Simulating Fog and Edge Computing Scenarios: An Overview and Research Challenges
Abstract
:1. Introduction
… a horizontal, physical or virtual resource paradigm that resides between smart end-devices and traditional cloud or data centers. This paradigm supports vertically-isolated, latency-sensitive applications by providing ubiquitous, scalable, layered, federated, and distributed computing, storage, and network connectivity.
2. Fog and Edge Computing: Modelling and Simulation Challenges
2.1. Application Level Modelling
2.2. Infrastructure and Network Level Modelling
2.3. Mobility
2.4. Resource Management
2.5. Scalability
3. Fog and Edge Modelling and Simulation Tools
- A network topology is either generated or loaded from a file, supporting thus real-world topology datasets.
- The network topology is converted in an undirected graph, where nodes represent network devices (e.g., routers) and links correspond to the connections between them.
- The edge devices are determined and the fog nodes are placed according to a placement policy. Users are able to define the computational capabilities of fog nodes as well as the number of clients expected to be served by each node.
- Fog nodes are emulated from the network emulated environment, while the applications in any individual fog node are running under Docker containers.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schwab, K. Will the Fourth Industrial Revolution Have a Human Heart; World Economic Forum: Cologny, Switzerland, 2015. [Google Scholar]
- Castells, M. The Rise of the Network Society. The Information Age: Economy, Society, and Culture Volume I (Information Age Series); Blackwell: London, UK, 1996. [Google Scholar]
- Van Dijk, J. The Network Society; Sage Publications: Thousand Oaks, CA, USA, 2012. [Google Scholar]
- Iorga, M.; Goren, N.; Feldman, L.; Barton, R.; Martin, M.; Mahmoudi, C. Fog Computing Conceptual Model; NIST: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE IoT J. 2016, 3, 854–864. [Google Scholar] [CrossRef]
- Jain, K.; Mohapatra, S. Taxonomy of Edge Computing: Challenges, Opportunities, and Data Reduction Methods. In Edge Computing; Springer: Berlin, Germany, 2019; pp. 51–69. [Google Scholar]
- Mann, Z.Á. Optimization Problems in Fog and Edge Computing. In Fog and Edge Computing: Principles and Paradigms; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 103–121. [Google Scholar]
- Mahmud, R.; Kotagiri, R.; Buyya, R. Fog computing: A taxonomy, survey and future directions. In Internet of Everything; Springer: Berlin, Germany, 2018; pp. 103–130. [Google Scholar]
- Cherrueau, R.A.; Lèbre, A.; Pertin, D.; Wuhib, F.; Soares, J. Edge Computing Resource Management System: a Critical Building Block! Initiating the debate via OpenStack. In Proceedings of the USENIX Workshop on Hot Topics in Edge Computing (HotEdge’18), Boston, MA, USA, 10 July 2018. [Google Scholar]
- Buyya, R.; Ranjan, R.; Calheiros, R.N. Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities. In Proceedings of the International Conference on IEEE High Performance Computing & Simulation (HPCS’09), Leipzig, Germany, 21–24 June 2009; pp. 1–11. [Google Scholar]
- Petri, C.A.; Reisig, W. Petri net. Scholarpedia 2008, 3, 6477. [Google Scholar] [CrossRef]
- Meyn, S.P.; Tweedie, R.L. Markov Chains and Stochastic Stability; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Distefano, S.; Puliafito, A. Dependability Evaluation with Dynamic Reliability Block Diagrams and Dynamic Fault Trees. IEEE Trans. Dependable Secur. Comput. 2009, 6, 4–17. [Google Scholar] [CrossRef]
- Thong, W.J.; Ameedeen, M. A survey of Petri net tools. In Advanced Computer and Communication Engineering Technology; Springer: Berlin, Germany, 2015; pp. 537–551. [Google Scholar]
- Lynn, T.; Gourinovitch, A.; Byrne, J.; Byrne, P.J.; Svorobej, S.; Giannoutakis, K.; Kenny, D.; Morrison, J. A Preliminary Systematic Review of Computer Science Literature on Cloud Computing Research using Open Source Simulation Platforms. In Proceedings of the 7th International Conference on Cloud Computing and Services Science, Porto, Portugal, 24–26 April 2017; SciTePress: Setubal, Portugal, 2017; Volume 1, pp. 565–573. [Google Scholar] [CrossRef]
- Byrne, J.; Svorobej, S.; Giannoutakis, K.M.; Tzovaras, D.; Byrne, P.J.; Östberg, P.; Gourinovitch, A.; Lynn, T. A Review of Cloud Computing Simulation Platforms and Related Environments. In Proceedings of the 7th International Conference on Cloud Computing and Services Science, Porto, Portugal, 24–26 April 2017; SciTePress: Setubal, Portugal, 2017; Volume 1, pp. 679–691. [Google Scholar] [CrossRef]
- Kitanov, S.; Monteiro, E.; Janevski, T. 5G and the Fog—Survey of related technologies and research directions. In Proceedings of the IEEE 2016 18th Mediterranean Electrotechnical Conference (MELECON), Limassol, Cyprus, 18–20 April 2016; pp. 1–6. [Google Scholar]
- Hao, Z.; Novak, E.; Yi, S.; Li, Q. Challenges and software architecture for fog computing. IEEE Internet Comput. 2017, 21, 44–53. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access 2017, 5, 6757–6779. [Google Scholar] [CrossRef]
- Tran, T.X.; Hajisami, A.; Pandey, P.; Pompili, D. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Commun. Mag. 2017, 55, 54–61. [Google Scholar] [CrossRef]
- Kecskemeti, G.; Casale, G.; Jha, D.N.; Lyon, J.; Ranjan, R. Modelling and simulation challenges in internet of things. IEEE Cloud Comput. 2017, 4, 62–69. [Google Scholar] [CrossRef]
- Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J. Fog computing: A platform for internet of things and analytics. In Big Data and Internet of Things: A Roadmap for Smart Environments; Springer: Berlin, Germany, 2014; pp. 169–186. [Google Scholar]
- Law, A.M. How to build valid and credible simulation models. In Proceedings of the 2008 Winter Simulation Conference, Miami, FL, USA, 7–10 December 2008; pp. 39–47. [Google Scholar] [CrossRef]
- Hung, S.C.; Hsu, H.; Lien, S.Y.; Chen, K.C. Architecture harmonization between cloud radio access networks and fog networks. IEEE Access 2015, 3, 3019–3034. [Google Scholar] [CrossRef]
- Svorobej, S.; Byrne, J.; Liston, P.; Byrne, P.; Stier, C.; Groenda, H.; Papazachos, Z.; Nikolopoulos, D. Towards Automated Data-Driven Model Creation for Cloud Computing Simulation. EAI Endorsed Trans. Cloud Syst. 2015, 2. [Google Scholar] [CrossRef]
- Ku, Y.J.; Lin, D.Y.; Lee, C.F.; Hsieh, P.J.; Wei, H.Y.; Chou, C.T.; Pang, A.C. 5G radio access network design with the fog paradigm: Confluence of communications and computing. IEEE Commun. Mag. 2017, 55, 46–52. [Google Scholar] [CrossRef]
- Greasley, A.; Owen, C. Modelling people’s behaviour using discrete-event simulation: A review. Int. J. Oper. Prod. Manag. 2018, 38, 1228–1244. [Google Scholar] [CrossRef]
- Flouris, I.; Giatrakos, N.; Deligiannakis, A.; Garofalakis, M.; Kamp, M.; Mock, M. Issues in complex event processing: Status and prospects in the big data era. J. Syst. Softw. 2017, 127, 217–236. [Google Scholar] [CrossRef]
- Zacheilas, N.; Kalogeraki, V.; Zygouras, N.; Panagiotou, N.; Gunopulos, D. Elastic complex event processing exploiting prediction. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 213–222. [Google Scholar]
- Abdullahi, I.; Arif, S.; Hassan, S. Ubiquitous shift with information centric network caching using fog computing. In Computational Intelligence in Information Systems; Springer: Berlin, Germany, 2015; pp. 327–335. [Google Scholar]
- Huo, R.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Leung, V.C.; Liu, Y. Software defined networking, caching, and computing for green wireless networks. IEEE Commun. Mag. 2016, 54, 185–193. [Google Scholar] [CrossRef]
- Cisco Systems, I. Cisco Visual Networking Index: Forecast and Trends, 2017–2022. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html (accessed on 25 February 2019).
- Östberg, P.; Byrne, J.; Casari, P.; Eardley, P.; Anta, A.F.; Forsman, J.; Kennedy, J.; Duc, T.L.; Mariño, M.N.; Loomba, R.; et al. Reliable capacity provisioning for distributed cloud/edge/fog computing applications. In Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland, 12–15 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Sharma, S.K.; Wang, X. Live Data Analytics With Collaborative Edge and Cloud Processing in Wireless IoT Networks. IEEE Access 2017, 5, 4621–4635. [Google Scholar] [CrossRef]
- Zeydan, E.; Bastug, E.; Bennis, M.; Kader, M.A.; Karatepe, I.A.; Er, A.S.; Debbah, M. Big data caching for networking: Moving from cloud to edge. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Noor, T.H.; Zeadally, S.; Alfazi, A.; Sheng, Q.Z. Mobile cloud computing: Challenges and future research directions. J. Netw. Comput. Appl. 2018, 115, 70–85. [Google Scholar] [CrossRef]
- Judge, P. Cloud Wireless Access Burns More Energy Than Data Centres—Report. Available online: https://www.silicon.co.uk/workspace/cloud-wireless-energy-use-data-centre-113227?inf_by=5c7496c7671db8147e8b4877 (accessed on 25 February 2019).
- Corcoran, P.; Andrae, A. Emerging Trends in Electricity Consumption for Consumer ICT. Electr. Electron. Eng. (Rep.) 2013, 1–56. [Google Scholar]
- Wang, K.; Yang, K.; Magurawalage, C.S. Joint Energy Minimization and Resource Allocation in C-RAN with Mobile Cloud. IEEE Trans. Cloud Comput. 2018, 6, 760–770. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, M.; Rodríguez, J.M.; Mateos, C.; Zunino, A. A Two-Phase Energy-Aware Scheduling Approach for CPU-Intensive Jobs in Mobile Grids. J. Grid Comput. 2017, 15, 55–80. [Google Scholar] [CrossRef]
- Chunlin, L.; Layuan, L. Exploiting composition of mobile devices for maximizing user QoS under energy constraints in mobile grid. Inf. Sci. 2014, 279, 654–670. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Liang, K.; Zhao, L.; Chu, X.; Chen, H.H. An integrated architecture for software defined and virtualized radio access networks with fog computing. IEEE Netw. 2017, 31, 80–87. [Google Scholar] [CrossRef]
- ETSI. ETSI-Multi-Access Edge Computing. Available online: https://www.etsi.org/technologies/multi-access-edge-computing (accessed on 25 February 2019).
- Stier, C.; Domaschka, J.; Koziolek, A.; Krach, S.; Krzywda, J.; Reussner, R. Rapid Testing of IaaS Resource Management Algorithms via Cloud Middleware Simulation. In Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering (ICPE ’18), Berlin, Germany, 9–13 April 2018; ACM: New York, NY, USA, 2018; pp. 184–191. [Google Scholar] [CrossRef] [Green Version]
- Fanian, F.; Bardsiri, V.K.; Shokouhifar, M. A New Task Scheduling Algorithm using Firefly and Simulated Annealing Algorithms in Cloud Computing. Int. J. Adv. Comput. Sci. Appl. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Kolisch, R.; Dahlmann, A. The dynamic replica placement problem with service levels in content delivery networks: A model and a simulated annealing heuristic. OR Spectrum 2015, 37, 217–242. [Google Scholar] [CrossRef]
- Ghosh, R.; Longo, F.; Xia, R.; Naik, V.K.; Trivedi, K.S. Stochastic Model Driven Capacity Planning for an Infrastructure-as-a-Service Cloud. IEEE Trans. Serv. Comput. 2014, 7, 667–680. [Google Scholar] [CrossRef]
- Varga, A.; Sekercioglu, A. Parallel simulation made easy with omnet++. In Proceedings of the 15th European Simulation Symposium, Delft, The Netherlands, 26–29 October 2003. [Google Scholar]
- Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 2011, 41, 23–50. [Google Scholar] [CrossRef]
- Kathiravelu, P.; Veiga, L. Concurrent and Distributed CloudSim Simulations. In Proceedings of the 2014 IEEE 22nd International Symposium on Modelling, Analysis Simulation of Computer and Telecommunication Systems, Paris, France, 9–11 September 2014; pp. 490–493. [Google Scholar] [CrossRef]
- Filelis-Papadopoulos, C.K.; Giannoutakis, K.M.; Gravvanis, G.A.; Endo, P.T.; Tzovaras, D.; Svorobej, S.; Lynn, T. Simulating large vCDN networks: A parallel approach. Simul. Model. Pract. Theory 2019, 92, 100–114. [Google Scholar] [CrossRef]
- Filelis-Papadopoulos, C.K.; Gravvanis, G.A.; Kyziropoulos, P.E. A framework for simulating large scale cloud infrastructures. Future Gener. Comput. Syst. 2018, 79, 703–714. [Google Scholar] [CrossRef]
- Filelis-Papadopoulos, C.K.; Giannoutakis, K.M.; Gravvanis, G.A.; Tzovaras, D. Large-scale simulation of a self-organizing self-management cloud computing framework. J. Supercomput. 2018, 74, 530–550. [Google Scholar] [CrossRef]
- Buss, A.; Rowaei, A.A. A comparison of the accuracy of discrete event and discrete time. In Proceedings of the 2010 Winter Simulation Conference, Baltimore, MD, USA, 5–8 December 2010; pp. 1468–1477. [Google Scholar] [CrossRef]
- Sargent, R.G. Verification and validation of simulation models. In Proceedings of the 2010 Winter Simulation Conference (WSC), Baltimore, MD, USA, 5–8 December 2010; pp. 162–176. [Google Scholar] [CrossRef]
- Sargent, R.G. A New Statistical Procedure for Validation of Simulation And Stochastic Models; Department Electrical Engineering and Computer Science, Syracuse University: Syracuse, NY, USA, 2010; SYR-EECS-2010-06. [Google Scholar]
- Dastjerdi, A.V.; Buyya, R. Fog computing: Helping the Internet of Things realize its potential. Computer 2016, 49, 112–116. [Google Scholar] [CrossRef]
- Moysiadis, V.; Sarigiannidis, P.; Moscholios, I. Towards Distributed Data Management in Fog Computing. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Yu, F.; Jain, R. A Survey of Wireless Sensor Network Simulation Tools; Washington University in St. Louis, Department of Science and Engineering: St. Louis, MO, USA, 2011. [Google Scholar]
- Qayyum, T.; Malik, A.W.; Khattak, M.A.K.; Khalid, O.; Khan, S.U. FogNetSim++: A Toolkit for Modeling and Simulation of Distributed Fog Environment. IEEE Access 2018, 6, 63570–63583. [Google Scholar] [CrossRef]
- Varga, A.; Hornig, R. An overview of the OMNeT++ simulation environment. In Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Marseille, France, 3–7 March 2008; p. 60. [Google Scholar]
- Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [Google Scholar] [CrossRef] [Green Version]
- Naas, M.I.; Boukhobza, J.; Parvedy, P.R.; Lemarchand, L. An Extension to iFogSim to Enable the Design of Data Placement Strategies. In Proceedings of the 2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC), Washington, DC, USA, 1–3 May 2018; pp. 1–8. [Google Scholar]
- Zeng, X.; Garg, S.K.; Strazdins, P.; Jayaraman, P.; Georgakopoulos, D.; Ranjan, R. IOTSim: A Cloud based Simulator for Analysing IoT Applications. arXiv, 2016; arXiv:1602.06488. [Google Scholar]
- Brogi, A.; Forti, S.; Ibrahim, A. How to best deploy your Fog applications, probably. In Proceedings of the 2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; pp. 105–114. [Google Scholar]
- Brogi, A.; Forti, S. QoS-aware deployment of IoT applications through the fog. IEEE Internet Things J. 2017, 4, 1185–1192. [Google Scholar] [CrossRef]
- Mayer, R.; Graser, L.; Gupta, H.; Saurez, E.; Ramachandran, U. EmuFog: extensible and scalable emulation of Large-Scale fog computing infrastructures. In Proceedings of the 2017 IEEE Fog World Congress (FWC), Santa Clara, CA, USA, 30 October–1 November 2017; pp. 1–6. [Google Scholar]
- Coutinho, A.; Greve, F.; Prazeres, C.; Cardoso, J. Fogbed: A rapid-prototyping emulation environment for fog computing. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar]
- De Oliveira, R.L.S.; Schweitzer, C.M.; Shinoda, A.A.; Prete, L.R. Using mininet for emulation and prototyping software-defined networks. In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota, Colombia, 4–6 June 2014; pp. 1–6. [Google Scholar]
- Ficco, M.; Esposito, C.; Xiang, Y.; Palmieri, F. Pseudo-Dynamic Testing of Realistic Edge-Fog Cloud Ecosystems. IEEE Commun. Mag. 2017, 55, 98–104. [Google Scholar] [CrossRef]
Attributes | FogNetSim++ | iFogSim | FogTorchII | EdgeCloudSim | IOTSim | EmuFog | Fogbed |
---|---|---|---|---|---|---|---|
Computing paradigm (target system) | Fog computing (general) | Fog computing (general) | Fog computing (general) | Edge computing (IoT) | Edge computing (IoT) | Fog computing (general) | Fog computing (general) |
Infrastructure and network level modelling | Distributed data centres Sensors Fog nodes Broker Network links Delay Handovers Bandwidth | Cloud data centres Sensors Actuators Fog devices Network links Delay Network usage Energy consumption | Latency Bandwidth | Cloud data centres Network links Edge servers WLAN and LAN delay Bandwidth | Cloud data centre Latency Bandwidth | Network links Fog nodes Routers | Virtual nodes Switches Instance API Network links |
Application level modelling | Fog network | Data stream Stream-processing | Fog applications | Mobile edge | IoT | Fog | Fog network |
Resource management modelling | Resource consumption (RAM and CPU) | Resource consumption Power consumption Allocation policies | Resource consumption (RAM and storage) | Resource consumption (RAM and CPU) Failure due to mobility | Resource consumption (RAM, CPU and storage) | Workload | Resource consumption (RAM and CPU) Bandwidth Workload |
Mobility | Yes | No | No | Yes | No | No | No |
Scalability | Yes | No | No | No | Yes (MapReduce) | No | No |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svorobej, S.; Takako Endo, P.; Bendechache, M.; Filelis-Papadopoulos, C.; Giannoutakis, K.M.; Gravvanis, G.A.; Tzovaras, D.; Byrne, J.; Lynn, T. Simulating Fog and Edge Computing Scenarios: An Overview and Research Challenges. Future Internet 2019, 11, 55. https://doi.org/10.3390/fi11030055
Svorobej S, Takako Endo P, Bendechache M, Filelis-Papadopoulos C, Giannoutakis KM, Gravvanis GA, Tzovaras D, Byrne J, Lynn T. Simulating Fog and Edge Computing Scenarios: An Overview and Research Challenges. Future Internet. 2019; 11(3):55. https://doi.org/10.3390/fi11030055
Chicago/Turabian StyleSvorobej, Sergej, Patricia Takako Endo, Malika Bendechache, Christos Filelis-Papadopoulos, Konstantinos M. Giannoutakis, George A. Gravvanis, Dimitrios Tzovaras, James Byrne, and Theo Lynn. 2019. "Simulating Fog and Edge Computing Scenarios: An Overview and Research Challenges" Future Internet 11, no. 3: 55. https://doi.org/10.3390/fi11030055
APA StyleSvorobej, S., Takako Endo, P., Bendechache, M., Filelis-Papadopoulos, C., Giannoutakis, K. M., Gravvanis, G. A., Tzovaras, D., Byrne, J., & Lynn, T. (2019). Simulating Fog and Edge Computing Scenarios: An Overview and Research Challenges. Future Internet, 11(3), 55. https://doi.org/10.3390/fi11030055