP | − | CVX solver, PSO |
[77] | 2D Path RIS-PhSh, | Ground UE | RISeUAV | Probabilistic LoS | NOMA | Ach. rate | Block coordinate descent | − | Riemannian gradient |
[78] | 3D Placement, RIS-PhSh | GUs | T-UAV | Rician ProbabilisticLoS | RSMA | WSDR | SCA | Min Rate and Power | AO and SCP |
[80] | 3D Placement, RIS-PhSh, | Blocked GUs | UAV-BS | Rician fading | − | EE (BF) + SR | MINP | Min SR, Power | BCD: Adam+GA |
[81] | 3D Placement, RIS-PhSh, | Security Anti-eavesdroppers anti-jamming | RISeUAV | small-scale Rician fading | − | Min Max WCSR | MDP | Min DR, Power QoS | DRL-DQN-FFM |
[82] | 3D Placement, RIS-PhSh | Anti- eavesdroppers | RISeUAV STAR-RIS | Rician fading | NOMA | Min SEE | SCA | Min DR, | DRL-DDQN |
[83] | 3D Placement, RIS-PhSh, EH | Maritime anti-jamming | RISeUAV | LAP Probabilistic LoS | − | AR + AEH | Model-free | SNR and Power | DRL SoftMax DDPG |
[84] | 3D Placement, RIS-PhSh, Active BF | Static GUs | MAT UAV-BS | Rician channel model | NOMA | EE | SCA | Min DR and Power QoS | MRT GRP |
[85] | 3D Placement, RIS-PhSh, Active BF | Multiple UEs | Multi RISeUAV | Rician channel | − | Max WSR | SCA SDP | Power | Interior point method |
[86] | 3D Placement, RIS-PhSh, Active BF | Multiple UEs | Swarm RISeUAV | Rician channel Probabilistic LoS | − | Max WSR | AO Biconvex Programming | Power | Lagrangian dual method |
[87] | 2D path+speed RIS-PhSh | Video streaming | UAV-BS | Rician channel | − | QoS | AO SCA | QoS Time delay | P-BCD Taylor approx. |
[88] | 3D Trajectory | Ground target | UAV-BS | Probabilistic LoS | − | EE | Kinodynamic piece-wise approx. | UAV Dynamics | Gradient |
[89] | 3D Path+Speed RIS-PhSh | Ground UE | UAV-BS | Probabilistic LoS | − | EE Ach. rate | Model free | 3D borders | DRL DDPG |
[90] | 2D Path RIS-PhSh, | Ground vehicles | RISeUAV | LoS path loss | NOMA | EE Ach. rate | MDP | Power | DRL DDPG |
[91] | 2D Path RIS-PhSh, | Covering hotspots | RISeUAV | Probabilistic LoS | − | Max Ach. rate | Energy-aware MAB | Energy | MAB |
[92] | 2D Path RIS-PhSh, | IoT devices | UAV-BS | Rician channel | TDMA | Max sum-rate | SCA, Stackelberg game | Power Energy price | CVX solver BCD |
[93] | 2D Path RIS-PhSh | Ground Vehicles | RISeUAV | free space path loss | − | Max Ach. rate | Mixed integer SCA | Power | Convex solver CVX |
[94] | 2D Path RIS-PhSh | V2V | RISeUAV | LoS path loss | − | Max Ach. rate | AO SCA | − | Convex solver CVX |
[95] | Aerial backhauling | Traffic monitoring | LAP UAV-BS HAP RISeUAV | FSPL AR of ULA | − | EE, SNR | AO | FHRE | Weiszfeld |
[96] | 2D path IOS-PhSh | UAV Downlink Rate Enhancement | UAV-BS IOS | Rician Channel | − | MAX SNR | AO | − | Convex solver CVX |
[97] | 2D Path+Speed RIS-PhSh | Mobile Edge Computing | RISeUAV | Rician Channel | − | EE | SCA | CPU frequency | Dinkelbach |
[98] | 2D Path STAR-RIS-PhSh | Multiple Ground UEs | STAR-RIS | Rician Channel Rayleigh fading | − | Max SR | MDP | Min DR Power | DRRL |
[99] | 2D Path RIS-PhSh | MTC for IoTs | RISeUAV | Rician Channel | NOMA | Max Min Rate | SCA | Min SNR | Convex solver CVX |
[100] | 2D Path | IoVs | Multi UAV-BS | Rician Channel | − | EE Max Ach. rate | SCA | Min Ach. rate | Convex solver CVX |
[101] | 2D Path+Speed RIS-PhSh | IoVs | RISeUAV | LoS path loss | − | Max Ach. rate | MDP | Min Ach. rate | DRl DDPG |
[102] | 2D Path RIS-PhSh | Secrecy, Cognitive communication | RISeUAV | Rician fading | − | Max Ach. rate | MDP | Min Ach. rate | DRl DDPG, DCCN |
[103] | 2D Path RIS-PhSh | AoI IoTs | RISeUAV | Rician fading | − | Min AoI | Iterative BCD | Min Ach. rate | Convex solver CVX |
[104] | 2D Path+Speed RIS-PhSh | MEC IoTs | UAV-BS RISeUAV | Rician Channel | − | EE CPU allocation | Mixed nonconvex | CPU frequency | Double DQN |
[105] | 2D Path RIS-PhSh Power transmit | Secure MEC | UAV-BS IOS | Rician fading | − | EE Ach. rate | AO, SCA, LP, SDR | CPU frequency | CVX Branc and bound |
[106] | 2D Path RIS-PhSh | Improve QoS | UAV-BS IOS | Rician fading | TDMA | EE Ach. rate | Mixed integer non-convex SCA, BCD | Min Ach. rate | Convex solver CVX |
[107] | 2D Path RIS-PhSh Dynamic BS-BF | V2V IoVs | UAV-BS | − | − | EE Ach. rate | MDP | Power | DRL DDPG |
[108] | 2D Path RIS-PhSh | MEC | RISeUAV | Probabilistic LoS | − | EE | MDP | CPU frequency | DRL |
[109] | 2D Path RIS-PhSh | Covert communication | RISeUAV | Rician fading | − | EE Ach. rate | AO SCA | Power | Convex solver CVX |
[110] | 2D Path+Speed RIS-PhSh Power transmit | Aerial LoS links for UEs | RISeUAV | Rician fading | − | EE Ach. rate | AO SCA | Power Min Ach. rate | Convex DRL Heuristics (WOA) |
[111] | 2D Path RIS-PhSh BS-BF | Satellite-UAV- Terrestrial | RISeUAV | Rician fading | − | Ergodic rate | MDP | UAV Energy | DRL LSTM-DDQN |
[112] | 2D Path+Speed RIS-PhSh BS-BF | Multiple UEs | RISeUAV Active RIS | Rician fading | RSMA | EE Rate/Power | MDP | EE | Meta DRL SAC DDPG |
[113] | 2D Path RIS-PhSh | Maritime Anti-jamming | RISeUAV | Probabilistic LoS | − | EE | MDP | QoS for Maritime UE | DRL PPO |
[114] | 2D Path RIS-PhSh | Disaster management | UAV-BS STAR-RIS | Rician fading | NOMA | MDP | Min Ave.Rate | DRL PPO |
4. UAV Navigation and Control
4.1. UAV Placement
4.2. Path Planning and Trajectory Design
- (1)
- Two-dimensional path planning where UAV flies at a fixed altitude and the UAV waypoints are optimized through the path in a horizontal plane.
- (2)
- Two-dimensional path-plus-speed considering the UAV energy consumption for propulsion.
- (3)
- Three-dimensional trajectory optimization [125] while considering practical UAV navigation factors and motion constraints such as:
4.2.1. Two-Dimensional Path Planning
4.2.2. Two-Dimensional Path-Plus-Speed
4.2.3. No-Fly Zone
4.2.4. Three-Dimensional Trajectory
- is non-convex for and . The solutions are discussed in Section 6.
- A linear kinodynamic model should be used for modeling to make the trajectory optimization problem computationally feasible for real-time, particularly for use in the context of model predictive control [117].
- In the context of wireless communication support for IoVs in dense urban environments, modeling probabilistic LoS links modeled in (22) is not effective and reliable for safe autonomous driving. Therefore, deterministic LoS links modeling is considered in the optimization problem by embedding , which makes the trajectory optimization a mixed-integer programming [93] and NP-hard optimization problem for modeling LoS links, which is highlighted in Lemma 1.
- minimizes the UAV-IoVs distances which based on the channel model in (2), maximizes the channel gain. However, for the RISeUAV, based on the channel model in (9), the cascaded double LoS paths should be used as follows:
- In the case of the RISeUAV, where and may be used, the objective function is nonconvex, which is discussed in the solution in Section 6.
- In formulating the optimization problem , we have used the following technique. Instead of using a max problem for achievable rate maximization in (9) and (10) with double CLoS path model in the denominator, we used the optimization problem by using , , and with the double CLoS path model in the nominator. These two min and max problems are equivalent, see the solutions in Section 6.
- The optimization variables in are input jerks (motion primitives) to the UAV motion system. Therefore, they can be directly used for UAV navigation without the requirement of an extra path-tasking or path-following controller.
- Constraints related to channel performance and QoS (e.g., the minimum achievable rate for each UE or IoV) are not considered in . However, it is typical in alternating optimization methods (such as SCP and SCA) for problem objectives to be solved iteratively by relaxing other objectives or constraints.
5. Applications and Services
5.1. Services
5.1.1. IoTs Sensor Networks
5.1.2. Internet of Vehicles (IoVs)
5.1.3. Mobile Edge Computing
5.2. UAV Design
5.2.1. UAV-BS
5.2.2. RISeUAV
5.2.3. Solar-Powered UAVs
5.3. RIS Technologies
5.3.1. Intelligent Omni Surface
5.3.2. STAR-RIS
5.3.3. Holographic Surface
6. Solutions to Optimization Problems
6.1. Convex Programming
6.2. Heuristics Algorithms
6.3. Machine (Deep) Learning
Deep Reinforcement Learning (DRL)
6.4. Game Theory
6.5. Time (Computational) Complexity
7. Integrated Localization and Communication
7.1. Joint Localization and Communication
7.2. RIS-Assisted mmWave Localization
7.3. Localization for RISeUAVs
- (1)
- Positioning-aware beamforming of the aerial RIS in the RISeUAV.
- (2)
- Accurate localization of RISeUAV and ground vehicles.
7.3.1. Positioning-Based Beamforming
7.3.2. RISeUAV Localization
8. Future Research Directions
- Obstacle-free trajectory optimization in smart cities: Navigating complex, obstacle-rich environments in smart cities demands advanced optimization techniques. Future research should focus on developing robust algorithms that ensure obstacle-free trajectories while maintaining energy efficiency and communication reliability. Addressing this challenge is vital for safe and seamless UAV operations in urban settings.
- Channel modeling for RISeUAV systems: The impact of UAV fluctuations due to disturbances such as wind or misalignment must be accounted for in channel modeling for RIS-assisted UAVs. Developing accurate models that consider these variables and incorporate UAV motion primitives adaptable to UAV dynamics will improve the resilience and effectiveness of communication links.
- AI-based path planning with visual inputs: While AI and machine learning techniques have been employed for UAV path planning, more attention is needed on learning-based end-to-end methods [203], particularly those leveraging visual inputs. These approaches can enable UAVs to make complex navigation decisions in real time, which is crucial for applications in dense urban environments where dynamic obstacles and complex terrains are common.
- Modern AI and transformer neural networks for trajectory optimization and RIS control: The use of modern AI architectures, such as transformer neural networks and visual transformers (ViT), present promising avenues for optimizing UAV trajectories and RIS phase shift control. Transformers can process large datasets and capture long-term dependencies effectively, making them suitable for real-time decision-making in UAV navigation and RIS configuration.
- Integrated localization and communication: The integration of localization and communication functions is critical for enhancing the reliability and efficiency of UAV-based systems. Future works should explore methods to synergize these functions, ensuring accurate positioning while maintaining robust communication links. Open research areas include joint algorithm development, hardware design, and real-time implementation strategies.
- Computationally feasible solutions for autonomous navigation: Developing algorithms that balance computational efficiency with performance accuracy is essential for enabling real-time autonomous UAV navigation. Current methods often struggle to incorporate kinodynamic and motion constraints while maintaining obstacle-free trajectories, especially in complex urban environments. Future research should focus on creating lightweight, scalable algorithms capable of handling high-dimensional data and constraints without excessive computational demands. Strategies such as model predictive control with simplified dynamics [204], hybrid offline-online approaches, and leveraging advanced AI techniques could provide a path forward to achieving real-time, reliable autonomous navigation.
- Satellite-aided communication: Leveraging satellite communications for enhancing connectivity in RIS-UAV-assisted IoT and vehicular networks should be explored. This includes multi-layered communication frameworks that combine terrestrial, aerial, and satellite links for improved coverage and reliability.
- Security and privacy concerns: Ensuring the security and privacy of data transmission in UAV-assisted, RIS-enabled IoT and vehicular networks is another area that needs further investigation. Techniques for protecting against eavesdropping, jamming, and spoofing, as well as secure protocols for data exchange, remain essential topics for future research.
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MRT | Maximum ratio transmission | ||
AEH | Adaptive energy harvesting | MTC | Machine-type communication |
A2G | Air-to-ground | NLoS | Non-line-of-sight |
AoI | Age of information | NOMA | Non-orthogonal multiple access |
AO | Alternating optimization | OF | Objective function |
AR | Arrey response | PPO | Proximal policy optimization |
BCD | Blocked coordinate descent | PSO | Particle swarm optimization |
BF | Beamforming | P-BCD | Penalty-based block coordinate descent |
BS | Base station | RHS | Reconfigurable holographic surface |
CDF | Cumulative distribution function | RIS | Reconfigurable intelligent surface |
CLoS | Cascaded line-of-sight | RISeUAV | RIS-equipped UAV |
DDPG | Deep deterministic policy gradient | RIS-PhSh | RIS Phase Shift |
DDQN | Double deep Q-network | RSMA | Rate-splitting multiple access |
DFT | Discrete Fourier transform | SA | Simulated annealing |
DQN | Deep Q-network | SDP | Semi-definite programming |
DR | Data rate | SEE | Secrecy energy efficiency |
DRL | Deep reinforcement learning | SIC | Successive interference cancelation |
EE | Energy-Efficiency | SINR | Signal-to-interference-plus noise ratio |
EH | Energy harvesting | SCP | Sequential convex programming |
FFM | Fourier feature mapping | SCA | Successive convex approximation |
FSPL | Free Space pathloss | SDMA | Space division multiple access |
FHRE | Fronthaul-rate-ensuring | SNR | Signal-to-noise ratio |
HAP | High-altitude aerial platform | STAR-RISs | Simultaneously transmitting and reflecting RISs |
GA | Genetic algorithm | SWIPT | Simultaneous wireless information and power transfer |
GRP | Gaussian randomization procedure | T-UAV | Tethered-UAV |
G2G | Ground-to-ground | UAV | Unmanned aerial vehicle |
GU | Ground users | UAV-BS | UAV as BS |
LAP | Ligh-altitude aerial platform | UE | User equipment |
LoS | Line-of-sight | ULA | Uniform linear array |
IOS | Intelligent omni-surface | UPA | Uniform planar array |
MAB | Multi-armed bandit | WCSR | Worst-case secrecy rate |
MAT | Multiple antenna | WIT | Wireless information transfer |
MDP | Markov decision process | WOA | Wales optimization algorithm |
MEC | Mobile edge computing | WPT | Wireless power transfer |
MIMO | Multi-input multi-output | WSDR | Weighted sum data rate |
MINP | Mixed integer nonlinear program | WSR | Weighted sum-rate |
Appendix A
Appendix B
Appendix C
References
- Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart Cities: Recent Advances and Challenges. IEEE Commun. Mag. 2017, 55, 16–24. [Google Scholar] [CrossRef]
- Alavi, A.H.; Jiao, P.; Buttlar, W.G.; Lajnef, N. Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement 2018, 129, 589–606. [Google Scholar] [CrossRef]
- Talari, S.; Shafie-khah, M.; Siano, P.; Loia, V.; Tommasetti, A.; Catalão, J.P.S. A Review of Smart Cities Based on the Internet of Things Concept. Energies 2017, 10, 421. [Google Scholar] [CrossRef]
- Gustavsson, U.; Frenger, P.; Fager, C.; Eriksson, T.; Zirath, H.; Dielacher, F.; Studer, C.; Pärssinen, A.; Correia, R.; Matos, J.N.; et al. Implementation Challenges and Opportunities in Beyond-5G and 6G Communication. IEEE J. Microw. 2021, 1, 86–100. [Google Scholar] [CrossRef]
- Kedar, D.; Arnon, S. Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Commun. Mag. 2004, 42, S2–S7. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Kong, F.; Qiu, F.; Xia, M.; Arnon, S.; Chen, G. Millimeter Wave Communication: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2018, 20, 1616–1653. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Y.; Jin, D.; Su, L.; Vasilakos, A.V. A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wirel. Netw. 2015, 21, 2657–2676. [Google Scholar] [CrossRef]
- Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-Wave Massive MIMO Communication for Future Wireless Systems: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 836–869. [Google Scholar] [CrossRef]
- Tariq, S.; Naqvi, S.I.; Hussain, N.; Amin, Y. A Metasurface-Based MIMO Antenna for 5G Millimeter-Wave Applications. IEEE Access 2021, 9, 51805–51817. [Google Scholar] [CrossRef]
- Rao, L.; Pant, M.; Malviya, L.; Parmar, A.; Charhate, S.V. 5G beamforming techniques for the coverage of intended directions in modern wireless communication: In-depth review. Int. J. Microw. Wirel. Technol. 2021, 13, 1039–1062. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, H.; Long, W.X.; Moretti, M. Spectral and energy efficiency of line-of-sight OAM-MIMO communication systems. China Commun. 2020, 17, 119–127. [Google Scholar] [CrossRef]
- You, L.; Xiong, J.; Ng, D.W.K.; Yuen, C.; Wang, W.; Gao, X. Energy Efficiency and Spectral Efficiency Tradeoff in RIS-Aided Multiuser MIMO Uplink Transmission. IEEE Trans. Signal Process. 2021, 69, 1407–1421. [Google Scholar] [CrossRef]
- Jian, M.; Alexandropoulos, G.C.; Basar, E.; Huang, C.; Liu, R.; Liu, Y.; Yuen, C. Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques. Intell. Converg. Netw. 2022, 3, 1–32. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V. Deployment of Heterogeneous UAV Base Stations for Optimal Quality of Coverage. IEEE Internet Things J. 2022, 9, 16429–16437. [Google Scholar] [CrossRef]
- Huang, M.; Liu, A.; Xiong, N.N.; Wu, J. A UAV-Assisted Ubiquitous Trust Communication System in 5G and Beyond Networks. IEEE J. Sel. Areas Commun. 2021, 39, 3444–3458. [Google Scholar] [CrossRef]
- Sharma, V.; Bennis, M.; Kumar, R. UAV-Assisted Heterogeneous Networks for Capacity Enhancement. IEEE Commun. Lett. 2016, 20, 1207–1210. [Google Scholar] [CrossRef]
- Xie, L.; Xu, J.; Zhang, R. Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks. IEEE Internet Things J. 2019, 6, 1690–1703. [Google Scholar] [CrossRef]
- Zhan, C.; Zeng, Y. Aerial–Ground Cost Tradeoff for Multi-UAV-Enabled Data Collection in Wireless Sensor Networks. IEEE Trans. Commun. 2020, 68, 1937–1950. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, S.; Zhang, Y. Cooperative Offloading and Resource Management for UAV-Enabled Mobile Edge Computing in Power IoT System. IEEE Trans. Veh. Technol. 2020, 69, 12229–12239. [Google Scholar] [CrossRef]
- Mahony, R.; Kumar, V.; Corke, P. Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor. IEEE Robot. Autom. Mag. 2012, 19, 20–32. [Google Scholar] [CrossRef]
- Su, C.; Ye, F.; Wang, L.C.; Wang, L.; Tian, Y.; Han, Z. UAV-Assisted Wireless Charging for Energy-Constrained IoT Devices Using Dynamic Matching. IEEE Internet Things J. 2020, 7, 4789–4800. [Google Scholar] [CrossRef]
- Granda, F.; Azpilicueta, L.; Vargas-Rosales, C.; Celaya-Echarri, M.; Lopez-Iturri, P.; Aguirre, E.; Astrain, J.J.; Medrano, P.; Villandangos, J.; Falcone, F. Deterministic Propagation Modeling for Intelligent Vehicle Communication in Smart Cities. Sensors 2018, 18, 2133. [Google Scholar] [CrossRef] [PubMed]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges. IEEE Commun. Mag. 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Rani, P.; Sharma, R. Intelligent transportation system for internet of vehicles based vehicular networks for smart cities. Comput. Electr. Eng. 2023, 105, 108543. [Google Scholar] [CrossRef]
- Storck, C.R.; Duarte-Figueiredo, F. A Survey of 5G Technology Evolution, Standards, and Infrastructure Associated With Vehicle-to-Everything Communications by Internet of Vehicles. IEEE Access 2020, 8, 117593–117614. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, R.; Yang, L. Wireless Toward the Era of Intelligent Vehicles. IEEE Internet Things J. 2019, 6, 188–202. [Google Scholar] [CrossRef]
- Zhu, H.; Yuen, K.V.; Mihaylova, L.; Leung, H. Overview of Environment Perception for Intelligent Vehicles. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2584–2601. [Google Scholar] [CrossRef]
- Lu, H.; Liu, Q.; Tian, D.; Li, Y.; Kim, H.; Serikawa, S. The Cognitive Internet of Vehicles for Autonomous Driving. IEEE Netw. 2019, 33, 65–73. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.H.; Debbah, M. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [Google Scholar] [CrossRef]
- Abbasi, I.A.; Shahid Khan, A. A Review of Vehicle to Vehicle Communication Protocols for VANETs in the Urban Environment. Future Internet 2018, 10, 14. [Google Scholar] [CrossRef]
- Zeadally, S.; Guerrero, J.; Contreras, J. A tutorial survey on vehicle-to-vehicle communications. Telecommun. Syst. 2020, 73, 469–489. [Google Scholar] [CrossRef]
- Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.O.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H.V. 6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities. Proc. IEEE 2022, 110, 712–734. [Google Scholar] [CrossRef]
- Eskandari, M.; Savkin, A. Trajectory Planning for UAVs Equipped with RISs to Provide Aerial LoS Service for Mobile Nodes in 5G/Optical Wireless Communication Networks. IEEE Trans. Veh. Technol. 2023, 72, 8216–8221. [Google Scholar] [CrossRef]
- Pogaku, A.C.; Do, D.T.; Lee, B.M.; Nguyen, N.D. UAV-Assisted RIS for Future Wireless Communications: A Survey on Optimization and Performance Analysis. IEEE Access 2022, 10, 16320–16336. [Google Scholar] [CrossRef]
- Ye, J.; Qiao, J.; Kammoun, A.; Alouini, M.S. Nonterrestrial Communications Assisted by Reconfigurable Intelligent Surfaces. Proc. IEEE 2022, 110, 1423–1465. [Google Scholar] [CrossRef]
- Samir, M.; Sharafeddine, S.; Assi, C.M.; Nguyen, T.M.; Ghrayeb, A. UAV Trajectory Planning for Data Collection from Time-Constrained IoT Devices. IEEE Trans. Wirel. Commun. 2020, 19, 34–46. [Google Scholar] [CrossRef]
- Anjinappa, C.K.; Guvenc, I. Millimeter-Wave V2X Channels: Propagation Statistics, Beamforming, and Blockage. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–6. [Google Scholar]
- Tang, W.; Chen, M.Z.; Chen, X.; Dai, J.Y.; Han, Y.; Renzo, M.D.; Zeng, Y.; Jin, S.; Cheng, Q.; Cui, T.J. Wireless Communications with Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement. IEEE Trans. Wirel. Commun. 2021, 20, 421–439. [Google Scholar] [CrossRef]
- Ge, L.; Dong, P.; Zhang, H.; Wang, J.B.; You, X. Joint Beamforming and Trajectory Optimization for Intelligent Reflecting Surfaces-Assisted UAV Communications. IEEE Access 2020, 8, 78702–78712. [Google Scholar] [CrossRef]
- Wei, Z.; Cai, Y.; Sun, Z.; Ng, D.W.K.; Yuan, J.; Zhou, M.; Sun, L. Sum-Rate Maximization for IRS-Assisted UAV OFDMA Communication Systems. IEEE Trans. Wirel. Commun. 2021, 20, 2530–2550. [Google Scholar] [CrossRef]
- Eskandari, M.; Huang, H.; Savkin, A.V.; Ni, W. Model Predictive Control-Based 3D Navigation of a RIS-Equipped UAV for LoS Wireless Communication with a Ground Intelligent Vehicle. IEEE Trans. Intell. Veh. 2023, 8, 2371–2384. [Google Scholar] [CrossRef]
- Garcia, N.; Wymeersch, H.; Larsson, E.G.; Haimovich, A.M.; Coulon, M. Direct Localization for Massive MIMO. IEEE Trans. Signal Process. 2017, 65, 2475–2487. [Google Scholar] [CrossRef]
- Yang, D.; Yang, L.L.; Hanzo, L. DFT-Based Beamforming Weight-Vector Codebook Design for Spatially Correlated Channels in the Unitary Precoding Aided Multiuser Downlink. In Proceedings of the 2010 IEEE International Conference on Communications, Cape Town, South Africa, 23–27 May 2010; pp. 1–5. [Google Scholar]
- Shi, E.; Zhang, J.; Du, H.; Ai, B.; Yuen, C.; Niyato, D.; Letaief, K.B.; Shen, X. RIS-Aided Cell-Free Massive MIMO Systems for 6G: Fundamentals, System Design, and Applications. Proc. IEEE 2024, 112, 331–364. [Google Scholar] [CrossRef]
- Buzzi, S.; Grossi, E.; Lops, M.; Venturino, L. Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces. IEEE Trans. Signal Process. 2022, 70, 1749–1763. [Google Scholar] [CrossRef]
- Eskandari, M.; Savkin, A.V. SLAPS: Simultaneous Localization and Phase Shift for a RIS-Equipped UAV in 5G/6G Wireless Communication Networks. IEEE Trans. Intell. Veh. 2023, 8, 4722–4733. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J. Dynamic Aerial Reconfigurable Intelligent Surface Aided Multi-Cell Multi-User Communications. IEEE Trans. Wirel. Commun. 2024, 23, 16453–16465. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y.; Li, F.; Durrani, T.S. Throughput Maximization for RIS-UAV Relaying Communications. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19569–19574. [Google Scholar] [CrossRef]
- Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP Altitude for Maximum Coverage. IEEE Wirel. Commun. Lett. 2014, 3, 569–572. [Google Scholar] [CrossRef]
- Meng, A.; Gao, X.; Zhao, Y.; Yang, Z. Three-Dimensional Trajectory Optimization for Energy-Constrained UAV-Enabled IoT System in Probabilistic LoS Channel. IEEE Internet Things J. 2022, 9, 1109–1121. [Google Scholar] [CrossRef]
- Mei, H.; Yang, K.; Shen, J.; Liu, Q. Joint Trajectory-Task-Cache Optimization With Phase-Shift Design of RIS-Assisted UAV for MEC. IEEE Wirel. Commun. Lett. 2021, 10, 1586–1590. [Google Scholar] [CrossRef]
- Liu, Y.; Duo, B.; Wu, Q.; Yuan, X.; Li, J.; Li, Y. Elevation Angle-Dependent 3D Trajectory Design for Aerial RIS-Aided Communication. IEEE Trans. Intell. Transp. Syst. 2024, 25, 2696–2702. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.; Kishk, M.A.; Alouini, M.S. Correlation of Line-of-Sight Probabilities in Aerial-Terrestrial Communications: Modeling, Analysis, and Application. IEEE Trans. Veh. Technol. 2024, 73, 7049–7065. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, Z.; Pan, C.; Wang, J. Performance Analysis of Aerial RIS Auxiliary mmWave Mobile Communications With UAV Fluctuation. IEEE Wirel. Commun. Lett. 2024, 13, 1183–1187. [Google Scholar] [CrossRef]
- Bithas, P.S.; Ropokis, G.A.; Karagiannidis, G.K.; Nistazakis, H.E. UAV-Assisted Communications With RIS: A Shadowing-Based Stochastic Analysis. IEEE Trans. Veh. Technol. 2024, 73, 10000–10010. [Google Scholar] [CrossRef]
- Hanbay, E.; Altın, G. UAV-Assisted Wireless Communication System with Reconfigurable Intelligent Surfaces: Outage Probability Approach. In Proceedings of the 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Online, 20–21 November 2022; pp. 112–116. [Google Scholar]
- Guan, K.; He, D.; Ai, B.; Matolak, D.W.; Wang, Q.; Zhong, Z.; Kürner, T. 5-GHz Obstructed Vehicle-to-Vehicle Channel Characterization for Internet of Intelligent Vehicles. IEEE Internet Things J. 2019, 6, 100–110. [Google Scholar] [CrossRef]
- Bansal, A.; Agrawal, N.; Singh, K.; Li, C.P.; Mumtaz, S. RIS Selection Scheme for UAV-Based Multi-RIS-Aided Multiuser Downlink Network with Imperfect and Outdated CSI. IEEE Trans. Commun. 2023, 71, 4650–4664. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, K.; Hossain, E. Green Internet of Vehicles (IoV) in the 6G Era: Toward Sustainable Vehicular Communications and Networking. IEEE Trans. Green. Commun. Netw. 2022, 6, 391–423. [Google Scholar] [CrossRef]
- Polyanskiy, Y.; Poor, H.V.; Verdu, S. Channel Coding Rate in the Finite Blocklength Regime. IEEE Trans. Inf. Theory 2010, 56, 2307–2359. [Google Scholar] [CrossRef]
- Agrawal, N.; Bansal, A.; Singh, K.; Li, C.P.; Mumtaz, S. Finite Block Length Analysis of RIS-Assisted UAV-Based Multiuser IoT Communication System with Non-Linear EH. IEEE Trans. Commun. 2022, 70, 3542–3557. [Google Scholar] [CrossRef]
- Song, J.; Lee, J.H.; Noh, S.; Choi, J. Millimeter Wave Reflection Pattern Codebook Design for RIS-Assisted V2V Communications. IEEE Trans. Veh. Technol. 2022, 71, 6819–6824. [Google Scholar] [CrossRef]
- Nor, A.M.; Fratu, O.; Halunga, S.; An, J.; Zaharis, Z.; Velanas, P. Position based Near-Field Codebook Design and Beam Training for Extremely Large-Scale ARIS. In Proceedings of the 2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Madrid, Spain, 8–11 July 2024; pp. 215–220. [Google Scholar]
- Shang, S.; Xu, D.; Yu, K.; Mumtaz, S. Beam Training and Codebook Design for RIS Assisted UAV Communications in Emergency Rescue. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 795–800. [Google Scholar]
- Shang, S.; Xu, D. Beamforming Design for Double-RIS Assisted UAV Communication with Limited Feedback in Disaster Scenarios. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–5. [Google Scholar]
- Zhou, F.; Li, X.; Alazab, M.; Jhaveri, R.H.; Guo, K. Secrecy Performance for RIS-Based Integrated Satellite Vehicle Networks with a UAV Relay and MRC Eavesdropping. IEEE Trans. Intell. Veh. 2023, 8, 1676–1685. [Google Scholar] [CrossRef]
- Li, S.; Duo, B.; Renzo, M.D.; Tao, M.; Yuan, X. Robust Secure UAV Communications with the Aid of Reconfigurable Intelligent Surfaces. IEEE Trans. Wirel. Commun. 2021, 20, 6402–6417. [Google Scholar] [CrossRef]
- Hailong, H.; Eskandari, M.; Savkin, A.V.; Ni, W. Energy-efficient joint UAV secure communication and 3D trajectory optimization assisted by reconfigurable intelligent surfaces in the presence of eavesdroppers. Def. Technol. 2024, 31, 537–543. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, T.; Liu, J.; Li, B.; Zhai, D.; Yu, F.R.; Han, Z. Secure Communication With UAV-Enabled Aerial RIS: Learning Trajectory with Reflection Optimization. IEEE Trans. Intell. Veh. 2023, 1–10. [Google Scholar] [CrossRef]
- Arzykulov, S.; Celik, A.; Nauryzbayev, G.; Eltawil, A.M. Aerial RIS-Aided Physical Layer Security: Optimal Deployment and Partitioning. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 1867–1882. [Google Scholar] [CrossRef]
- Munochiveyi, M.; Pogaku, A.C.; Do, D.T.; Le, A.T.; Voznak, M.; Nguyen, N.D. Reconfigurable Intelligent Surface Aided Multi-User Communications: State-of-the-Art Techniques and Open Issues. IEEE Access 2021, 9, 118584–118605. [Google Scholar] [CrossRef]
- Guo, K.; Liu, R.; Alazab, M.; Jhaveri, R.H.; Li, X.; Zhu, M. STAR-RIS-Empowered Cognitive Non-Terrestrial Vehicle Network with NOMA. IEEE Trans. Intell. Veh. 2023, 8, 3735–3749. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; Wu, Q.; Lei, X.; Zhou, F.; Shu, F.; Mu, X.; Liu, Y.; Fan, P. Active RIS-Aided NOMA-Enabled Space-Air-Ground Integrated Networks with Cognitive Radio. IEEE J. Sel. Areas Commun. 2024, 1. [Google Scholar] [CrossRef]
- Clerckx, B.; Mao, Y.; Jorswieck, E.A.; Yuan, J.; Love, D.J.; Erkip, E.; Niyato, D. A Primer on Rate-Splitting Multiple Access: Tutorial, Myths, and Frequently Asked Questions. IEEE J. Sel. Areas Commun. 2023, 41, 1265–1308. [Google Scholar] [CrossRef]
- Zhao, H.; Kong, Z.; Shi, S.; Huang, H.; Ni, Y.; Gui, G.; Gacanin, H.; Sari, H.; Adachi, F. Air Reconfigurable Intelligent Surface Enhanced Multiuser NOMA System. IEEE Internet Things J. 2024, 11, 29–39. [Google Scholar] [CrossRef]
- Khennoufa, F.; Abdellatif, K.; Kara, F.; Yanikomeroglu, H.; Rabie, K.; Elganimi, T.Y.; Beddiaf, S. Error Performance Analysis of UAV-Mounted RIS for NOMA Systems with Practical Constraints. IEEE Commun. Lett. 2024, 28, 887–891. [Google Scholar] [CrossRef]
- Singh, S.K.; Agrawal, K.; Singh, K.; Li, C.P.; Ding, Z. NOMA Enhanced Hybrid RIS-UAV-Assisted Full-Duplex Communication System with Imperfect SIC and CSI. IEEE Trans. Commun. 2022, 70, 7609–7627. [Google Scholar] [CrossRef]
- Rivera, M.; Jaafar, W.; Yanikomeroglu, H. Optimization of RIS-Assisted RSMA-Enabled Tethered-UAV Communications. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 227–232. [Google Scholar]
- Bansal, A.; Agrawal, N.; Singh, K. Rate-Splitting Multiple Access for UAV-Based RIS-Enabled Interference-Limited Vehicular Communication System. IEEE Trans. Intell. Veh. 2023, 8, 936–948. [Google Scholar] [CrossRef]
- Javad-Kalbasi, M.; Al-Abiad, M.S.; Valaee, S. Energy Efficient Communications in RIS-Assisted UAV Networks Based on Genetic Algorithm. In Proceedings of the GLOBECOM 2023–2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 5901–5906. [Google Scholar]
- Yang, H.; Liu, S.; Xiao, L.; Zhang, Y.; Xiong, Z.; Zhuang, W. Learning-Based Reliable and Secure Transmission for UAV-RIS-Assisted Communication Systems. IEEE Trans. Wirel. Commun. 2024, 23, 6954–6967. [Google Scholar] [CrossRef]
- Guo, L.; Jia, J.; Chen, J.; Wang, X. Secure Communication Optimization in NOMA Systems With UAV-Mounted STAR-RIS. IEEE Trans. Inf. Forensics Secur. 2024, 19, 2300–2314. [Google Scholar] [CrossRef]
- Yang, H.; Lin, K.; Xiao, L.; Zhao, Y.; Xiong, Z.; Han, Z. Energy Harvesting UAV-RIS-Assisted Maritime Communications Based on Deep Reinforcement Learning Against Jamming. IEEE Trans. Wirel. Commun. 2024, 23, 9854–9868. [Google Scholar] [CrossRef]
- Feng, W.; Tang, J.; Wu, Q.; Fu, Y.; Zhang, X.; So, D.K.C.; Wong, K.K. Resource Allocation for Power Minimization in RIS-Assisted Multi-UAV Networks With NOMA. IEEE Trans. Commun. 2023, 71, 6662–6676. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, H.; Wang, J.B.; Li, G.Y. Reconfigurable Wireless Relaying with Multi-UAV-Carried Intelligent Reflecting Surfaces. IEEE Trans. Veh. Technol. 2023, 72, 4932–4947. [Google Scholar] [CrossRef]
- Shang, B.; Bentley, E.S.; Liu, L. UAV Swarm-Enabled Aerial Reconfigurable Intelligent Surface: Modeling, Analysis, and Optimization. IEEE Trans. Commun. 2023, 71, 3621–3636. [Google Scholar] [CrossRef]
- Liao, J.; Zhan, C.; Zeng, B.; Yan, H. Energy-Efficient Optimization for IRS-Enabled Multiantenna UAV Video Streaming. IEEE Internet Things J. 2024, 11, 9522–9535. [Google Scholar] [CrossRef]
- Li, B.; Li, Q.; Zeng, Y.; Rong, Y.; Zhang, R. 3D Trajectory Optimization for Energy-Efficient UAV Communication: A Control Design Perspective. IEEE Trans. Wirel. Commun. 2022, 21, 4579–4593. [Google Scholar] [CrossRef]
- Wang, L.; Wang, K.; Pan, C.; Aslam, N. Joint Trajectory and Passive Beamforming Design for Intelligent Reflecting Surface-Aided UAV Communications: A Deep Reinforcement Learning Approach. IEEE Trans. Mob. Comput. 2023, 22, 6543–6553. [Google Scholar] [CrossRef]
- Guo, K.; Wu, M.; Li, X.; Song, H.; Kumar, N. Deep Reinforcement Learning and NOMA-Based Multi-Objective RIS-Assisted IS-UAV-TNs: Trajectory Optimization and Beamforming Design. IEEE Trans. Intell. Transp. Syst. 2023, 24, 10197–10210. [Google Scholar] [CrossRef]
- Mohamed, E.M.; Hashima, S.; Hatano, K. Energy Aware Multiarmed Bandit for Millimeter Wave-Based UAV Mounted RIS Networks. IEEE Wirel. Commun. Lett. 2022, 11, 1293–1297. [Google Scholar] [CrossRef]
- Zhai, L.; Zou, Y.; Zhu, J.; Jiang, Y. RIS-Assisted UAV-Enabled Wireless Powered Communications: System Modeling and Optimization. IEEE Trans. Wirel. Commun. 2024, 23, 5094–5108. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, X.; Leung, V.C.M. Fair Downlink Communications for RIS-UAV Enabled Mobile Vehicles. IEEE Wirel. Commun. Lett. 2022, 11, 1042–1046. [Google Scholar] [CrossRef]
- Wang, P.; Li, D.; Zhang, Y.; Chen, X. UAV-Assisted Vehicular Communication System Optimization with Aerial Base Station and Intelligent Reflecting Surface. IEEE Trans. Intell. Veh. 2023, 1–12. [Google Scholar] [CrossRef]
- Jeon, H.B.; Park, S.H.; Park, J.; Huang, K.; Chae, C.B. An Energy-Efficient Aerial Backhaul System with Reconfigurable Intelligent Surface. IEEE Trans. Wirel. Commun. 2022, 21, 6478–6494. [Google Scholar] [CrossRef]
- Liu, Y.; Duo, B.; Wu, Q.; Yuan, X.; Li, Y. Full-Dimensional Rate Enhancement for UAV-Enabled Communications via Intelligent Omni-Surface. IEEE Wirel. Commun. Lett. 2022, 11, 1955–1959. [Google Scholar] [CrossRef]
- Zhai, Z.; Dai, X.; Duo, B.; Wang, X.; Yuan, X. Energy-Efficient UAV-Mounted RIS Assisted Mobile Edge Computing. IEEE Wirel. Commun. Lett. 2022, 11, 2507–2511. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Y.; Mu, X.; Cai, K.; Liu, Y.; Hanzo, L. Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface (STAR-RIS) Assisted UAV Communications. IEEE J. Sel. Areas Commun. 2022, 40, 3041–3056. [Google Scholar] [CrossRef]
- Lv, S.; Xu, X.; Han, S.; Zhang, P. UAV-RIS-Assisted Coordinated Multipoint Finite Blocklength Transmission for MTC Networks. IEEE Internet Things J. 2023, 10, 20323–20341. [Google Scholar] [CrossRef]
- Liu, X.; Lai, B.; Lin, B.; Leung, V.C.M. Joint Communication and Trajectory Optimization for Multi-UAV Enabled Mobile Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15354–15366. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, W.; Ni, Y.; Xia, W.; Gui, G.; Zhu, C. Deep Deterministic Policy Gradient-Based Rate Maximization for RIS-UAV-Assisted Vehicular Communication Networks. IEEE Trans. Intell. Transp. Syst. 2024, 25, 15732–15744. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, C.; Chen, G.; Song, R.; Song, S.; Xiao, P. Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks. IEEE Wirel. Commun. Lett. 2024, 13, 188–192. [Google Scholar] [CrossRef]
- Jiang, W.; Ai, B.; Li, M.; Wu, W.; Shen, X. Average Age-of-Information Minimization in Aerial IRS-Assisted Data Delivery. IEEE Internet Things J. 2023, 10, 15133–15146. [Google Scholar] [CrossRef]
- Duo, B.; He, M.; Wu, Q.; Zhang, Z. Joint Dual-UAV Trajectory and RIS Design for ARIS-Assisted Aerial Computing in IoT. IEEE Internet Things J. 2023, 10, 19584–19594. [Google Scholar] [CrossRef]
- Wang, W.; Ni, W.; Tian, H.; Song, L. Intelligent Omni-Surface Enhanced Aerial Secure Offloading. IEEE Trans. Veh. Technol. 2022, 71, 5007–5022. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Y.; Wu, Q.; Yuan, X.; Ning, J.; Duo, B. Enhancing UAV-Enabled Communications via Multiple Intelligent Omni-Surfaces. IEEE Commun. Lett. 2023, 27, 655–660. [Google Scholar] [CrossRef]
- Xie, W.; Qi, F. DRL Enhanced Reconfigurable Intelligent Surface for Efficient Air-Ground Vehicle Communications. IEEE Wirel. Commun. 2024, 1–6. [Google Scholar] [CrossRef]
- Shang, B.; Poor, H.V.; Liu, L. Aerial Reconfigurable Intelligent Surfaces Meet Mobile Edge Computing. IEEE Wirel. Commun. 2022, 29, 104–111. [Google Scholar] [CrossRef]
- Li, M.; Tao, X.; Li, N.; Wu, H. Energy-Efficient Covert Communication with the Aid of Aerial Reconfigurable Intelligent Surface. IEEE Commun. Lett. 2022, 26, 2101–2105. [Google Scholar] [CrossRef]
- Aung, P.S.; Park, Y.M.; Tun, Y.K.; Han, Z.; Hong, C.S. Energy-Efficient Communication Networks via Multiple Aerial Reconfigurable Intelligent Surfaces: DRL and Optimization Approach. IEEE Trans. Veh. Technol. 2024, 73, 4277–4292. [Google Scholar] [CrossRef]
- Wu, M.; Guo, K.; Li, X.; Lin, Z.; Wu, Y.; Tsiftsis, T.A.; Song, H. Deep Reinforcement Learning-Based Energy Efficiency Optimization for RIS-Aided Integrated Satellite-Aerial-Terrestrial Relay Networks. IEEE Trans. Commun. 2024, 72, 4163–4178. [Google Scholar] [CrossRef]
- Faramarzi, S.; Javadi, S.; Zeinali, F.; Zarini, H.; Mili, M.R.; Bennis, M.; Li, Y.; Wong, K.K. Meta Reinforcement Learning for Resource Allocation in Aerial Active-RIS-Assisted Networks with Rate-Splitting Multiple Access. IEEE Internet Things J. 2024, 11, 26366–26383. [Google Scholar] [CrossRef]
- Lin, K.; Yang, H.; Zheng, M.; Xiao, L.; Huang, C.; Niyato, D. Penalized Reinforcement Learning-Based Energy-Efficient UAV-RIS Assisted Maritime Uplink Communications Against Jamming. IEEE Trans. Veh. Technol. 2024, 73, 15768–15773. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, T.; Mu, X.; Liu, Y. NOMA for STAR-RIS Assisted UAV Networks. IEEE Trans. Commun. 2024, 72, 1732–1745. [Google Scholar] [CrossRef]
- Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [Google Scholar]
- Yang, M.; Jeon, S.W.; Kim, D.K. Optimal Trajectory for Curvature-Constrained UAV Mobile Base Stations. IEEE Wirel. Commun. Lett. 2020, 9, 1056–1059. [Google Scholar] [CrossRef]
- Eskandari, M.; Savkin, A.V.; Deghat, M. Kinodynamic Model-Based UAV Trajectory Optimization for Wireless Communication Support of Internet of Vehicles in Smart Cities. Drones 2024, 8, 574. [Google Scholar] [CrossRef]
- Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments. Int. J. Robot. Res. 2010, 29, 485–501. [Google Scholar] [CrossRef]
- Hehn, M.; D’Andrea, R. Quadrocopter Trajectory Generation and Control. IFAC Proc. Vol. 2011, 44, 1485–1491. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhowmick, A.; Roy, S.D.; Kundu, S. UAV-RIS Enabled NOMA Network for Disaster Management with Hardware Impairments. IEEE Trans. Aerosp. Electron. Syst. 2024, 1–13. [Google Scholar] [CrossRef]
- Savkin, A.V.; Huang, C.; Ni, W. On-Demand Deployment of Aerial Base Stations for Coverage Enhancement in Reconfigurable Intelligent Surface-Assisted Cellular Networks on Uneven Terrains. IEEE Commun. Lett. 2023, 27, 666–670. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Mu, X.; Dobre, O.A. STAR-RISs: Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces. IEEE Commun. Lett. 2021, 25, 3134–3138. [Google Scholar] [CrossRef]
- Kishk, M.A.; Bader, A.; Alouini, M.S. On the 3-D Placement of Airborne Base Stations Using Tethered UAVs. IEEE Trans. Commun. 2020, 68, 5202–5215. [Google Scholar] [CrossRef]
- Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and Efficient Quadrotor Trajectory Generation for Fast Autonomous Flight. IEEE Robot. Autom. Lett. 2019, 4, 3529–3536. [Google Scholar] [CrossRef]
- Gao, F.; Lin, Y.; Shen, S. Gradient-based online safe trajectory generation for quadrotor flight in complex environments. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 24–28 September 2017; pp. 3681–3688. [Google Scholar]
- Vanegas, G.; Samaniego, F.; Girbes, V.; Armesto, L.; Garcia-Nieto, S. Smooth 3D path planning for non-holonomic UAVs. In Proceedings of the 2018 7th International Conference on Systems and Control (ICSC), Valencia, Spain, 24–26 October 2018; pp. 1–6. [Google Scholar]
- Rathinam, S.; Sengupta, R.; Darbha, S. A Resource Allocation Algorithm for Multivehicle Systems With Nonholonomic Constraints. IEEE Trans. Autom. Sci. Eng. 2007, 4, 98–104. [Google Scholar] [CrossRef]
- Mueller, M.W.; Hehn, M.; Andrea, R.D. A Computationally Efficient Motion Primitive for Quadrocopter Trajectory Generation. IEEE Trans. Robot. 2015, 31, 1294–1310. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, K.; Ni, Q.; Fan, P.; Letaief, K.B. UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing: Joint Offloading, CPU Control, and Trajectory Optimization. IEEE Internet Things J. 2020, 7, 2777–2790. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, J.; Zhang, R. Energy Minimization for Wireless Communication with Rotary-Wing UAV. IEEE Trans. Wirel. Commun. 2019, 18, 2329–2345. [Google Scholar] [CrossRef]
- Karegar, P.A.; Al-Hamid, D.Z.; Chong, P.H.J. UAV-enabled software defined data collection from an adaptive WSN. Wirel. Netw. 2024, 1–22. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, S.; Liu, M.; Hu, Y. Multi-Agent Reinforcement Learning for UAVs 3D Trajectory Designing and Mobile Ground Users Scheduling with No-Fly Zones. In Proceedings of the 2023 IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 10–12 August 2023; pp. 1–6. [Google Scholar]
- Schouwenaars, T.; Moor, B.D.; Feron, E.; How, J. Mixed integer programming for multi-vehicle path planning. In Proceedings of the 2001 European Control Conference (ECC), Porto, Portugal, 4–7 September 2001; pp. 2603–2608. [Google Scholar]
- Zhang, X.; Zhu, Q.; Poor, H.V. Multiple-Access Based UAV Communications and Trajectory Tracking Over 6G Mobile Wireless Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 2429–2434. [Google Scholar]
- Eskandari, M.; Savkin, A.V. Deep-Reinforcement-Learning-Based Joint 3-D Navigation and Phase-Shift Control for Mobile Internet of Vehicles Assisted by RIS-Equipped UAVs. IEEE Internet Things J. 2023, 10, 18054–18066. [Google Scholar] [CrossRef]
- Weiszfeld, E.; Plastria, F. On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 2009, 167, 7–41. [Google Scholar] [CrossRef]
- Guo, K.; An, K. On the Performance of RIS-Assisted Integrated Satellite-UAV-Terrestrial Networks with Hardware Impairments and Interference. IEEE Wirel. Commun. Lett. 2022, 11, 131–135. [Google Scholar] [CrossRef]
- Savkin, A.V.; Huang, C.; Ni, W. Collision-Free 3-D Navigation of a UAV Team for Optimal Data Collection in Internet-of-Things Networks with Reconfigurable Intelligent Surfaces. IEEE Syst. J. 2023, 17, 4070–4077. [Google Scholar] [CrossRef]
- Savkin, A.V.; Huang, C. Joint Communication and Safe 3D Path Optimization for Multi-UAV Assisted Mobile Internet of Vehicles on an Uneven Terrain. IEEE Trans. Autom. Sci. Eng. 2024, 1–10. [Google Scholar] [CrossRef]
- Rajkumar, Y.; Santhosh Kumar, S.V.N. A comprehensive survey on communication techniques for the realization of intelligent transportation systems in IoT based smart cities. Peer Peer Netw. Appl. 2024, 17, 1263–1308. [Google Scholar] [CrossRef]
- Duan, X.; Zhao, Y.; Tian, D.; Zhou, J.; Zhang, L. Transmission-Efficient RIS-Carrying UAV’s Auxiliary Communication Systems for Intelligent Connected Vehicle Platoons at the Unsignalized Intersection in Smart Cities. IEEE Internet Things J. 2023, 10, 18609–18621. [Google Scholar] [CrossRef]
- Savkin, A.V.; Huang, C.; Ni, W. Joint Multi-UAV Path Planning and LoS Communication for Mobile-Edge Computing in IoT Networks With RISs. IEEE Internet Things J. 2023, 10, 2720–2727. [Google Scholar] [CrossRef]
- Nguyen, M.H.T.; Garcia-Palacios, E.; Do-Duy, T.; Dobre, O.A.; Duong, T.Q. UAV-Aided Aerial Reconfigurable Intelligent Surface Communications with Massive MIMO System. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1828–1838. [Google Scholar] [CrossRef]
- Eskandari, M.; Huang, H.; Savkin, A.V.; Ni, W. Autonomous Guidance of an Aerial Drone for Maintaining an Effective Wireless Communication Link with a Moving Node Using an Intelligent Reflecting Surface. In Proceedings of the 2022 14th International Conference on Computer and Automation Engineering (ICCAE), Brisbane, Australia, 25–27 March 2022; pp. 195–199. [Google Scholar]
- Rahmatov, N.; Baek, H. RIS-carried UAV communication: Current research, challenges, and future trends. ICT Express 2023, 9, 961–973. [Google Scholar] [CrossRef]
- Lin, S.; Zou, Y.; Ng, D.W.K. Ergodic Throughput Maximization for RIS-Equipped-UAV-Enabled Wireless Powered Communications with Outdated CSI. IEEE Trans. Commun. 2024, 72, 3634–3650. [Google Scholar] [CrossRef]
- Eskandari, M.; Savkin, A.V.; Ni, W. Consensus-Based Autonomous Navigation of a Team of RIS-Equipped UAVs for LoS Wireless Communication with Mobile Nodes in High-Density Areas. IEEE Trans. Autom. Sci. Eng. 2023, 20, 923–935. [Google Scholar] [CrossRef]
- Khoshafa, M.H.; Gadallah, Y.; Ngatched, T.M.N.; Ahmed, M.H. Aerial Reconfigurable Intelligent Surface-Assisted LPWANs for IoT: A Cross-Layer Analysis. IEEE Wirel. Commun. Lett. 2024, 13, 2912–2916. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, Z.; Liu, G.; Zhang, Z.; Yeoh, P.L.; Vucetic, B.; Li, Y. Secure Multi-Layer MEC Systems With UAV-Enabled Reconfigurable Intelligent Surface Against Full-Duplex Eavesdropper. IEEE Trans. Commun. 2024, 72, 1565–1577. [Google Scholar] [CrossRef]
- Ata, Y.; Vegni, A.M.; Alouini, M.S. RIS-embedded UAVs communications for multi-hop fully-FSO backhaul links in 6G networks. IEEE Trans. Veh. Technol. 2024, 73, 14143–14158. [Google Scholar] [CrossRef]
- Hao, S.; Fan, X.; Li, X.; Zhen, L.; Cui, J. Uplink Performance Analysis of RIS-Assisted UAV Communication Systems with Random 3-D Mobile Pattern. IEEE Internet Things J. 2024, 11, 28153–28168. [Google Scholar] [CrossRef]
- Wang, Z.; Bian, J.; Wang, C.X.; Liu, Y.; Tian, J. Aerial Reconfigurable Intelligent Surface-Assisted Channel Modeling Incorporating the Effect of UAV Fluctuations. IEEE Commun. Lett. 2024, 28, 1599–1603. [Google Scholar] [CrossRef]
- Mohammadyari, M.; Eskandari, M. Stochastic Convex Cone Programming for Joint Optimal BESS Operation and Q-Placement in Net-Zero Microgrids. Energies 2024, 17, 4292. [Google Scholar] [CrossRef]
- Yadasu, S.; Awaar, V.K.; Jetti, V.R.; Eskandari, M. Sensor Fusion-Based Pulsed Controller for Low Power Solar-Charged Batteries with Experimental Tests: NiMH Battery as a Case Study. Batteries 2024, 10, 335. [Google Scholar] [CrossRef]
- Li, S.; Fang, Z.; Verma, S.C.; Wei, J.; Savkin, A.V. Navigation and Deployment of Solar-Powered Unmanned Aerial Vehicles for Civilian Applications: A Comprehensive Review. Drones 2024, 8, 42. [Google Scholar] [CrossRef]
- Xiao, Y.; Tyrovolas, D.; Tegos, S.A.; Diamantoulakis, P.D.; Ma, Z.; Hao, L.; Karagiannidis, G.K. Solar Powered UAV-Mounted RIS Networks. IEEE Commun. Lett. 2023, 27, 1565–1569. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, S.; Di, B.; Tan, Y.; Renzo, M.D.; Debbah, M.; Han, Z.; Poor, H.V.; Song, L. Intelligent Omni-Surfaces for Full-Dimensional Wireless Communications: Principles, Technology, and Implementation. IEEE Commun. Mag. 2022, 60, 39–45. [Google Scholar] [CrossRef]
- Wu, Q.; Lin, T.; Liu, M.; Zhu, Y. BIOS: An Omni RIS for Independent Reflection and Refraction Beamforming. IEEE Wirel. Commun. Lett. 2022, 11, 1062–1066. [Google Scholar] [CrossRef]
- Yue, S.; Zeng, S.; Zhang, H.; Lin, F.; Liu, L.; Di, B. Intelligent Omni-Surfaces Aided Wireless Communications: Does the Reciprocity Hold? IEEE Trans. Veh. Technol. 2023, 72, 8181–8185. [Google Scholar] [CrossRef]
- Wan, Z.; Gao, Z.; Gao, F.; Renzo, M.D.; Alouini, M.S. Terahertz Massive MIMO With Holographic Reconfigurable Intelligent Surfaces. IEEE Trans. Commun. 2021, 69, 4732–4750. [Google Scholar] [CrossRef]
- Deng, R.; Di, B.; Zhang, H.; Niyato, D.; Han, Z.; Poor, H.V.; Song, L. Reconfigurable Holographic Surfaces for Future Wireless Communications. IEEE Wirel. Commun. 2021, 28, 126–131. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, W.; Gao, H.; Pan, M.; Han, Z.; Zhang, P. Codebook-Based Beam Tracking for Conformal Array-Enabled UAV mmWave Networks. IEEE Internet Things J. 2021, 8, 244–261. [Google Scholar] [CrossRef]
- Li, S.; Duo, B.; Yuan, X.; Liang, Y.C.; Renzo, M.D. Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beamforming. IEEE Wirel. Commun. Lett. 2020, 9, 716–720. [Google Scholar] [CrossRef]
- Zheng, C.; Eskandari, M.; Li, M.; Sun, Z. GA−Reinforced Deep Neural Network for Net Electric Load Forecasting in Microgrids with Renewable Energy Resources for Scheduling Battery Energy Storage Systems. Algorithms 2022, 15, 338. [Google Scholar] [CrossRef]
- Asadi, A.H.; Eskandari, M.; Delavari, H. Accurate Surge Arrester Modeling for Optimal Risk-Aware Lightning Protection Utilizing a Hybrid Monte Carlo–Particle Swarm Optimization Algorithm. Technologies 2024, 12, 88. [Google Scholar] [CrossRef]
- Eskandari, M.; Li, L.; Moradi, M.H.; Siano, P.; Blaabjerg, F. Optimal Voltage Regulator for Inverter Interfaced Distributed Generation Units Part I: Control System. IEEE Trans. Sustain. Energy 2020, 11, 2813–2824. [Google Scholar] [CrossRef]
- İren, K.T.; Gün, A.; Girici, T. Optimal Deployment of UAV-Mounted Reconfigurable Intelligent Surfaces for Millimeter-Wave Transmission. In Proceedings of the 2024 7th International Balkan Conference on Communications and Networking (BalkanCom), Ljubljana, Slovenia, 3–6 June 2024; pp. 48–52. [Google Scholar]
- Eskandari, M.; Savkin, A.V. AI-based Navigation and Communication Control for a Team of UAVs with Reconfigurable Intelligent Surfaces Supporting Mobile Internet of Vehicles. In Proceedings of the 2023 IEEE Conference on Control Technology and Applications (CCTA), Bridgetown, Barbados, 16–18 August 2023; pp. 234–238. [Google Scholar]
- Ahmad, I.; Narmeen, R.; Becvar, Z.; Guvenc, I. Machine Learning-Based Beamforming for Unmanned Aerial Vehicles Equipped with Reconfigurable Intelligent Surfaces. IEEE Wirel. Commun. 2022, 29, 32–38. [Google Scholar] [CrossRef]
- Narmeen, R.; Almadhor, A.; Alkhayyat, A.; Ho, P.H. Secure Beamforming for Unmanned Aerial Vehicles Equipped Reconfigurable Intelligent Surfaces. IEEE Internet Things Mag. 2024, 7, 30–37. [Google Scholar] [CrossRef]
- Eskandari, M.; Savkin, A.V. GANs the UAV Path Planner: UAV-Based RIS-Assisted Wireless Communication for Internet of Autonomous Vehicles. In Proceedings of the 2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 5–8 August 2024; pp. 1–6. [Google Scholar]
- Yang, K.; Shi, Y.; Zhou, Y.; Yang, Z.; Fu, L.; Chen, W. Federated Machine Learning for Intelligent IoT via Reconfigurable Intelligent Surface. IEEE Netw. 2020, 34, 16–22. [Google Scholar] [CrossRef]
- Diamanti, M.; Charatsaris, P.; Tsiropoulou, E.E.; Papavassiliou, S. The Prospect of Reconfigurable Intelligent Surfaces in Integrated Access and Backhaul Networks. IEEE Trans. Green. Commun. Netw. 2022, 6, 859–872. [Google Scholar] [CrossRef]
- Diamanti, M.; Tsampazi, M.; Tsiropoulou, E.E.; Papavassiliou, S. Energy Efficient Multi-User Communications Aided by Reconfigurable Intelligent Surfaces and UAVs. In Proceedings of the 2021 IEEE International Conference on Smart Computing (SMARTCOMP), Irvine, CA, USA, 23–27 August 2021; pp. 371–376. [Google Scholar]
- Kwon, G.; Conti, A.; Park, H.; Win, M.Z. Joint Communication and Localization in Millimeter Wave Networks. IEEE J. Sel. Top. Signal Process. 2021, 15, 1439–1454. [Google Scholar] [CrossRef]
- Kwon, G.; Liu, Z.; Conti, A.; Park, H.; Win, M.Z. Integrated Localization and Communication for Efficient Millimeter Wave Networks. IEEE J. Sel. Areas Commun. 2023, 41, 3925–3941. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, Y.; Xu, C.Z. RCSIL: RIS-Assisted Cooperative Channel State Information Localization for V2X System. IEEE Internet Things J. 2024, 1. [Google Scholar] [CrossRef]
- Conti, A.; Morselli, F.; Liu, Z.; Bartoletti, S.; Mazuelas, S.; Lindsey, W.C.; Win, M.Z. Location Awareness in Beyond 5G Networks. IEEE Commun. Mag. 2021, 59, 22–27. [Google Scholar] [CrossRef]
- Abu-Shaban, Z.; Wymeersch, H.; Abhayapala, T.; Seco-Granados, G. Single-Anchor Two-Way Localization Bounds for 5G mmWave Systems. IEEE Trans. Veh. Technol. 2020, 69, 6388–6400. [Google Scholar] [CrossRef]
- Savkin, A.V.; Ni, W.; Eskandari, M. Effective UAV Navigation for Cellular-Assisted Radio Sensing, Imaging, and Tracking. IEEE Trans. Veh. Technol. 2023, 72, 13729–13733. [Google Scholar] [CrossRef]
- Greisman, A.; Hashtrudi-Zaad, K.; Marshall, J.A. Detection of Conductive Lane Markers using mm Wave FMCW Automotive Radar. In Proceedings of the 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany, 23–25 September 2021; pp. 1–6. [Google Scholar]
- Singh, J.; Gupta, A.; Jagannatham, A.K.; Hanzo, L. Multi-Beam Object-Localization for Millimeter-Wave ISAC-Aided Connected Autonomous Vehicles. IEEE Trans. Veh. Technol. 2024, 1–6. [Google Scholar] [CrossRef]
- Li, L.; Yang, M.; Guo, L.; Wang, C.; Wang, B. Hierarchical Neighborhood Based Precise Localization for Intelligent Vehicles in Urban Environments. IEEE Trans. Intell. Veh. 2016, 1, 220–229. [Google Scholar] [CrossRef]
- Li, L.; Yang, M.; Li, H.; Wang, C.; Wang, B. Robust Localization for Intelligent Vehicles Based on Compressed Road Scene Map in Urban Environments. IEEE Trans. Intell. Veh. 2023, 8, 250–262. [Google Scholar] [CrossRef]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Le, V.-H.; Do, H.-S.; Te, T.-H.; Phan, V.-N. TQU-SLAM Benchmark Dataset for Comparative Study to Build Visual Odometry Based on Extracted Features from Feature Descriptors and Deep Learning. Future Internet 2024, 16, 174. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Cai, Y.; Wu, H.; Li, Z.; Sotelo, M.A. Visual Map-Based Localization for Intelligent Vehicles from Multi-View Site Matching. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1068–1079. [Google Scholar] [CrossRef]
- Song, J.; Jo, H.; Jin, Y.; Lee, S.J. Uncertainty-Aware Depth Network for Visual Inertial Odometry of Mobile Robots. Sensors 2024, 24, 6665. [Google Scholar] [CrossRef]
- Kong, H.; Huang, C.; Yu, J.; Shen, X. A Survey of mmWave Radar-Based Sensing in Autonomous Vehicles, Smart Homes and Industry. IEEE Commun. Surv. Tutor. 2024, 1. [Google Scholar] [CrossRef]
- Fang, X.; Feng, W.; Chen, Y.; Ge, N.; Zhang, Y. Joint Communication and Sensing Toward 6G: Models and Potential of Using MIMO. IEEE Internet Things J. 2023, 10, 4093–4116. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Shen, Y.; Conti, A.; Win, M.Z. Location Awareness in Beyond 5G Networks via Reconfigurable Intelligent Surfaces. IEEE J. Sel. Areas Commun. 2022, 40, 2011–2025. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, B.; Chang, Z.; Hämäläinen, T.; Zhao, Y.; Hu, F. Joint Active and Passive Beamforming for Vehicle Localization with Reconfigurable Intelligent Surfaces. IEEE Trans. Intell. Transp. Syst. 2024, 25, 16704–16718. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, H.; Zhang, H.; Di, B.; Dong, M.; Yang, L.; Song, L. MetaSLAM: Wireless Simultaneous Localization and Mapping Using Reconfigurable Intelligent Surfaces. IEEE Trans. Wirel. Commun. 2023, 22, 2606–2620. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Tian, Y.; Zhang, H.; Di, B.; Song, L. Reconfigurable Holographic Surface Aided Collaborative Wireless SLAM Using Federated Learning for Autonomous Driving. IEEE Trans. Intell. Veh. 2023, 8, 4031–4046. [Google Scholar] [CrossRef]
- Dardari, D.; Decarli, N.; Guerra, A.; Guidi, F. LOS/NLOS Near-Field Localization With a Large Reconfigurable Intelligent Surface. IEEE Trans. Wirel. Commun. 2022, 21, 4282–4294. [Google Scholar] [CrossRef]
- Elzanaty, A.; Guerra, A.; Guidi, F.; Alouini, M.S. Reconfigurable Intelligent Surfaces for Localization: Position and Orientation Error Bounds. IEEE Trans. Signal Process. 2021, 69, 5386–5402. [Google Scholar] [CrossRef]
- Meles, M.; Rajasekaran, A.; Mela, L.; Jäntti, R. RIS-Assisted Three-Dimensional Drone Localization and Tracking Under Hardware Impairments. IEEE Access 2024, 12, 81348–81361. [Google Scholar] [CrossRef]
- Li, M.; Zhang, S.; Ge, Y.; Li, Z.; Gao, F.; Fan, P. STAR-RIS Aided Integrated Sensing and Communication Over High Mobility Scenario. IEEE Trans. Commun. 2024, 72, 4788–4802. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, P.; Cao, Z. NFLnet: A Deep Neural Network-Based Localization Method for Near-Field Vehicles. IEEE Trans. Instrum. Meas. 2024, 73, 1–12. [Google Scholar] [CrossRef]
- Varshney, N.; De, S. AoA-Based Low Complexity Beamforming for Aerial RIS Assisted Communications at mmWaves. IEEE Commun. Lett. 2023, 27, 1545–1549. [Google Scholar] [CrossRef]
- Luo, J.; Liang, T.; Chen, C.; Zhang, T. A UAV mounted RIS aided communication and localization integration system for ground vehicles. In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Republic of Korea, 16–20 May 2022; pp. 139–144. [Google Scholar]
- Teng, S.; Hu, X.; Deng, P.; Li, B.; Li, Y.; Ai, Y.; Yang, D.; Li, L.; Xuanyuan, Z.; Zhu, F.; et al. Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives. IEEE Trans. Intell. Veh. 2023, 8, 3692–3711. [Google Scholar] [CrossRef]
- Eskandari, M.; Savkin, A.V.; Deghat, M. Integrated Path Planning and Localization for an Ocean Exploring Team of Autonomous Underwater Vehicles with Consensus Graph Model Predictive Control. IEEE Trans. Intell. Veh. 2024; to be published. [Google Scholar]
Symbol | Parameter | Unit |
---|---|---|
The mean rotor velocity in hovering | m/s | |
Blade profile power in hovering | W | |
Induced power in hovering | W | |
Rotor angular velocity | Radian/seconds | |
Fuselage drag ratio | − | |
Rotor disk area | m2 | |
Rotor radius | m | |
Rotor solidity | m3 | |
Air density | Kg/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eskandari, M.; Savkin, A.V. Integrating UAVs and RISs in Future Wireless Networks: A Review and Tutorial on IoTs and Vehicular Communications. Future Internet 2024, 16, 433. https://doi.org/10.3390/fi16120433
Eskandari M, Savkin AV. Integrating UAVs and RISs in Future Wireless Networks: A Review and Tutorial on IoTs and Vehicular Communications. Future Internet. 2024; 16(12):433. https://doi.org/10.3390/fi16120433
Chicago/Turabian StyleEskandari, Mohsen, and Andrey V. Savkin. 2024. "Integrating UAVs and RISs in Future Wireless Networks: A Review and Tutorial on IoTs and Vehicular Communications" Future Internet 16, no. 12: 433. https://doi.org/10.3390/fi16120433
APA StyleEskandari, M., & Savkin, A. V. (2024). Integrating UAVs and RISs in Future Wireless Networks: A Review and Tutorial on IoTs and Vehicular Communications. Future Internet, 16(12), 433. https://doi.org/10.3390/fi16120433