Forecasting Hydropower with Innovation Diffusion Models: A Cross-Country Analysis
<p>Hydroelectricity generation by selected countries.</p> "> Figure 2
<p>American countries: model fits and forecasting.</p> "> Figure 3
<p>European countries: model fits and forecasting.</p> "> Figure 4
<p>Asian and Middle East countries: model fits and forecasting.</p> ">
Abstract
:1. Introduction
2. Background Literature
3. Materials and Methods
3.1. Data
3.2. Models
3.2.1. Bass Model
3.2.2. Dynamic Market Potential
3.2.3. GGM
3.2.4. Prophet Model
3.2.5. Auto-Regressive Integrated Moving Average Model (ARIMA)
- order of the autoregressive part;
- degree of first differencing involved;
- order of the moving average part.
3.3. Evaluation Metrics
3.3.1. Mean Absolute Error (MAE)
3.3.2. Root Mean Squared Error (RMSE)
3.3.3. Mean Absolute Percentage Error (MAPE)
4. Results
4.1. American Countries
4.2. European Countries
4.3. Asian and Middle East Countries
4.4. Evaluation Metrics
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Model | MAE | MSE | RMSE | MAPE | AIC |
---|---|---|---|---|---|---|
Canada | BM | 66.0843 | 4504.8002 | 67.1178 | 17.2189 | 56.4774 |
GGM | 24.4791 | 689.5972 | 26.2602 | 6.3296 | 45.2166 | |
Prophet | 10.1052 | 129.6390 | 11.3859 | 2.6354 | 35.1885 | |
ARIMA | 30.1046 | 1144.9760 | 33.8375 | 7.9537 | 48.2588 | |
Mexico | BM | 5.2454 | 33.5386 | 5.7913 | 20.2789 | 27.0762 |
GGM | 5.2638 | 32.0753 | 5.6635 | 19.3595 | 26.8085 | |
Prophet | 5.3601 | 47.8583 | 6.9180 | 22.5633 | 29.2095 | |
ARIMA | 5.3938 | 47.4668 | 6.8896 | 22.6722 | 29.1602 | |
US | BM | 41.9250 | 1974.4022 | 44.4342 | 15.4394 | 51.5281 |
GGM | 16.5125 | 293.9787 | 17.1458 | 6.1989 | 40.1010 | |
Prophet | 20.1576 | 737.0605 | 27.1489 | 8.1714 | 45.6160 | |
ARIMA | 16.4345 | 472.9964 | 21.7485 | 6.6509 | 42.9545 | |
Argentina | BM | 5.0461 | 39.3180 | 6.2704 | 17.9022 | 28.0301 |
GGM | 3.5566 | 17.1466 | 4.1408 | 14.3647 | 23.0508 | |
Prophet | 7.4789 | 74.9837 | 8.6593 | 32.5736 | 31.9036 | |
ARIMA | 9.6669 | 114.1637 | 10.6847 | 41.3218 | 34.4258 | |
Chile | BM | 1.4998 | 4.5428 | 2.1314 | 6.9578 | 15.0813 |
GGM | 2.5057 | 9.4230 | 3.0697 | 12.5504 | 19.4589 | |
Prophet | 3.2409 | 14.4673 | 3.8036 | 16.0913 | 22.0314 | |
ARIMA | 2.6240 | 10.9360 | 3.3070 | 13.1871 | 20.3523 | |
Colombia | BM | 18.4775 | 374.9943 | 19.3648 | 31.4826 | 41.5615 |
GGM | 5.5119 | 36.9242 | 6.0765 | 9.3132 | 27.6532 | |
Prophet | 8.0512 | 83.5389 | 9.1400 | 13.4459 | 32.5519 | |
ARIMA | 3.9615 | 26.2898 | 5.1274 | 7.3376 | 25.6151 | |
Ecuador | BM | 14.7009 | 220.3509 | 14.8442 | 60.4232 | 38.3713 |
GGM | 6.6171 | 45.1676 | 6.7207 | 27.2926 | 28.8623 | |
Prophet | 9.4436 | 90.8950 | 9.5339 | 38.8225 | 33.0582 | |
ARIMA | 1.6990 | 3.1618 | 1.7781 | 6.9788 | 12.9069 | |
Peru | BM | 6.2933 | 40.7851 | 6.3863 | 20.4937 | 28.2499 |
GGM | 3.8856 | 17.3879 | 4.1699 | 12.5752 | 23.1346 | |
Prophet | 5.1045 | 27.9449 | 5.2863 | 16.5766 | 25.9814 | |
ARIMA | 1.3965 | 2.8075 | 1.6756 | 4.6407 | 12.1937 | |
Venezuela | BM | 10.6718 | 157.5805 | 12.5531 | 15.9293 | 36.3596 |
GGM | 4.4762 | 29.4964 | 5.4311 | 6.8774 | 26.3056 | |
Prophet | 16.2168 | 266.1054 | 16.3127 | 24.5937 | 39.5034 | |
ARIMA | 8.4556 | 75.9651 | 8.7158 | 12.8184 | 31.9816 | |
Central America | BM | 7.2916 | 64.8108 | 8.0505 | 25.8425 | 31.0288 |
GGM | 2.5197 | 10.1968 | 3.1932 | 10.1386 | 19.9325 | |
Prophet | 3.8632 | 19.7463 | 4.4437 | 13.6575 | 23.8978 | |
ARIMA | 2.5228 | 9.5054 | 3.0831 | 9.9952 | 19.5112 | |
Other Caribbean | BM | 0.2223 | 0.0666 | 0.2581 | 11.4292 | −10.2538 |
GGM | 0.3375 | 0.1347 | 0.3670 | 18.8181 | −6.0260 | |
Prophet | 0.3334 | 0.1318 | 0.3630 | 18.5663 | −6.1602 | |
ARIMA | 0.7977 | 0.7134 | 0.8446 | 44.6848 | 3.9736 | |
Other South America | BM | 25.6682 | 686.3454 | 26.1982 | 43.6294 | 45.1883 |
GGM | 18.9569 | 427.9374 | 20.6866 | 34.0270 | 42.3539 | |
Prophet | 12.9583 | 209.0335 | 14.4580 | 23.4508 | 38.0550 | |
ARIMA | 16.9094 | 347.9696 | 18.6539 | 30.4604 | 41.1127 | |
Austria | BM | 5.4463 | 35.4085 | 5.9505 | 13.7620 | 27.4017 |
GGM | 1.8915 | 6.3806 | 2.5260 | 5.0427 | 17.1196 | |
Prophet | 2.2938 | 8.3002 | 2.8810 | 6.2238 | 18.6977 | |
ARIMA | 2.9183 | 14.0804 | 3.7524 | 7.9773 | 21.8687 | |
Czech Republic | BM | 0.1860 | 0.0584 | 0.2417 | 9.5313 | −11.0399 |
GGM | 0.1856 | 0.0584 | 0.2417 | 9.5394 | −11.0404 | |
Prophet | 0.2288 | 0.0893 | 0.2988 | 12.2814 | −8.4955 | |
ARIMA | 0.2623 | 0.0870 | 0.2950 | 12.3346 | −8.6532 | |
Finland | BM | 1.3664 | 2.7835 | 1.6684 | 9.0884 | 12.1422 |
GGM | 1.5661 | 3.7213 | 1.9291 | 10.3300 | 13.8845 | |
Prophet | 1.2384 | 1.7171 | 1.3104 | 8.8286 | 9.2438 | |
ARIMA | 1.2199 | 1.9635 | 1.4012 | 8.9659 | 10.0482 | |
France | BM | 11.0142 | 149.3648 | 12.2215 | 18.5494 | 36.0383 |
GGM | 5.7549 | 40.5021 | 6.3641 | 10.3618 | 28.2081 | |
Prophet | 7.1563 | 90.3940 | 9.5076 | 14.2108 | 33.0251 | |
ARIMA | 5.8163 | 60.7172 | 7.7921 | 11.2179 | 30.6374 | |
Germany | BM | 1.5882 | 3.4403 | 1.8548 | 8.7309 | 13.4134 |
GGM | 0.9719 | 1.0545 | 1.0269 | 5.1691 | 6.3182 | |
Prophet | 2.2746 | 6.0614 | 2.4620 | 12.3926 | 16.8116 | |
ARIMA | 1.4782 | 3.0324 | 1.7414 | 8.1353 | 12.6562 | |
Iceland | BM | 4.2147 | 19.2032 | 4.3821 | 30.5155 | 23.7305 |
GGM | 1.0431 | 1.3489 | 1.1614 | 7.5607 | 7.7955 | |
Prophet | 0.7111 | 0.6102 | 0.7812 | 5.2042 | 3.0361 | |
ARIMA | 1.1866 | 1.5349 | 1.2389 | 8.6417 | 8.5708 | |
Norway | BM | 22.3395 | 552.3940 | 23.5031 | 16.2979 | 43.8856 |
GGM | 10.2276 | 139.3418 | 11.8043 | 7.3584 | 35.6216 | |
Prophet | 6.5742 | 48.9282 | 6.9949 | 4.8660 | 29.3421 | |
ARIMA | 12.6251 | 214.7500 | 14.6544 | 9.6043 | 38.2168 | |
Poland | BM | 0.3303 | 0.1353 | 0.3678 | 16.2736 | −6.0011 |
GGM | 0.1861 | 0.0711 | 0.2666 | 8.0823 | −9.8591 | |
Prophet | 0.2186 | 0.0670 | 0.2588 | 10.8844 | −10.2163 | |
ARIMA | 0.2318 | 0.0767 | 0.2769 | 11.5604 | −9.4049 | |
Romania | BM | 4.9826 | 27.7820 | 5.2709 | 29.8401 | 25.9463 |
GGM | 2.6815 | 9.8875 | 3.1444 | 15.6546 | 19.7476 | |
Prophet | 1.3794 | 2.2143 | 1.4881 | 8.5813 | 10.7696 | |
ARIMA | 1.3474 | 3.0170 | 1.7370 | 8.8559 | 12.6256 | |
Slovakia | BM | 1.4677 | 2.3046 | 1.5181 | 36.3305 | 11.0095 |
GGM | 0.5577 | 0.4781 | 0.6914 | 14.4785 | 1.5718 | |
Prophet | 0.9269 | 1.0094 | 1.0047 | 23.3155 | 6.0560 | |
ARIMA | 0.3487 | 0.1960 | 0.4427 | 8.9074 | −3.7771 | |
Spain | BM | 4.8373 | 39.5748 | 6.2909 | 22.2597 | 28.0691 |
GGM | 9.7004 | 124.0124 | 11.1361 | 43.1469 | 34.9223 | |
Prophet | 4.8714 | 40.5441 | 6.3674 | 22.5071 | 28.2143 | |
ARIMA | 4.8193 | 36.8796 | 6.0729 | 21.8420 | 27.6460 | |
Switzerland | BM | 2.6133 | 8.5665 | 2.9269 | 7.5834 | 18.8872 |
GGM | 3.0125 | 10.6348 | 3.2611 | 8.5523 | 20.1848 | |
Prophet | 1.9974 | 8.7627 | 2.9602 | 6.2002 | 19.0230 | |
ARIMA | 2.3194 | 13.5687 | 3.6836 | 7.3123 | 21.6466 | |
Turkey | BM | 28.4401 | 924.2676 | 30.4018 | 39.9405 | 46.9740 |
GGM | 9.9676 | 171.1472 | 13.0823 | 13.4455 | 36.8551 | |
Prophet | 12.1973 | 268.8178 | 16.3957 | 15.7590 | 39.5642 | |
ARIMA | 9.3296 | 155.8771 | 12.4851 | 12.5526 | 36.2944 | |
Other Europe | BM | 14.9316 | 248.9818 | 15.7792 | 40.1622 | 39.1043 |
GGM | 5.0267 | 38.9923 | 6.2444 | 12.8858 | 27.9802 | |
Prophet | 5.8380 | 51.5389 | 7.1791 | 14.9237 | 29.6540 | |
ARIMA | 7.4257 | 75.9958 | 8.7176 | 19.2168 | 31.9841 | |
Iran | BM | 6.9846 | 94.0041 | 9.6956 | 29.8908 | 33.2600 |
GGM | 6.9622 | 91.2623 | 9.5531 | 30.1793 | 33.0824 | |
Prophet | 6.9514 | 86.1185 | 9.2800 | 31.2111 | 32.7343 | |
ARIMA | 7.0090 | 69.7343 | 8.3507 | 36.9367 | 31.4682 | |
Iraq | BM | 2.5826 | 7.7513 | 2.7841 | 72.8284 | 18.2872 |
GGM | 0.8143 | 1.0241 | 1.0120 | 28.5069 | 6.1431 | |
Prophet | 1.3409 | 2.5062 | 1.5831 | 53.1525 | 11.5126 | |
ARIMA | 1.3312 | 2.4835 | 1.5759 | 35.3691 | 11.4580 | |
Other Middle East | BM | 0.4955 | 0.3514 | 0.5928 | 36.5357 | −0.2754 |
GGM | 0.6866 | 0.5995 | 0.7743 | 49.5679 | 2.9304 | |
Prophet | 2.0575 | 4.2824 | 2.0694 | 141.2260 | 14.7271 | |
ARIMA | 0.3383 | 0.1461 | 0.3822 | 21.0196 | −5.5398 | |
Egypt | BM | 2.5110 | 6.9452 | 2.6354 | 17.9827 | 17.6283 |
GGM | 0.6453 | 0.6113 | 0.7819 | 4.5619 | 3.0472 | |
Prophet | 0.6364 | 0.6012 | 0.7754 | 4.4877 | 2.9471 | |
ARIMA | 0.6123 | 0.6887 | 0.8299 | 4.2852 | 3.7622 | |
Eastern Africa | BM | 0.7572 | 0.9703 | 0.9850 | 1.0500 | 5.8192 |
GGM | 0.6717 | 0.9471 | 0.9732 | 0.9361 | 5.6740 | |
Prophet | 5.3293 | 40.7244 | 6.3816 | 6.8232 | 28.2410 | |
ARIMA | 6.4304 | 52.6913 | 7.2589 | 8.3140 | 29.7867 | |
Australia | BM | 2.7970 | 9.3486 | 3.0575 | 17.4599 | 19.4113 |
GGM | 1.7075 | 4.1138 | 2.0283 | 10.4882 | 14.4861 | |
Prophet | 1.0173 | 1.3366 | 1.1561 | 6.5122 | 7.7408 | |
ARIMA | 2.1032 | 5.7853 | 2.4053 | 12.9936 | 16.5319 | |
New Zealand | BM | 6.1321 | 39.4782 | 6.2832 | 23.8991 | 28.0545 |
GGM | 3.3649 | 12.4140 | 3.5234 | 13.0550 | 21.1129 | |
Prophet | 1.0429 | 1.2248 | 1.1067 | 4.0436 | 7.2168 | |
ARIMA | 1.0897 | 1.7941 | 1.3394 | 4.3811 | 9.5070 | |
India | BM | 10.8661 | 139.3920 | 11.8064 | 6.7774 | 35.6237 |
GGM | 9.4596 | 128.0283 | 11.3150 | 6.0529 | 35.1135 | |
Prophet | 19.9743 | 508.3053 | 22.5456 | 12.2189 | 43.3865 | |
ARIMA | 15.4507 | 347.9091 | 18.6523 | 9.3586 | 41.1116 | |
Indonesia | BM | 8.6518 | 79.3015 | 8.9051 | 35.5816 | 32.2395 |
GGM | 4.3706 | 21.0994 | 4.5934 | 17.8934 | 24.2955 | |
Prophet | 7.0554 | 52.9911 | 7.2795 | 28.9966 | 29.8207 | |
ARIMA | 4.8305 | 26.8643 | 5.1831 | 19.7831 | 25.7448 | |
Japan | BM | 2.1477 | 6.7295 | 2.5941 | 2.7466 | 17.4390 |
GGM | 2.5287 | 10.9770 | 3.3132 | 3.3744 | 20.3748 | |
Prophet | 6.7164 | 52.8591 | 7.2704 | 8.8563 | 29.8058 | |
ARIMA | 4.0174 | 23.6275 | 4.8608 | 5.3467 | 24.9745 | |
Malaysia | BM | 15.6747 | 249.1243 | 15.7837 | 54.1056 | 39.1077 |
GGM | 14.1350 | 201.5822 | 14.1980 | 48.8989 | 37.8372 | |
Prophet | 6.3377 | 40.9908 | 6.4024 | 21.8870 | 28.2801 | |
ARIMA | 10.8077 | 130.9042 | 11.4413 | 36.7537 | 35.2468 | |
Pakistan | BM | 14.2613 | 220.9643 | 14.8649 | 38.9999 | 38.3880 |
GGM | 3.1400 | 13.7241 | 3.7046 | 8.5778 | 21.7149 | |
Prophet | 5.5140 | 37.9712 | 6.1621 | 14.7642 | 27.8210 | |
ARIMA | 2.9635 | 11.8655 | 3.4446 | 8.2558 | 20.8418 | |
Philippines | BM | 1.0149 | 1.4041 | 1.1849 | 11.7602 | 8.0363 |
GGM | 1.0010 | 1.9878 | 1.4099 | 12.6727 | 10.1222 | |
Prophet | 0.9167 | 1.6012 | 1.2654 | 11.5252 | 8.8244 | |
ARIMA | 0.7970 | 1.4895 | 1.2205 | 10.2586 | 8.3906 | |
Republic of Korea | BM | 0.8504 | 0.9464 | 0.9728 | 23.8665 | 5.6696 |
GGM | 0.4354 | 0.2775 | 0.5268 | 12.3352 | −1.6910 | |
Prophet | 0.3381 | 0.1794 | 0.4236 | 10.8917 | −4.3093 | |
ARIMA | 0.4477 | 0.2740 | 0.5235 | 12.5721 | −1.7675 | |
Taiwan | BM | 1.5197 | 3.3752 | 1.8372 | 30.9699 | 13.2986 |
GGM | 0.9684 | 1.4440 | 1.2017 | 20.3520 | 8.2043 | |
Prophet | 1.0142 | 1.2394 | 1.1133 | 26.3803 | 7.2875 | |
ARIMA | 1.2033 | 2.0592 | 1.4350 | 33.3745 | 10.3339 | |
Thailand | BM | 1.2783 | 1.9572 | 1.3990 | 20.3054 | 10.0292 |
GGM | 0.9297 | 1.4680 | 1.2116 | 18.2718 | 8.3033 | |
Prophet | 0.8821 | 1.3897 | 1.1789 | 17.2184 | 7.9747 | |
ARIMA | 1.4400 | 3.0687 | 1.7518 | 21.3886 | 12.7275 | |
Vietnam | BM | 34.4985 | 1478.5136 | 38.4514 | 43.9378 | 49.7928 |
GGM | 24.2945 | 767.5679 | 27.7050 | 31.2299 | 45.8594 | |
Prophet | 6.6648 | 76.6443 | 8.7547 | 8.1139 | 32.0350 | |
ARIMA | 36.7219 | 1513.9385 | 38.9094 | 47.0253 | 49.9348 |
Model | MAE | RMSE | MAPE |
---|---|---|---|
BM | 12.65907 | 13.62098 | 32.43803 |
GGM | 6.61220 | 7.40978 | 23.01449 |
Prophet | 7.10484 | 7.97674 | 24.91147 |
ARIMA | 6.88173 | 8.04790 | 26.41186 |
References
- Aminifar, F.; Shahidehpour, M.; Alabdulwahab, A.; Abusorrah, A.; Al-Turki, Y. The proliferation of solar photovoltaics: Their impact on widespread deployment of electric vehicles. IEEE Electrif. Mag. 2020, 8, 79–91. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9185064 (accessed on 1 November 2023). [CrossRef]
- Malhotra, R. Fossil energy: Introduction. In Fossil Energy; Springer: New York, NY, USA, 2020; pp. 1–4. Available online: https://link.springer.com/referenceworkentry/10.1007/978-1-4939-9763-3_920 (accessed on 30 September 2023).
- Lizunkov, V.; Politsinskaya, E.; Malushko, E.; Kindaev, A.; Minin, M. Population of the world and regions as the principal energy consumer. Int. J. Energy Econ. Policy 2018, 8, 250–257. Available online: https://www.zbw.eu/econis-archiv/bitstream/11159/2120/1/1028134991.pdf (accessed on 12 September 2023).
- He, P.; Ni, X. Renewable energy sources in the era of the fourth industrial revolution: A perspective of civilization development. J. Phys. Conf. Ser. 2022, 2301, 012030. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/2301/1/012030/meta (accessed on 10 October 2023). [CrossRef]
- de Freitas Cavalcanti, J.T.; de Lima, J.G.; do Nascimento Melo, M.R.; Monteiro, E.C.B.; Campos-Takaki, G.M. Fossil Fuels, Nuclear Energy and Renewable Energy. Seven Editora. 2023. Available online: https://sevenpublicacoes.com.br/index.php/editora/article/view/1693 (accessed on 16 October 2023).
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front. Energy Res. 2022, 9, 1032. Available online: https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2021.743114/full (accessed on 14 December 2023). [CrossRef]
- International Energy Agency. Hydroelectricity; International Energy Agency: Paris, France, 2024; Available online: https://www.iea.org/energy-system/renewables/hydroelectricity (accessed on 30 August 2024).
- Shamout, M.D.; Khamkar, K.A.; Lal, A.; Danaiah, P.; Mukasheva, A.; Kaushik, N. Hydropower technology as a renewable energy source of power generation and its effect on environment sustainability. In Proceedings of the 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), Bengaluru, India, 18–19 November 2022; pp. 1017–1020. Available online: https://ieeexplore.ieee.org/abstract/document/10059855 (accessed on 19 December 2023).
- Office of Energy Efficiency & Renewable Energy. Hydropower Program; U.S. Department of Energy: Washington, DC, USA, 2022. Available online: https://www.energy.gov/eere (accessed on 27 August 2024).
- Bakis, R. The current status and future opportunities of hydroelectricity. Energy Sources Part B 2007, 2, 259–266. Available online: https://www.tandfonline.com/doi/pdf/10.1080/15567240500402958 (accessed on 12 February 2024). [CrossRef]
- Guidolin, M. Innovation Diffusion Models: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2023; Available online: https://www.wiley.com/en-au/Innovation+Diffusion+Models%3A+Theory+and+Practice-p-9781119756231 (accessed on 1 February 2023).
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018; Available online: https://otexts.com/fpp3/ (accessed on 12 April 2023).
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. Available online: https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1380080 (accessed on 28 November 2023). [CrossRef]
- Huang, J.; Tang, Y.; Chen, S. Energy demand forecasting: Combining cointegration analysis and artificial intelligence algorithm. Math. Probl. Eng. 2018, 2018, 5194810. Available online: https://onlinelibrary.wiley.com/doi/full/10.1155/2018/5194810 (accessed on 12 November 2023). [CrossRef]
- Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy 2018, 161, 130–142. Available online: https://www.sciencedirect.com/science/article/pii/S0360544218313859 (accessed on 30 January 2024). [CrossRef]
- Karumanchi, H.; Mathew, S. Forecasting of hydropower generation of India using autoregressive integrated moving average model. J. Algebr. Stat. 2022, 13, 3124–3128. Available online: https://publishoa.com/index.php/journal/article/view/991 (accessed on 12 January 2023).
- Polprasert, J.; Nguyen, V.A.H.; Charoensook, S.N. Forecasting models for hydropower production using ARIMA method. In Proceedings of the 2021 9th International Electrical Engineering Congress (IEECON), Pattaya, Thailand, 10–12 March 2021; pp. 197–200. Available online: https://ieeexplore.ieee.org/abstract/document/9440293 (accessed on 19 June 2023).
- Mite-León, M.; Barzola-Monteses, J. Statistical model for the forecast of hydropower production in Ecuador. Int. J. Renew. Energy Res. 2018, 8, 1130–1137. Available online: https://www.sciencedirect.com/science/article/abs/pii/0040162577900312 (accessed on 7 June 2023).
- Zeng, B.; He, C.; Mao, C.; Wu, Y. Forecasting China’s hydropower generation capacity using a novel grey combination optimization model. Energy 2023, 262, 125341. Available online: https://www.sciencedirect.com/science/article/pii/S0360544222022241 (accessed on 12 January 2024). [CrossRef]
- Malhan, P.; Mittal, M. A novel ensemble model for long-term forecasting of wind and hydropower generation. Energy Convers. Manag. 2022, 251, 114983. Available online: https://www.sciencedirect.com/science/article/pii/S0196890421011596 (accessed on 12 January 2023). [CrossRef]
- Guidolin, M.; Mortarino, C. Cross-country diffusion of photovoltaic systems: Modelling choices and forecasts for national adoption patterns. Technol. Forecast. Soc. Chang. 2010, 77, 279–296. Available online: https://www.sciencedirect.com/science/article/pii/S0040162509000997 (accessed on 18 April 2023). [CrossRef]
- Bessi, A.; Guidolin, M.; Manfredi, P. The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in? Renew. Sustain. Energy Rev. 2021, 152, 111673. Available online: https://www.sciencedirect.com/science/article/pii/S1364032121009473 (accessed on 28 April 2023). [CrossRef]
- Bessi, A.; Guidolin, M.; Manfredi, P. Diffusion of renewable energy for electricity: An analysis for leading countries. In International Conference on Time Series and Forecasting; Springer: Cham, Switzerland, 2021; pp. 291–305. Available online: https://link.springer.com/chapter/10.1007/978-3-031-14197-3_19 (accessed on 19 May 2023).
- Savio, A.; De Giovanni, L.; Guidolin, M. Modelling energy transition in Germany: An analysis through ordinary differential equations and system dynamics. Forecasting 2022, 4, 438–455. Available online: https://www.mdpi.com/2571-9394/4/2/25 (accessed on 12 April 2024). [CrossRef]
- Energy Institute. Statistical Review of World Energy; Energy Institute: London, UK, 2024; Available online: https://www.energyinst.org/statistical-review (accessed on 17 June 2024).
- Rogers, E.M. Diffusion of Innovations; The Free Press: New York, NY, USA, 2003; Available online: https://www.taylorfrancis.com/chapters/edit/10.4324/9780203887011-36/diffusion-innovations-everett-rogers-arvind-singhal-margaret-quinlan (accessed on 17 April 2023).
- Guseo, R.; Guidolin, M. Modelling a dynamic market potential: A class of automata networks for diffusion of innovations. Technol. Forecast. Soc. Chang. 2009, 76, 806–820. Available online: https://www.sciencedirect.com/science/article/pii/S0040162508001807 (accessed on 12 January 2023). [CrossRef]
- Guseo, R.; Guidolin, M. Cellular automata with network incubation in information technology diffusion. Phys. A Stat. Mech. Appl. 2010, 389, 2422–2433. Available online: https://www.sciencedirect.com/science/article/pii/S0378437110001317 (accessed on 19 January 2023). [CrossRef]
- Geem, Z.W.; Roper, W.E. Energy demand estimation of South Korea using artificial neural network. Energy Policy 2009, 37, 4049–4054. Available online: https://www.sciencedirect.com/science/article/pii/S0301421509003218 (accessed on 12 October 2023). [CrossRef]
- Herrera, G.P.; Constantino, M.; Tabak, B.M.; Pistori, H.; Su, J.-J.; Naranpanawa, A. Long-term forecast of energy commodities price using machine learning. Energy 2019, 179, 214–221. Available online: https://www.sciencedirect.com/science/article/pii/S036054421930708X (accessed on 12 March 2024). [CrossRef]
Model | MAE | RMSE | MAPE | AIC |
---|---|---|---|---|
BM | 9.76529 | 10.45607 | 24.52534 | 24.88533 |
GGM | 5.19793 | 5.89837 | 15.49786 | 19.59935 |
Prophet | 5.21627 | 6.09340 | 18.76537 | 20.74633 |
ARIMA | 5.78809 | 6.74887 | 16.12192 | 20.40277 |
Prophet | ARIMA | BM | GGM | |
---|---|---|---|---|
Prophet | 0 | 21 | 31 | 18 |
ARIMA | 22 | 0 | 32 | 11 |
BM | 12 | 11 | 0 | 8 |
GGM | 25 | 32 | 35 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, F.; Finos, L.; Guidolin, M. Forecasting Hydropower with Innovation Diffusion Models: A Cross-Country Analysis. Forecasting 2024, 6, 1045-1064. https://doi.org/10.3390/forecast6040052
Ahmad F, Finos L, Guidolin M. Forecasting Hydropower with Innovation Diffusion Models: A Cross-Country Analysis. Forecasting. 2024; 6(4):1045-1064. https://doi.org/10.3390/forecast6040052
Chicago/Turabian StyleAhmad, Farooq, Livio Finos, and Mariangela Guidolin. 2024. "Forecasting Hydropower with Innovation Diffusion Models: A Cross-Country Analysis" Forecasting 6, no. 4: 1045-1064. https://doi.org/10.3390/forecast6040052
APA StyleAhmad, F., Finos, L., & Guidolin, M. (2024). Forecasting Hydropower with Innovation Diffusion Models: A Cross-Country Analysis. Forecasting, 6(4), 1045-1064. https://doi.org/10.3390/forecast6040052