Mapping How Artificial Intelligence Blends with Healthcare: Insights from a Bibliometric Analysis
"> Figure 1
<p>Yearly publication count.</p> "> Figure 2
<p>Country collaboration network.</p> "> Figure 3
<p>Visualization of the density of the most impactful sources (with the highest cumulative link strength).</p> "> Figure 4
<p>Visualization of the connections among the most influential authors (based on the number of published documents).</p> "> Figure 5
<p>Co-occurrence analysis of all of the 13,015 keywords resulted in 73 clusters regarding the intersection of AI in the healthcare sector.</p> "> Figure 6
<p>Co-occurrence analysis of all keywords with 100 occurrences or more (<span class="html-italic">n</span> = 18, clusters = 3).</p> "> Figure 7
<p>Co-occurrence analyses resulting in different numbers of clusters.</p> "> Figure 7 Cont.
<p>Co-occurrence analyses resulting in different numbers of clusters.</p> "> Figure 7 Cont.
<p>Co-occurrence analyses resulting in different numbers of clusters.</p> "> Figure 8
<p>Elbow diagram of the cluster analysis.</p> "> Figure 9
<p>Elbow diagram of cluster analysis (focusing on the 0–100 data range).</p> "> Figure 10
<p>The three primary applications of AI in healthcare.</p> ">
Abstract
:1. Introduction
- What are the most influential countries, institutions, sources, and authors in the field of AI interaction with healthcare?
- What are the main thematic areas of research in AI interaction with healthcare?
- Which medical departments have integrated AI according to each thematic area of research?
2. Research Methodology
3. Results
3.1. Key Influential Factors through Bibliographic-Coupling Analysis
3.1.1. Annual Publication Volume
3.1.2. Geographic Distribution of Productivity Rates
3.1.3. Distribution of Publications across Various Types and Publishers
3.1.4. Dissemination of Publications among Authors and Institutions
3.2. Analysis of Keyword Co-Occurrence and Content Clustering
4. Discussion
4.1. Medical Informatics and Clinical Decision Support Systems
4.2. Advanced Medical Imaging and Diagnosis Systems: Algorithms and Automation
4.3. Human–Computer Interaction and the Importance of Learning Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weber, J.C.; Linden, D.J.; Frayer, W.W.; Hagamen, W.D. Some problems associated with interactive graphics in computer mediated tutorials. In Proceedings of the 1972 SIGGRAPH Seminar on Computer Graphics in Medicine, Pittsburgh, PA, USA, 7–10 March 1972; pp. 78–89. [Google Scholar] [CrossRef]
- Trappl, R. Computer psychotherapy: Is it acceptable, feasible, advisable? Cybern. Syst. 1981, 12, 385–394. [Google Scholar] [CrossRef]
- Joubert, M.; Fieschi, M.; Fieschi, D.; Roux, M. Knowledge representation and utilisation in a man-machine dialogue with a medical decision aid system. Methods Inf. Med. 1982, 21, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Bolc, L.; Kowalski, A.; Kozlowska, M.; Strzalkowski, T. A natural language information retrieval system with extentions towards fuzzy reasoning. Int. J. Man-Mach. Stud. 1985, 23, 335–367. [Google Scholar] [CrossRef]
- Anbar, M.; Anbar, A. The ‘understanding’ of natural language in CAI and analogous mental processes. In Proceedings of the Symposium on the Engineering of Computer-Based Medical, Minneapolis, MN, USA, 8–10 June 1988; IEEE Computer Society: Washington, DC, USA, 1988; pp. 112–117. [Google Scholar]
- Torasso, P.; Console, L.; Terenziani, P.; Molino, G.L. Man-machine interaction in deep diagnostic systems. In Proceedings of the Images of the Twenty-First Century. Proceedings of the Annual International Engineering in Medicine and Biology Society, Seattle, WA, USA, 9–12 November 1989; IEEE: New York, NY, USA, 1989; pp. 1849–1850. [Google Scholar]
- Agah, A.; Tanie, K. Taxonomy of research on human interactions with intelligent systems. In Proceedings of the IEEE SMC’ 99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), Tokyo, Japan, 12–15 October 1999; IEEE: New York, NY, USA, 1999; pp. 965–970. [Google Scholar]
- Gaczek, P.; Leszczyński, G.; Zieliński, M. Is AI Augmenting or Substituting Humans?: An Eye-Tracking Study of Visual Attention toward Health Application. Int. J. Technol. Hum. Interact. (IJTHI) 2022, 18, 1–14. [Google Scholar] [CrossRef]
- Su, Z.; He, L.; Jariwala, S.P.; Zheng, K.; Chen, Y. “What is Your Envisioned Future?”: Toward Human-AI Enrichment in Data Work of Asthma Care. In Proceedings of the ACM on Human-Computer Interaction, New Orleans, LA, USA, 30 April–5 May 2022; Volume 6, pp. 1–28. [Google Scholar] [CrossRef]
- Van Berkel, N.; Opie, J.; Ahmad, O.F.; Lovat, L.; Stoyanov, D.; Blandford, A. Initial responses to false positives in AI-supported continuous interactions: A colonoscopy case study. ACM Trans. Interact. Intell. Syst. (TiiS) 2022, 12, 1–18. [Google Scholar] [CrossRef]
- Wiebelitz, L.; Schmid, P.; Maier, T.; Volkwein, M. Designing User-friendly Medical AI Applications-Methodical Development of User-centered Design Guidelines. In Proceedings of the 2022 IEEE International Conference on Digital Health (ICDH), Barcelona, Spain, 10–16 July 2022; IEEE: New York, NY, USA, 2022; pp. 23–28. [Google Scholar]
- Sivaraman, V.; Bukowski, L.A.; Levin, J.; Kahn, J.M.; Perer, A. Ignore, trust, or negotiate: Understanding clinician acceptance of AI-based treatment recommendations in health care. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–18. [Google Scholar] [CrossRef]
- Thevapalan, A.; Kern-Isberner, G.; Howey, D.; Beierle, C.; Meyer, R.G.; Nietzke, M. Decision support core system for cancer therapies using ASP-HEX. In Proceedings of the Thirty-First International Flairs Conference, Melbourne, FL, USA, 21–23 May 2018. [Google Scholar]
- Pati, J. Gene expression analysis for early lung cancer prediction using machine learning techniques: An eco-genomics approach. IEEE Access 2018, 7, 4232–4238. [Google Scholar] [CrossRef]
- Gong, X.; Xiao, Y. A skin cancer detection interactive application based on CNN and NLP. In Proceedings of the Journal of Physics: Conference Series, Wuxi, China, 10–12 September 2021; IOP Publishing: Bristol, UK, 2021; p. 012036. [Google Scholar] [CrossRef]
- Sawik, B.; Tobis, S.; Baum, E.; Suwalska, A.; Kropińska, S.; Stachnik, K.; Pérez-Bernabeu, E.; Cildoz, M.; Agustin, A.; Wieczorowska-Tobis, K. Robots for Elderly Care: Review, Multi-Criteria Optimization Model and Qualitative Case Study. Healthcare 2023, 11, 1286. [Google Scholar] [CrossRef] [PubMed]
- Hung, L.; Wong, K.L.Y.; Wong, J.; Park, J.; Mousavi, H.; Zhao, H. Facilitators and barriers to using AI-enabled robots with older adults in long-term care from staff perspective: A scoping review protocol. BMJ Open 2023, 13, e075278. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Applications of Artificial Intelligence (AI) for cardiology during COVID-19 pandemic. Sustain. Oper. Comput. 2021, 2, 71–78. [Google Scholar] [CrossRef]
- Park, J.H.; Rogowski, L.; Kim, J.H.; Al Shami, S.; Howell, S.E. Teledentistry platforms for orthodontics. J. Clin. Pediatr. Dent. 2021, 45, 48–53. [Google Scholar] [CrossRef]
- Maulana, F.I.; Lestari, D.; Purnomo, A.; Carollina, D. Applied artificial intelligence in healthcare research with bibliometric approach. In Proceedings of the AIP Conference Proceedings, Yogyakarta, Indonesia, 20–21 July 2022; AIP Publishing: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Jimma, B.L. Artificial intelligence in healthcare: A bibliometric analysis. Telemat. Inform. Rep. 2023, 9, 100041. [Google Scholar] [CrossRef]
- Saheb, T.; Saheb, T.; Carpenter, D.O. Mapping research strands of ethics of artificial intelligence in healthcare: A bibliometric and content analysis. Comput. Biol. Med. 2021, 135, 104660. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Tr, E.; Muruganathan, A.; Ramakrishan, S.; Nanda, S.; Radhakrishnan, P. The Impact of cultural dimensions of clinicians on the adoption of artificial intelligence in healthcare. J. Assoc. Physicians India 2022, 70, 11–12. [Google Scholar] [PubMed]
- Mustaqeem; Kwon, S. A CNN-assisted enhanced audio signal processing for speech emotion recognition. Sensors 2019, 20, 183. [Google Scholar] [CrossRef]
- Braun, M.; Hummel, P.; Beck, S.; Dabrock, P. Primer on an ethics of AI-based decision support systems in the clinic. J. Med. Ethics 2021, 47, e3. [Google Scholar] [CrossRef]
- Benrimoh, D.; Tanguay-Sela, M.; Perlman, K.; Israel, S.; Mehltretter, J.; Armstrong, C.; Fratila, R.; Parikh, S.V.; Karp, J.F.; Heller, K.; et al. Using a simulation centre to evaluate preliminary acceptability and impact of an artificial intelligence-powered clinical decision support system for depression treatment on the physician–patient interaction. BJPsych Open 2021, 7, e22. [Google Scholar] [CrossRef]
- Moglia, A.; Marsilio, L.; Rossi, M.; Pinelli, M.; Lettieri, E.; Mainardi, L.; Manzotti, A.; Cerveri, P. Mixed Reality and Artificial Intelligence: A Holistic Approach to Multimodal Visualization and Extended Interaction in Knee Osteotomy. IEEE J. Transl. Eng. Health Med. 2023, 12, 279–290. [Google Scholar] [CrossRef]
- Alfano, L.; Malcotti, I.; Ciliberti, R. Psychotherapy, artificial intelligence and adolescents: Ethical aspects. J. Prev. Med. Hyg. 2023, 64, E438. [Google Scholar] [CrossRef]
- Dergaa, I.; Fekih-Romdhane, F.; Hallit, S.; Loch, A.A.; Glenn, J.M.; Fessi, M.S.; Ben Aissa, M.; Souissi, N.; Guelmami, N.; Swed, S.; et al. ChatGPT is not ready yet for use in providing mental health assessment and interventions. Front. Psychiatry 2024, 14, 1277756. [Google Scholar] [CrossRef]
- Caruana, R.; Lou, Y.; Gehrke, J.; Koch, P.; Sturm, M.; Elhadad, N. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 1721–1730. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual. Man. VOSviewer Version 2023, 1.6.20. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf (accessed on 29 March 2024).
- Caldarelli, G. Overview of blockchain oracle research. Future Internet 2022, 14, 175. [Google Scholar] [CrossRef]
- Kumari, J.; Kumar, E.; Kumar, D. A structured analysis to study the role of machine learning and deep learning in the healthcare sector with big data analytics. Arch. Comput. Methods Eng. 2023, 30, 3673–3701. [Google Scholar] [CrossRef]
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Gude, W.T.; Van Der Veer, S.N.; De Keizer, N.F.; Coiera, E.; Peek, N. Optimizing digital health informatics. In Proceedings of the Medical Informatics Europe Conference, MIE 2016 at the Health-Exploring Complexity: An Interdisciplinary Systems Approach, HEC 2016, Munich, Germany, 28 August–2 September 2016. [Google Scholar] [CrossRef]
- Roach, J.; Lee, S.; Wilcke, J.; Ehrich, M. An expert system that criticizes decisions in combination drug therapy. In Proceedings of the first Conference on Artificial Intelligence Applications, Greenwood Village, CO, USA, 15–18 October 1984; IEEE Computer Society: Washington, DC, USA, 1984. [Google Scholar]
- Brenner, M.; Madni, A.; Schwalm, N.; Otsubo, S. Intelligent Microcomputer-Based Personal Medical Advisor. In Proceedings of the 1985 IEEE International Conference on Cybernetics and Society, Tucson, AZ, USA, 12–15 November 2015; IEEE: New York, NY, USA, 1985. [Google Scholar]
- Schecke, T.H.; Rau, G.; Klocke, H.; Kaesmacher, H.; Hatzky, U.; Kalff, G.; Zimmermann, H.J. Knowledge-based decision support in anesthesia: A case study. In Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics, Beijing, China, 8–12 August 1988; IEEE: New York, NY, USA, 1988; pp. 962–965. [Google Scholar] [CrossRef]
- Rau, G.; Langen, M.; Schecke, T. Ergonomic Aspects of Knowledge-based Systems For Clinical Monitoring Tasks. In Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Philadelphia, PA, USA, 1–4 November 1990; IEEE: New York, NY, USA, 1990; pp. 1363–1364. [Google Scholar] [CrossRef]
- Clark, I.R.; McCauley, B.A.; Young, I.M.; Nightingale, P.G.; Peters, M.; Richards, N.T.; Adu, D. Electronic Drug Prescribing and Administration-Bedside Medical Decision Making. In Proceedings of the Artificial Intelligence in Medicine: Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, AIMDM 1999, Aalborg, Denmark, 20–24 June 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 143–147. [Google Scholar] [CrossRef]
- Cimino, C.; Barnett, G.O.; Hassan, L.; Blewett, D.R.; Piggins, J.L. Interactive Query Workstation: Standardizing access to computer-based medical resources. Comput. Methods Programs Biomed. 1991, 35, 293–299. [Google Scholar] [CrossRef]
- Mori, A.R. Coding systems and controlled vocabularies for hospital information systems. Int. J. Bio-Med. Comput. 1995, 39, 93–98. [Google Scholar] [CrossRef]
- Glasspool, D.W.; Fox, J.; Castillo, F.D.; Monaghan, V.E. Interactive decision support for medical planning. In Proceedings of the Artificial Intelligence in Medicine: 9th Conference on Artificial Intelligence, in Medicine in Europe, AIME 2003, Protaras, Cyprus, 18–22 October 2003; Proceedings 9. Springer: Berlin/Heidelberg, Germany, 2003; pp. 335–339. [Google Scholar] [CrossRef]
- Xiao, L.; Lewis, P.; Dasmahapatra, S. Secure interaction models for the HealthAgents system. In Proceedings of the Computer Safety, Reliability, and Security: 27th International Conference, SAFECOMP 2008, Newcastle upon Tyne, UK, 22–25 September 2008; Proceedings 27. Springer: Berlin/Heidelberg, Germany, 2008; pp. 167–180. [Google Scholar] [CrossRef]
- Xiao, L.; Lewis, P.; Gibb, A. Developing a security protocol for a distributed decision support system in a healthcare environment. In Proceedings of the 30th International Conference on Software Engineering, Leipzig, Germany, 10–18 May 2008; pp. 673–682. [Google Scholar] [CrossRef]
- Frize, M.; Solven, F.G.; Stevenson, M.; Nickerson, B.G.; McGowan, H.C.E. Information technologies approach and development for various medical applications. In Proceedings of the 1996 Canadian Conference on Electrical and Computer Engineering, Tokyo, Japan, 26–29 May 1996; IEEE: New York, NY, USA, 1996; pp. 351–354. [Google Scholar] [CrossRef]
- Douali, N.; De Roo, J.; Jaulent, M.C. Decision support system based semantic web for personalized patient care. In Quality of Life through Quality of Information; IOS Press: Amsterdam, The Netherlands, 2012; pp. 1203–1205. [Google Scholar] [CrossRef]
- Khattak, A.M.; Pervez, Z.; Han, M.; Nugent, C.; Lee, S. DDSS: Dynamic decision support system for elderly. In Proceedings of the 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS), Rome, Italy, 20–22 June 2012; IEEE: New York, NY, USA, 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Frutos, E.; Kakazu, M.; Tajerian, M.; Gaiera, A.; Rubin, L.; Otero, C.; Luna, D. Clinical decision support system for PIM in elderly patients: Implementation and initial evaluation in ambulatory care. In Challenges of Trustable AI and Added-Value on Health; IOS Press: Amsterdam, The Netherlands, 2022; pp. 475–479. [Google Scholar] [CrossRef]
- Thum, F.; Kim, M.S.; Genes, N.; Rivera, L.; Beato, R.; Soriano, J.; Kannry, J.; Baumlin, K.; Hwang, U. Usability improvement of a clinical decision support system. In Proceedings of the Design, User Experience, and Usability. User Experience Design for Everyday Life Applications and Services: Third International Conference, DUXU 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece,, 22–27 June 2014; Proceedings, Part III 3. Springer International Publishing: Cham, Switzerland, 2014; pp. 125–131. [Google Scholar] [CrossRef]
- Johansson, P.E.; Petersson, G.I.; Nilsson, G.C. Personal digital assistant with a barcode reader—A medical decision support system for nurses in home care. Int. J. Med. Inform. 2010, 79, 232–242. [Google Scholar] [CrossRef]
- Gómez-Sebastià, I.; Moreno, J.; Álvarez-Napagao, S.; Garcia-Gasulla, D.; Barrué, C.; Cortés, U. Situated agents and humans in social interaction for elderly healthcare: From Coaalas to AVICENA. J. Med. Syst. 2016, 40, 1–20. [Google Scholar] [CrossRef]
- Wu, I.C.; Chen, T.L.; Feng, Y.Y.; Cheng, Y.L.; Chuang, Y.C. Rule-based medical decision support portal for the emergency department. In Proceedings of the HCI in Business: Second International Conference, HCIB 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, 2–7 August 2015; Proceedings 2. Springer International Publishing: Cham, Switzerland, 2015; pp. 640–652. [Google Scholar] [CrossRef]
- Liu, Z.; Rexachs, D.; Epelde, F.; Luque, E. An agent-based model for quantitatively analyzing and predicting the complex behavior of emergency departments. J. Comput. Sci. 2017, 21, 11–23. [Google Scholar] [CrossRef]
- Snowdon, J.L.; Kassler, W.; Karunakaram, H.; Dixon, B.E.; Rhee, K. Leveraging informatics and technology to support public health response: Framework and illustrations using COVID-19. Online J. Public Health Inform. 2021, 13, e62616. [Google Scholar] [CrossRef]
- Suraj, V.; Fitz, C.D.V.; Kleiman, L.B.; Bhavnani, S.K.; Jani, C.; Shah, S.; McKay, R.R.; Warner, J.; Alterovitz, G. SMART COVID Navigator, a clinical decision support tool for COVID-19 treatment: Design and development study. J. Med. Internet Res. 2022, 24, e29279. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, S.T.; Bamidis, P.D. Why decision support systems are important for medical education. Healthc. Technol. Lett. 2016, 3, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Eliot, C.; Woolf, B.P. An adaptive student centered curriculum for an intelligent training system. User Model. User-Adapt. Interact. 1995, 5, 67–86. [Google Scholar] [CrossRef]
- Magalhães Araujo, S.; Cruz-Correia, R. Incorporating ChatGPT in Medical Informatics Education: Mixed Methods Study on Student Perceptions and Experiential Integration Proposals. JMIR Med. Educ. 2024, 10, e51151. [Google Scholar] [CrossRef] [PubMed]
- Majeed, R.W.; Stöhr, M.R.; Brenner, T.; Röhrig, R. ChronoQuery: Visual Modelling of Temporal Queries for Real-Time Decision Support. In e-Health–For Continuity of Care; IOS Press: Amsterdam, The Netherlands, 2014; pp. 93–97. [Google Scholar] [CrossRef]
- Andersson Hagiwara, M.; Lundberg, L.; Sjöqvist, B.A.; Maurin Söderholm, H. The effects of integrated IT support on the prehospital stroke process: Results from a realistic experiment. J. Healthc. Inform. Res. 2019, 3, 300–328. [Google Scholar] [CrossRef] [PubMed]
- Porenta, G.; Pfahringer, B.; Binder, T.; Rimpfl, T.; Norman, G.; Weber, H.; Universitatsklinik, K. A decision support system for selecting and assessing antiarrhythmic therapies. In Computers in Cardiology; IEEE Computer Society: Washington, DC, USA, 1988; pp. 137–140. [Google Scholar]
- Poomari Durga, K.; Abirami, M.S. AI Clinical Decision Support System (AI-CDSS) for Cardiovascular Diseases. In Proceedings of the 2023 International Conference on Computer Science and Emerging Technologies (CSET), Bangalore, India, 10–12 October 2023; IEEE: New York, NY, USA, 2023; pp. 1–7. [Google Scholar] [CrossRef]
- De Moraes, L.; Garcia, R.; Azevedo, F.M. Clinical engineering and the health technological process. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2006, Seoul, Korea, 27 August–1 September 2006; Imaging the Future Medicine. Springer: Berlin/Heidelberg, Germany, 2007; pp. 3669–3672. [Google Scholar] [CrossRef]
- Padoy, N.; Blum, T.; Feussner, H.; Berger, M.O.; Navab, N. On-line recognition of surgical activity for monitoring in the operating room. In Proceedings of the 20th National Conference on Innovative Applications of Artificial Intelligence-Volume 3, Chicago, IL, USA, 13–17 July 2008; pp. 1718–1724. [Google Scholar]
- Wang, Y. Basic theories for neuroinformatics and neurocomputing. In Proceedings of the 2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing, New York, NY, USA, 16–18 July 2013; IEEE: New York, NY, USA, 2013; pp. 3–4. [Google Scholar] [CrossRef]
- Grout, R.W.; Cheng, E.R.; Carroll, A.E.; Bauer, N.S.; Downs, S.M. A six-year repeated evaluation of computerized clinical decision support system user acceptability. Int. J. Med. Inform. 2018, 112, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Morelli, R.A.; Bronzino, J.D.; Goethe, J.W.; Hartmann-Voss, K. Incorporating a language/action design perspective into a computer-based psychiatric alerting system. In Proceedings of the Annual Symposium on Computer Application in Medical Care, Washington, DC, USA, 5–8 November 1989; American Medical Informatics Association: Washington, DC, USA, 1989; p. 129. [Google Scholar]
- Sonntag, D.; Zillner, S.; Ernst, P.; Schulz, C.; Sintek, M.; Dankerl, P. Mobile radiology interaction and decision support systems of the future. In Towards the Internet of Services: The THESEUS Research Program; Springer International Publishing: Cham, Switzerland, 2014; pp. 371–382. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Fraccaro, P.; Carson, E.; Weller, P. Decision time for clinical decision support systems. Clin. Med. 2014, 14, 338–341. [Google Scholar] [CrossRef]
- Darabi, Z.; Zarandi, M.F.; Solgi, S.S.; Turksen, I.B. An intelligent multi-agent system architecture for enhancing self-management of type 2 diabetic patients. In Proceedings of the 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Niagara Falls, ON, Canada, 12–15 August 2015; IEEE: New York, NY, USA, 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Duce, D.A.; Martin, C.; Russell, A.; Brown, D.; Aldea, A.; Alshaigy, B.; Harrison, R.; Waite, M.; Leal, Y.; Wos, M. Visualizing Usage Data from a Diabetes Management System. In The Eurographics Association; The Eurographics Association: Munich, Germany, 2020. [Google Scholar] [CrossRef]
- Xiuxiu, L.; Xing, G.; Yan, W.; Yue, Z.; Yuzhu, W.; Hongpu, H. Ideas on the construction of the telemedicine system for the gestational diabetes mellitus based on the clinical decision support system. In Proceedings of the 2021 International Conference on Public Health and Data Science (ICPHDS), Chengdu, China, 9–11 July 2021; IEEE: New York, NY, USA, 2021; pp. 96–100. [Google Scholar] [CrossRef]
- Shalom, E.; Goldstein, A.; Ariel, E.; Sheinberger, M.; Jones, V.; Van Schooten, B.; Shahar, Y. Distributed application of guideline-based decision support through mobile devices: Implementation and evaluation. Artif. Intell. Med. 2022, 129, 102324. [Google Scholar] [CrossRef]
- Burgess, E.R.; Jankovic, I.; Austin, M.; Cai, N.; Kapuścińska, A.; Currie, S.; Overhage, J.M.; Poole, E.S.; Kaye, J. Healthcare AI treatment decision support: Design principles to enhance clinician adoption and trust. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; pp. 1–19. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, X.; Zhang, Y. Research on Interaction Design of Diabetes Diet Health Based on GL Food Exchange Serving. In Proceedings of the Journal of Physics: Conference Series, Hangzhou, China, 25–26 July 2020; IOP Publishing: Bristol, UK, 2020; p. 012187. [Google Scholar] [CrossRef]
- Chen, R.C.; Bau, C.T.; Huang, Y.H. Development of anti-diabetic drugs ontology for guideline-based clinical drugs recommend system using OWL and SWRL. In Proceedings of the International Conference on Fuzzy Systems, Barcelona, Spain, 18–23 July 2010; IEEE: New York, NY, USA, 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Sharma, K.; Virmani, J. A decision support system for classification of normal and medical renal disease using ultrasound images: A decision support system for medical renal diseases. Int. J. Ambient Comput. Intell. (IJACI) 2017, 8, 52–69. [Google Scholar] [CrossRef]
- Loiotile, A.D.; Dentamaro, V.; Giglio, P.; Impedovo, D. AI-Based Clinical Decision Support Tool on Mobile Devices for Neurodegenerative Diseases. In Proceedings of the IFIP Conference on Human-Computer Interaction, Bari, Italy, 30 August–3 September 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 139–148. [Google Scholar] [CrossRef]
- Sorici, A.; Băjenaru, L.; Mocanu, I.; Florea, A.M. An intelligent ecosystem for improving brain disease monitoring of patients using wearable devices and artificial intelligence. In Proceedings of the 2023 24th International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 24–26 May 2023; IEEE: New York, NY, USA, 2023; pp. 452–459. [Google Scholar] [CrossRef]
- Bogdanova, D.R.; Yusupova, N.I.; Zulkarneev, R. The Concept of a Decision Support System in the Management of Treatment and Accompaniment of the Patient with Bronchopulmonary Diseases. In Proceedings of the Computer Science On-line Conference, Online, 21–23April 2023; Springer International Publishing: Cham, Switzerland, 2023; pp. 78–89. [Google Scholar] [CrossRef]
- Silva, E.A.T.; Gomez, I.F.L.; Arango, J.F.F.; Smith, J.W.; Ocampo, S.U.; Hidalgo, J.E. Evaluation of satisfaction and usability of a clinical decision support system (CDSS) targeted for early obstetric risk assessment and patient follow-up. Health 2018, 3. Available online: https://www.academia.edu/72346003/Evaluation_of_Satisfaction_and_Usability_of_a_Clinical_Decision_Support_System_CDSS_Targeted_for_Early_Obstetric_Risk_Assessment_and_Patient_Follow_Up (accessed on 29 March 2024).
- Sukums, F.; Mensah, N.; Mpembeni, R.; Massawe, S.; Duysburgh, E.; Williams, A.; Kaltschmidt, J.; Loukanova, S.; Haefeli, W.E.; Blank, A. Promising adoption of an electronic clinical decision support system for antenatal and intrapartum care in rural primary healthcare facilities in sub-Saharan Africa: The QUALMAT experience. Int. J. Med. Inform. 2015, 84, 647–657. [Google Scholar] [CrossRef]
- Hudson, D.L.; Cohen, M.E.; Deedwania, P.C. Emerge: A rule based expert system implemented on a microcomputer. Int. J. Microcomput. Appl. 1984, 3, 79–83. [Google Scholar]
- Zinder, O. Laboratory-clinician interaction and the interpretation of test results. Contemp. Issues Clin. Biochem. 1985, 2, 52–62. [Google Scholar] [PubMed]
- Hernández, C.; Arias, J.E.; Gómez, L. A perinatal monitoring display based on the fetal topogram. IEEE Trans. Biomed. Eng. 1986, 8, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Foxvog, D.; Li, X.; Vargas, J.E.; Bourne, J.R.; Sztipanovits, J.; Mushlin, R.; Harrison, C.G. PUPA: A pulse programming assistant for NMR imaging. IEEE Trans. Biomed. Eng. 1987, 12, 938–943. [Google Scholar] [CrossRef]
- Al-Zobaidie, A.; Grimson, J.B. Use of metadata to drive the interaction between database and expert systems. Inf. Softw. Technol. 1988, 30, 484–496. [Google Scholar] [CrossRef]
- Rogers, E. VIA-RAD: A blackboard-based system for diagnostic radiology. Artif. Intell. Med. 1995, 7, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.S.; Gill, R.W.; Talhami, H.E.; Wilson, L.S.; Doust, B.D. Model-based assessment of lung structures: Inferring and control system. In Proceedings of the Medical Imaging 1995: Physiology and Function from Multidimensional Images, San Diego, CA, USA, 27–28 February 1995; SPIE: New York, NY, USA, 1995; pp. 167–178. [Google Scholar] [CrossRef]
- Weintraub, M.A.; Bylander, T.; Simon, S.R. QUAWDS: A composite diagnostic system for gait analysis. Comput. Methods Programs Biomed. 1990, 32, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Olabarriaga, S.D.; Smeulders, A.W.; Marijnissen, A.C.A.; Vincken, K.L. An intelligent interactive segmentation method for the joint space in osteoarthritic ankles. In Proceedings of the Information Processing in Medical Imaging: 16th International Conference, IPMI’99, Visegrád, Hungary, 28 June–2 July 1999; Proceedings 16. Springer: Berlin/Heidelberg, Germany, 1999; pp. 394–399. [Google Scholar] [CrossRef]
- Chuang, C.H.; Lie, W.N. A downstream algorithm based on extended gradient vector flow field for object segmentation. IEEE Trans. Image Process. 2004, 13, 1379–1392. [Google Scholar] [CrossRef] [PubMed]
- Olabarriaga, S.D.; Rouet, J.M.; Fradkin, M.; Breeuwer, M.; Niessen, W.J. Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling. IEEE Trans. Med. Imaging 2005, 24, 477–485. [Google Scholar] [CrossRef]
- Wolf, I.; Vetter, M.; Wegner, I.; Böttger, T.; Nolden, M.; Schöbinger, M.; Hastenteufel, M.; Kunert, T.; Meinzer, H.-P. The medical imaging interaction toolkit. Med. Image Anal. 2005, 9, 594–604. [Google Scholar] [CrossRef]
- Rossi, A.C.; Brands, P.J.; Hoeks, A.P. Automatic recognition of the common carotid artery in longitudinal ultrasound B-mode scans. Med. Image Anal. 2008, 12, 653–665. [Google Scholar] [CrossRef]
- Wein, W.; Brunke, S.; Khamene, A.; Callstrom, M.R.; Navab, N. Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med. Image Anal. 2008, 12, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, S.Y.; Prescott, J.W.; Gurcan, M.N. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research. Med. Image Anal. 2011, 15, 438–448. [Google Scholar] [CrossRef]
- Song, Q.; Chen, M.; Bai, J.; Sonka, M.; Wu, X. Surface–region context in optimal multi-object graph-based segmentation: Robust delineation of pulmonary tumors. In Proceedings of the Biennial International Conference on Information Processing in Medical Imaging, Irsee, Germany, 3–8 July 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 61–72. [Google Scholar] [CrossRef]
- Roy, S.; Chi, Y.; Liu, J.; Venkatesh, S.K.; Brown, M.S. Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions. IEEE Trans. Biomed. Eng. 2014, 61, 2768–2778. [Google Scholar] [CrossRef]
- Prasad, S.; Peddoju, S.K.; Ghosh, D. An adaptive plant leaf mobile informatics using RSSC. Multimed. Tools Appl. 2017, 76, 21339–21363. [Google Scholar] [CrossRef]
- Aouad, S.; Maizate, A.; Zakari, A.; Yassine, S. A comprehensive survey of smart city technologies for monitoring and controlling the epidemic spread of COVID-19. In Proceedings of the 4th International Conference on Networking, Information Systems & Security, Kenitra, Morocco, 1–2 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Kuang, H.; Wang, Y.; Liu, J.; Wang, J.; Cao, Q.; Hu, B.; Qiu, W.; Wang, J. Hybrid CNN-Transformer Network with Circular Feature Interaction for Acute Ischemic Stroke Lesion Segmentation on Non-contrast CT Scans. IEEE Trans. Med. Imaging 2024, 43, 2303–2316. [Google Scholar] [CrossRef]
- Vázquez-Ingelmo, A.; Alonso, J.; García-Holgado, A.; García-Peñalvo, F.J.; Sampedro-Gómez, J.; Sánchez-Puente, A.; Vicente-Palacios, V.; Dorado-Díaz, P.I. Usability study of CARTIER-IA: A platform for medical data and imaging management. In International Conference on Human-Computer Interaction; Springer International Publishing: Cham, Switzerland, 2021; pp. 374–384. [Google Scholar] [CrossRef]
- Batista, E.; Lopez-Aguilar, P.; Solanas, A. Smart health in the 6G era: Bringing security to future smart health services. IEEE Commun. Mag. 2023, 62, 74–80. [Google Scholar] [CrossRef]
- De Luis-Garcia, R.; Alberola-Lopez, C. Parametric 3D hip joint segmentation for the diagnosis of developmental dysplasia. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006. [Google Scholar] [CrossRef]
- Plass, M.; Kargl, M.; Nitsche, P.; Jungwirth, E.; Holzinger, A.; Müller, H. Understanding and explaining diagnostic paths: Toward augmented decision making. IEEE Comput. Graph. Appl. 2022, 42, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Garvin, M.K.; Abràmoff, M.D.; Kardon, R.; Russell, S.R.; Wu, X.; Sonka, M. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans. Med. Imaging 2008, 27, 1495–1505. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Gao, Y.; Shi, Y.; Shen, D. Interactive prostate segmentation based on adaptive feature selection and manifold regularization. In Proceedings of the Machine Learning in Medical Imaging: 5th International Workshop, MLMI 2014, Held in Conjunction with MICCAI 2014, Boston, MA, USA, 14 September 2014; Proceedings 5. Springer International Publishing: Cham, Switzerland, 2014; pp. 264–271. [Google Scholar] [CrossRef]
- Vidholm, E.; Nilsson, S.; Nyström, I. Fast and robust semi-automatic liver segmentation with haptic interaction. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006: 9th International Conference, Copenhagen, Denmark, 1–6 October 2006; Proceedings, Part II 9. Springer: Berlin/Heidelberg, Germany, 2006; pp. 774–781. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, Y.; Song, Y.; Wan, X. Cross-modal memory networks for radiology report generation. arXiv 2022, arXiv:2204.13258. [Google Scholar] [CrossRef]
- Zhu, H.; He, X.; Wang, M.; Zhang, M.; Qing, L. Medical visual question answering via corresponding feature fusion combined with semantic attention. Math. Biosci. Eng 2022, 19, 10192–10212. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Udupa, J.K.; Odhner, D.; Wu, C.; Zhao, Y.; McDonough, J.M.; Capraro, A.; Torigian, D.A.; Campbell, R.M. Interactive iterative relative fuzzy connectedness lung segmentation on thoracic 4D dynamic MR images. In Proceedings of the Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, Orlando, FL, USA, 12–14 February 2017; SPIE: Washington, DC, USA, 2017; pp. 546–551. [Google Scholar] [CrossRef]
- Conze, P.H.; Rousseau, F.; Noblet, V.; Heitz, F.; Memeo, R.; Pessaux, P. Semi-automatic liver tumor segmentation in dynamic contrast-enhanced CT scans using random forests and supervoxels. In Proceedings of the Machine Learning in Medical Imaging: 6th International Workshop, MLMI 2015, Held in Conjunction with MICCAI 2015, Munich, Germany, 5 October 2015; Proceedings 6. Springer International Publishing: Cham, Switzerland, 2015; pp. 212–219. [Google Scholar] [CrossRef]
- Wong, K.C.; Summers, R.M.; Kebebew, E.; Yao, J. Pancreatic tumor growth prediction with multiplicative growth and image-derived motion. In Proceedings of the International Conference on Information Processing in Medical Imaging, Isle of Skye, UK, 28 June–3 July 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 501–513. [Google Scholar] [CrossRef]
- Wang, X.H.; Zheng, B.; Good, W.F.; King, J.L.; Chang, Y.H. Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network. Int. J. Med. Inform. 1999, 54, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Aalamifar, F.; Rivaz, H.; Cerrolaza, J.J.; Jago, J.; Safdar, N.; Boctor, E.M.; Linguraru, M.G. Classification of kidney and liver tissue using ultrasound backscatter data. In Proceedings of the Medical Imaging 2015: Ultrasonic Imaging and Tomography, Houston, TX, USA, 14–15 February 2018; SPIE: Washington, DC, USA, 2015; pp. 192–199. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Luo, M.; Li, K.; Yap, P.T.; Kim, M.; Wee, C.Y.; Shen, D. Structural connectivity guided sparse effective connectivity for MCI identification. In Proceedings of the Machine Learning in Medical Imaging: 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, 10 September 2017; Proceedings 8. Springer International Publishing: Cham, Switzerland, 2017; pp. 299–306. [Google Scholar] [CrossRef]
- Shieh, Y.; Shieh, M.; Chang, C.-H.; Goodwin, S. An Interactive, Visually-Oriented Computer-Assisted Aspects Scoring System for Acute Stroke Care; Acta Press: Calgary, AL, Canada, 2016. [Google Scholar] [CrossRef]
- Lau, A.; Ong, S.S.; Mahidadia, A.; Hoffmann, A.; Westbrook, J.; Zrimec, T. Mining patterns of dyspepsia symptoms across time points using constraint association rules. In Proceedings of the Advances in Knowledge Discovery and Data Mining: 7th Pacific-Asia Conference, PAKDD 2003, Seoul, Korea, 30 April–2 May 2003; Proceedings 7. Springer: Berlin/Heidelberg, Germany, 2003; pp. 124–135. [Google Scholar] [CrossRef]
- Bayro-Corrochano, E.; Vallejo, R.; Arana-Daniel, N. Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning. Neurocomputing 2005, 67, 54–105. [Google Scholar] [CrossRef]
- Watanabe, S. Algebraic geometry of singular learning machines and symmetry of generalization and training errors. Neurocomputing 2005, 67, 198–213. [Google Scholar] [CrossRef]
- Haddawy, P.; Dailey, M.N.; Kaewruen, P.; Sarakhette, N. Anatomical sketch understanding: Recognizing explicit and implicit structure. Artif. Intell. Med. 2007, 39, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Flores, C.D.; Ponzoni, D.; Seixas, L.; Boff, E.; Arenson-Pandikow, H.; Vicari, R. Preliminary Results of a Learning Environment Using Pedagogic Negotiation. In Proceedings of the Conference on Intelligent User Interfaces, Honolulu, HI, USA, 28–31 January 2007; p. 21. [Google Scholar]
- Swangnetr, M.; Zhu, B.; Kaber, D.; Taylor, K. Meta-analysis of user age and service robot configuration effects on human-robot interaction in a healthcare application. In Proceedings of the 2010 AAAI Fall Symposium Series, Arlington, VA, USA, 11–13 November 2010. [Google Scholar]
- Gholami, B.; Haddad, W.M.; Tannenbaum, A.R. Relevance vector machine learning for neonate pain intensity assessment using digital imaging. IEEE Trans. Biomed. Eng. 2010, 57, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Rasmusson, A.M.; Irvine, J.M. The Neurobiology of Executive Function Under Stress and Optimization of Performance. In Proceedings of the Foundations of Augmented Cognition: 9th International Conference, AC 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, 2–7 August 2015; Proceedings 9. Springer International Publishing: Cham, Switzerland, 2015; pp. 112–123. [Google Scholar] [CrossRef]
- Biglari, E.; Feng, M.; Quarles, J.; Sako, E.; Calhoon, J.; Rodriguez, R.; Feng, Y. Haptics-enabled surgical training system with guidance using deep learning. In Proceedings of the Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being: 9th International Conference, UAHCI 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2–7 2015; Proceedings, Part III 9. Springer International Publishing: Cham, Switzerland, 2015; pp. 267–278. [Google Scholar] [CrossRef]
- Novak, D.; Riener, R. Predicting Targets of Human Reaching Motions with an Arm Rehabilitation Exoskeleton. Biomed. Sci. Instrum. 2015, 51, 385–392. [Google Scholar]
- Senadeera, M.; Maire, F.; Rakotonirainy, A. Turning gaming EEG peripherals into trainable brain computer interfaces. In Proceedings of the AI 2015: Advances in Artificial Intelligence: 28th Australasian Joint Conference, Canberra, ACT, Australia, 30 November–4 December 2015; Proceedings 28. Springer International Publishing: Cham, Switzerland, 2015; pp. 498–504. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B.; Palacios, T.; Torralba, A.; Matusik, W. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201. [Google Scholar] [CrossRef]
- Saxena, S.; Tripathi, S.; Sudarshan, T.S.B. An intelligent facial expression recognition system with emotion intensity classification. Cogn. Syst. Res. 2022, 74, 39–52. [Google Scholar] [CrossRef]
- Ahuja, G.; Sharma, S.; Sharma, M.; Singh, S. Assisted Living Robots: Discussion and Design of a Robot for Elder Care. In Proceedings of the International Conference on Internet of Things and Connected Technologies, Patna, India, 29–30 September 2022; Springer Nature Singapore: Singapore, 2022; pp. 11–26. [Google Scholar] [CrossRef]
- Kovalev, A.; Makarova, A.; Antonov, M.; Chizhov, P.; Aksiotis, V.; Tsurkan, A.; Timchenko, A.; Gostevskii, V.; Lomtev, V.; Duplin, G. Augmented Mirror Hand (MIRANDA): Advanced Training System for New Generation Prosthesis. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 23–28 July 2023; Springer Nature: Cham, Switzerland, 2023; pp. 77–83. [Google Scholar] [CrossRef]
- Mehr, J.K.; Akbari, M.; Faridi, P.; Xing, H.; Mushahwar, V.K.; Tavakoli, M. Artificial-Intelligence-Powered Lower Limb Assistive Devices: Future of Home Care Technologies. Adv. Intell. Syst. 2023, 5, 2200361. [Google Scholar] [CrossRef]
- Liu, C. Motivating Medical Students’ Active Learning Supported by Constructing an Autonomous Learning Environment. In Proceedings of the 2023 International Symposium on Educational Technology (ISET), Hong Kong, China, 17–20 July 2023; IEEE: New York, NY, USA, 2023; pp. 101–105. [Google Scholar] [CrossRef]
- Ryan, S.; Nadal, C.; Doherty, G. Integrating Fairness in the Software Design Process: An Interview Study with HCI and ML Experts. IEEE Access 2023, 11, 29296–29313. [Google Scholar] [CrossRef]
- Sadeghi, M.; Chilana, P.K.; Atkins, M.S. How users perceive content-based image retrieval for identifying skin images. In Proceedings of the Understanding and Interpreting Machine Learning in Medical Image Computing Applications: First International Workshops, MLCN 2018, DLF 2018, and iMIMIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 16–20 September 2018; Proceedings 1. Springer International Publishing: Cham, Switzerland, 2018; pp. 141–148. [Google Scholar] [CrossRef]
- Lanza, F.; Seidita, V.; Chella, A. Agents and robots for collaborating and supporting physicians in healthcare scenarios. J. Biomed. Inform. 2020, 108, 103483. [Google Scholar] [CrossRef] [PubMed]
- Bond, R.R.; Torney, H.; O’Hare, P.; Davis, L.; Delafont, B.; McReynolds, H.; McLister, A.; McCartney, B.; Di Maio, R.; Finlay, D.D. Using machine learning to predict if a profiled lay rescuer can successfully deliver a shock using a public access automated external defibrillator? In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; IEEE: New York, NY, USA, 2016; pp. 1181–1184. [Google Scholar]
- Upadhyay, S.; Dwivedi, A.; Verma, A.; Tiwari, V. Heart Disease Prediction Model using various Supervised Learning Algorithm. In Proceedings of the 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 8–9 April 2023; IEEE: New York, NY, USA, 2023; pp. 197–201. [Google Scholar] [CrossRef]
- Berkel, N.V.; Ahmad, O.F.; Stoyanov, D.A.N.A.I.L.; Lovat, L.A.U.R.E.N.C.E.; Blandford, A. Designing Visual Markers for Continuous Artificial Intelligence Support. ACM Trans. Comput. Healthc. 2020, 2, 1–24. [Google Scholar] [CrossRef]
- Chheang, V.; Saalfeld, P.; Huber, T.; Huettl, F.; Kneist, W.; Preim, B.; Hansen, C. Collaborative virtual reality for laparoscopic liver surgery training. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), San Diego, CA, USA, 9–11 December 2019; IEEE: New York, NY, USA, 2019; pp. 1–17. [Google Scholar] [CrossRef]
- Al-Hiyari, N.; Jusoh, S. The current trends of virtual reality applications in medical education. In Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, 25–27 June 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, C.; Sood, S.; Hancock, M.; Higgins, T.; Sproul, K.; Hadgis, A.; Joe-Yen, S. Biomimicry and machine learning in the context of healthcare digitization. In Proceedings of the Augmented Cognition: 13th International Conference, AC 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, 26–31 July 2019; Proceedings 21. Springer International Publishing: Cham, Switzerland, 2019; pp. 273–283. [Google Scholar] [CrossRef]
- Calisto, F.M.; Santiago, C.; Nunes, N.; Nascimento, J.C. BreastScreening-AI: Evaluating medical intelligent agents for human-AI interactions. Artif. Intell. Med. 2022, 127, 102285. [Google Scholar] [CrossRef]
- Mohammed, Z. Machine learning algorithms for oncology big data treatment. In Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, Larache, Morocco, 14–16 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Karydis, T.; Foster, S.L.; Mershin, A. Self-Calibrating Protocols as diagnostic AIDS for personal medicine, neurological conditions and pain assessment. In Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 5–7 July 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Taki, R.; Bahar, R.R.; Kocak, A.E.; Yalcin, S. Caregiver: An Application for the First Step in Alzheimer’s Disease Early Diagnosis. In Proceedings of the International Conference on Human-Computer Interaction, Virtual, 26 June–1 July 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 620–627. [Google Scholar] [CrossRef]
- Kenny, P.G.; Parsons, T.D.; Rizzo, A.A. Human computer interaction in virtual standardized patient systems. In Proceedings of the Human-Computer Interaction. Interacting in Various Application Domains: 13th International Conference, HCI International 2009, San Diego, CA, USA, 19–24 July 2009; Proceedings, Part IV 13. Springer: Berlin/Heidelberg, Germany, 2009; pp. 514–523. [Google Scholar] [CrossRef]
- Cosentino, S.; Sessa, S.; Takanishi, A. Quantitative laughter detection, measurement, and classification—A critical survey. IEEE Rev. Biomed. Eng. 2016, 9, 148–162. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Huang, L. Artificial intelligence teaching methods in higher education. In Proceedings of the Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 1, London, UK, 5–6 September 2019; Springer International Publishing: Cham, Switzerland, 2020; pp. 1044–1053. [Google Scholar] [CrossRef]
- Lara-Garduno, R.A. Machine learning behavioral recognition to support neuropsychological diagnosis of cognitive decline. In Proceedings of the 23Rd International Conference on Intelligent User Interfaces, Tokyo, Japan, 7–11 March 2018; pp. 667–668. [Google Scholar] [CrossRef]
Stage | Description |
---|---|
1. Initial Filtering |
|
2. Content Screening |
|
Database | Research String |
---|---|
Scopus | TITLE-ABS-KEY (“medical” OR “healthcare”) AND TITLE-ABS-KEY (“interaction”) AND TITLE-ABS-KEY (“artificial intelligence”) AND (LIMIT-TO (LANGUAGE, “english”)) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ch”) OR LIMIT-TO (DOCTYPE, “bk”)) |
PubMed | (“medical” [Title/Abstract] OR “healthcare” [Title/Abstract]) AND “interaction” [Title/Abstract] AND “artificial intelligence” [Title/Abstract] AND English [Language] AND (“Journal Article” [Publication Type] OR “Clinical Conference” [Publication Type] OR “Consensus Development Conference” [Publication Type] OR “Consensus Development Conference, NIH “[Publication Type] OR “Books and Documents” [Publication Type]) |
Steps | Databases | Total | |
---|---|---|---|
Scopus | Pubmed | ||
1. Papers are retrieved using research strings (Filtering Articles, Conference Proceedings, and Book chapters; No Reviews; Only in English) | 2241 | 319 | 2560 |
2. Duplicates are removed (Articles in both databases with the same title, authors, and abstract) | −195 | ||
3. Reviews are removed after screening (Content screening for identifying review articles) | 202 | 102 | −304 |
4. Final sample is determined | 2039 | 22 | 2061 |
Continent | Number of Publications |
---|---|
Europe | 1158 |
Asia | 912 |
Americas | 725 |
Oceania | 80 |
Africa | 57 |
Country | Number of Publications |
---|---|
United States | 536 |
China | 238 |
India | 237 |
United Kingdom | 179 |
Germany | 156 |
Italy | 138 |
Canada | 103 |
Spain | 87 |
Netherlands | 72 |
France | 68 |
Cluster (Color) | Countries |
---|---|
1 (Red) | Albania, Austria, Bosnia and Herzegovina, Bulgaria, Czech Republic, Estonia, Finland, Greece, Nigeria, North Macedonia, Poland, Portugal, Serbia, Slovakia, Sweden |
2 (Green) | Australia, Bahrain, Bangladesh, Brazil, Chile, Iraq, Japan, Jordan, Malaysia, Qatar, Saudi Arabia, Tunisia, United Arab Emirates, Yemen |
3 (Blue) | Algeria, Angola, Colombia, Ecuador, Mexico, New Zealand, Oman, Pakistan, Panama, Puerto Rico, South Korea, Spain |
4 (Yellow) | Egypt, Indonesia, Kyrgyzstan, Latvia, Moldova, Netherlands, Romania, Syrian Arab Republic, Ukraine |
5 (Purple) | Canada, Hungary, Lebanon, Luxembourg, Macao, Russian federation, South Africa, Thailand, United States |
6 (Light Blue) | India, Kenya, Nepal, Slovenia, Turkey, Uruguay |
7 (Orange) | Belgium, Cyprus, Germany, Ghana, Israel, Singapore, Tanzania |
8 (Brown) | Ireland, Liechtenstein, Lithuania, Malta, Norway |
9 (Pink) | Ethiopia, Iran, Sri Lanka, Taiwan, Vietnam |
10 (Pink light) | China, Croatia, Guatemala, Hong Kong, Uzbekistan |
11 (Green light) | Denmark, Iceland, Liberia, Morocco |
12 (Grey) | Cameroon, Italy, Switzerland, Uganda |
13 (Yellow Dark) | France, Peru |
14 (Purple Light) | Kuwait, United Kingdom |
Type | Journal/Venue Name | Publisher | Contributions |
---|---|---|---|
Journal (n = 1019) | Artificial intelligence in medicine | Elsevier | 53 |
International journal of medical informatics | Elsevier | 27 | |
Journal of biomedical informatics | Academic Press Inc. | 25 | |
IEEE access | IEEE Inc. | 19 | |
Journal of medical internet research | JMIR Publications Inc. | 15 | |
ACS applied materials and interfaces | ACS Publications | 11 | |
Book series/ Book chapters (n = 516) | Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) | Springer | 173 |
Studies in health technology and informatics | IOS Press | 75 | |
Advances in intelligent systems and computing | Springer | 23 | |
Communications in computer and information science | Springer | 23 | |
Lecture notes in networks and systems | Springer | 12 | |
Studies in computational intelligence | Springer | 10 | |
Conference and Proceedings (n = 526) | ACM international conference proceeding series | ACM | 22 |
Conference on human factors in computing systems | ACM | 14 | |
Progress in biomedical optics and imaging proceedings of SPIE | SPIE | 11 | |
Journal of physics conference series | IOP Publishing Ltd. | 10 |
Author (Surname, Name) | Number of Publications |
---|---|
Terenziani, Paolo | 9 |
Holzinger, Andreas | 8 |
Michalowski, Martin | 7 |
Fujita, Hamido | 7 |
Piovesan, Luca | 6 |
Michalowski, Wojtek | 6 |
Wilk, Szymon | 6 |
Luna, Daniel | 6 |
Lin, Hongfei | 5 |
Yang, Zhihao | 5 |
Garcia—Holgado, Alicia | 5 |
Sanchez—Puente, Antonio | 5 |
Vicente—Palacios, Victor | 5 |
Vazquez—Ingelmo, Andrea | 5 |
Cesta, Amedeo | 5 |
Blandford, Ann | 5 |
Sonntag, Daniel | 5 |
Garcia-Penalvo, Francisco Jose | 5 |
Sanchez, Pedro Luis | 5 |
Bates, David W. | 5 |
Dorado-Diaz, Pedro Ignacio | 5 |
Affiliation | Number of Citations |
---|---|
Columbia University (U.S.A.), LinkedIn Corporation (Italy), Microsoft Research (India), Microsoft (U.S.A.) | 982 |
Fudan University—Department of Physics (China), Institute of Biochemistry and Cell Biology (China), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Chemistry, Donghua University (China), State Key Laboratory of Molecular Engineering of Polymers, Fudan University (China) | 817 |
Department of Biomedical Engineering, Case Western Reserve University (U.S.A.), Department of Pathology, Yale University, School of Medicine (U.S.A.), Louis Stokes, Cleveland Veterans Administration Medical Center (U.S.A.), Thoracic Medical Oncology, Perlmutter Cancer Center, New York University (U.S.A.) | 721 |
Institute for Information Systems and Computer Media, Graz University of Technology (Austria), Institute for Medical Informatics, Statistics and Documentation, Medical University (Austria) | 595 |
Alisr Laboratory, College of Computer and Information Sciences, King Saud University (Saudi Arabia), Department of Information Engineering and Computer Science, University of Trento (Italy), King Saud University, Riyadh (Saudi Arabia), Machine Intelligence Institute, Iona College (U.S.A.) | 507 |
Biomedical Engineering Department, University of Florida (U.S.A.), Department of Computer and Telecommunications Engineering, University of Western Macedonia (Greece), Department of Electrical and Computer Engineering, Washington State University (U.S.A.), School of Science and Technology, Nottingham Trent University (United Kingdom) | 506 |
Keyword | Number of Occurrences |
---|---|
Artificial Intelligence | 1301 |
Human | 563 |
Article | 523 |
Humans | 445 |
Health Care | 250 |
Decision Support Systems | 246 |
Diagnosis | 198 |
Learning Systems | 194 |
Machine Learning | 179 |
Algorithms | 166 |
Algorithm | 166 |
Medical Computing | 161 |
Female | 158 |
Decision Making | 157 |
Priority Journal | 155 |
Medical Imaging | 153 |
Male | 146 |
Adult | 143 |
Deep Learning | 121 |
Controlled Study | 116 |
Diseases | 101 |
Keyword | Number of Occurrences |
---|---|
Humans | 595 |
Human—computer interaction | 472 |
Computer—assisted clinical decision support systems | 302 |
Computer—assisted diagnosis systems | 281 |
Machine learning systems | 251 |
Computer—assisted clinical decision-making systems | 206 |
Algorithms | 202 |
Learning systems | 198 |
Medical Computing | 161 |
Medical imaging processing systems | 159 |
Medical information systems | 149 |
Deep learning systems | 121 |
Controlled Study | 116 |
Automated pattern recognition systems | 107 |
Drug interaction analysis | 104 |
Natural language processing systems | 104 |
Classification performance evaluation | 102 |
Diseases | 101 |
Medical Informatics | 100 |
Number of Clusters | Amount of Keywords | Occurrence |
---|---|---|
1 | 3 | 302 |
2 | 7 | 202 |
3 | 13 | 107 |
4 | 21 | 90 |
5 | 42 | 66 |
6 | 734 | 7 |
9 | 1445 | 4 |
15 | 3569 | 2 |
75 | 12,115 | 1 |
Clusters | Keywords (Four Clusters) | Keywords (Three Clusters) |
---|---|---|
1st | classification performance, deep learning systems, diseases, learning systems, machine learning systems, medical data mining system, natural language processing systems | human–computer interaction, deep learning systems, learning systems, machine learning systems |
2nd | computer-assisted clinical decision support systems, computer-assisted clinical decision-making systems, medical information systems, drug interaction analysis, medical informatics, humans | computer-assisted clinical decision support systems, computer-assisted clinical decision-making systems, medical computing, medical information systems, humans |
3rd | algorithms, automated pattern recognition systems, computer-assisted diagnosis systems, medical imaging processing systems, user-computer interface analysis | algorithms, automated pattern recognition systems, computer-assisted diagnosis systems, medical imaging processing systems |
4th | human–computer interaction, medical computing, virtual reality systems |
Medical Department | Publications |
---|---|
Rheumatology | Frize et al. [48] |
Emergency | Thum et al. [52], Wu et al. [55], Liu et al. [56], Majeed et al. [62], Andersson et al. [63] |
Cardiology | Eliot et al. [60], Porenta et al. [64], Poomari and Abirami [65] |
Cardiovascular Surgery | de Moraes et al. [66] |
General Surgery | Padoy et al. [67] |
Psychology—Psychiatry | Benrimoh et al. [26], Wang [68], Grout et al. [69], Morelli et al. [70] |
Radiology | Sonntag et al. [71] |
Oncology | Thevapalan et al. [13], Suraj et al. [58], O’Sullivan et al. [72] |
Endocrinology | Darabi et al. [73], Duce et al. [74], Xiuxiu et al. [75], Shalom et al. [76], Burgess et al. [77], Zhu et al. [78], Chen et al. [79] |
Nephrological | Sharma and Virmani [80] |
Neurology | Loiotile et al. [81], Sorici et al. [82] |
Pulmonary | Bogdanova et al. [83] |
Gynecology—Obstetrical | Torres Silva et al. [84], Sukums et al. [85] |
Medical Department | Publications |
---|---|
Pathology | De Luis-Garcia [108], Plass et al. [109] |
Ophthalmology | Garvin et al. [110] |
Urology | Park et al. [111] |
Radiology | Olabarriaga et al. [94], Roy et al. [102], Vidholm et al. [112], Chen et al. [113], Zhu et al. [114] |
Oncology | Song et al. [101], Tong et al. [115], Conze et al. [116], Wong et al. [117], Wang et al. [118] |
Nephrological | Aalamifar et al. [119] |
Neurology | Kuang et al. [105], Li et al. [120], Shieh et al. [121] |
Medical Department | Publications |
---|---|
Dermatology | Sadeghi et al. [140] |
Emergency | Lanza et al. [141] |
Cardiology | Bond et al. [142], Upadhyay et al. [143] |
Gastroenterology | Berkel et al. [144] |
Surgery | Biglari et al. [130], Chheang et al. [145], Al-Hiyari and Jusoh [146] |
Oncology | Lee et al. [147], Calisto et al. [148], Mohammed [149] |
Neurology | Karydis et al. [150], Taki et al. [151] |
Psychology—Psychiatry | Kenny et al. [152], Cosentino et al. [153], Yang et al. [154] |
Neuropsychology | Lara-Garduno [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllopoulos, L.; Paxinou, E.; Feretzakis, G.; Kalles, D.; Verykios, V.S. Mapping How Artificial Intelligence Blends with Healthcare: Insights from a Bibliometric Analysis. Future Internet 2024, 16, 221. https://doi.org/10.3390/fi16070221
Triantafyllopoulos L, Paxinou E, Feretzakis G, Kalles D, Verykios VS. Mapping How Artificial Intelligence Blends with Healthcare: Insights from a Bibliometric Analysis. Future Internet. 2024; 16(7):221. https://doi.org/10.3390/fi16070221
Chicago/Turabian StyleTriantafyllopoulos, Loukas, Evgenia Paxinou, Georgios Feretzakis, Dimitris Kalles, and Vassilios S. Verykios. 2024. "Mapping How Artificial Intelligence Blends with Healthcare: Insights from a Bibliometric Analysis" Future Internet 16, no. 7: 221. https://doi.org/10.3390/fi16070221
APA StyleTriantafyllopoulos, L., Paxinou, E., Feretzakis, G., Kalles, D., & Verykios, V. S. (2024). Mapping How Artificial Intelligence Blends with Healthcare: Insights from a Bibliometric Analysis. Future Internet, 16(7), 221. https://doi.org/10.3390/fi16070221