Development of a Phage-Displayed Nanobody-Based Competitive Immunoassay for the Sensitive Detection of Soybean Agglutinin
<p>Schematic of the phage-displayed nanobody-based P-cELISA.</p> "> Figure 2
<p>(<b>A</b>) Number of phage outputs in each round of panning. (<b>B</b>) Identification of anti-SBA phage clones using phage-ELISA. NC, negative control. (<b>C</b>) Amino acid sequences of the positive clones. (<b>D</b>) Identification of the positive phage clones using competitive phage-ELISA. NC, negative control.</p> "> Figure 3
<p>Optimization of conditions for P-cELISA. (<b>A</b>) SA-poly-HRP saturation concentration, (<b>B</b>) coating antigen concentration (cAg), and (<b>C</b>) dilution ratio of the phage-displayed nanobody.</p> "> Figure 4
<p>Standard inhibition curve of (<b>A</b>) P-cELISA and (<b>B</b>) traditional phage-ELISA for SBA detection.</p> "> Figure 5
<p>Cross-reactivity of P-cELISA with other bean proteins.</p> "> Figure 6
<p>Correlation of results obtained by P-cELISA and commercial ELISA kit.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Biopanning of Phage-Displayed Nanobodies
2.3. Identification of Phage-Displayed Nanobodies
2.4. Preparation of Phage-Displayed Nanobodies
2.5. Development of P-cELISA
2.6. Sensitivity and Selectivity of P-cELISA
2.7. Method Validation
3. Results and Discussion
3.1. Panning and Identification of SBA-Specific Nanobodies
3.2. Development of P-cELISA
3.3. Cross-Reactivity
3.4. Sample Analysis and Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omoni, A.O.; Aluko, R.E. Soybean Foods and Their Benefits: Potential Mechanisms of Action. Nutr. Rev. 2005, 63, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Maria John, K.M.; Khan, F.; Luthria, D.L.; Garrett, W.; Natarajan, S. Proteomic Analysis of Anti-Nutritional Factors (ANF’s) in Soybean Seeds as Affected by Environmental and Genetic Factors. Food Chem. 2017, 218, 321–329. [Google Scholar] [CrossRef]
- Isanga, J.; Zhang, G.N. Soybean Bioactive Components and Their Implications to Health—A Review. Food Rev. Int. 2008, 24, 252–276. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Niu, D.; Zhou, Y.-X.; Cheng, J.-H.; El-Din Bekhit, A.; Aadil, R.M. Oxidation Induced by Dielectric-Barrier Discharge (DBD) Plasma Treatment Reduces Soybean Agglutinin Activity. Food Chem. 2021, 340, 128198. [Google Scholar] [CrossRef]
- Padalkar, G.; Mandlik, R.; Sudhakaran, S.; Vats, S.; Kumawat, S.; Kumar, V.; Kumar, V.; Rani, A.; Ratnaparkhe, M.B.; Jadhav, P. Necessity and Challenges for Exploration of Nutritional Potential of Staple-Food Grade Soybean. J. Food Compos. Anal. 2023, 117, 105093. [Google Scholar] [CrossRef]
- Zhang, X.; Long, J.; Liu, J.; Hua, Y.; Zhang, C.; Li, X. Fermentation Characteristics, Antinutritional Factor Level and Flavor Compounds of Soybean Whey Yogurt. Foods 2024, 13, 330. [Google Scholar] [CrossRef] [PubMed]
- Pawase, P.A.; Goswami, C.; Shams, R.; Pandey, V.K.; Tripathi, A.; Rustagi, S.; Darshan, G. A Conceptual Review on Classification, Extraction, Bioactive Potential and Role of Phytochemicals in Human Health. Future Foods 2024, 9, 100313. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, T. Deactivation of Soybean Agglutinin by Enzymatic and Other Physical Treatments. J. Agric. Food Chem. 2010, 58, 11413. [Google Scholar] [CrossRef]
- Pan, L.; Liu, Y.; Lan, H.; Bao, N.; Zhao, Y.; Sun, H.; Qin, G.; Farouk, M.H. Biological Mechanisms Induced by Soybean Agglutinin Using an Intestinal Cell Model of Monogastric Animals. Front. Vet. Sci. 2021, 8, 639792. [Google Scholar] [CrossRef]
- Pan, L.; Liu, J.; Hamdy Farouk, M.; Qin, G.; Bao, N.; Zhao, Y.; Sun, H. Anti-Nutritional Characteristics and Mechanism of Soybean Agglutinin. BIOCELL 2021, 45, 451–459. [Google Scholar] [CrossRef]
- Han, X.; Sun, Y.; Huangfu, B.; He, X.; Huang, K. Ultra-High-Pressure Passivation of Soybean Agglutinin and Safety Evaluations. Food Chem. X 2023, 18, 100726. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Jiang, X.; Liu, C.; Washburn, B.K.; Sathe, S.K.; Rao, Q. Effect of Temperature on Structural Configuration and Immunoreactivity of pH-Stressed Soybean (Glycine Max) Agglutinin. Food Chem. 2024, 442, 138376. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Liu, A.; Meng, C.; Li, Z.; He, P. Quantification of Lectin in Soybeans and Soy Products by Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1185, 122987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, F.; Zhang, H.; Chen, S.; Yuan, R. An Electrochemiluminescence Biosensor for the Detection of Soybean Agglutinin Based on Carboxylated Graphitic Carbon Nitride as Luminophore. Anal. Bioanal. Chem. 2019, 411, 6049–6056. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qi, X.; Chen, Y.; Liu, S.; Gao, H. Application of Chitosan/Fe₃O₄ Microsphere-Graphene Composite Modified Carbon Ionic Liquid Electrode for the Electrochemical Detection of the PCR Product of Soybean Lectin Gene Sequence. Talanta 2011, 87, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hu, F.; Zhang, H.; Zhang, C.; Chen, S. ECL Biosensor for Sensitive Detection of Soybean Agglutinin Based on AuPt@C60 Nanoflowers Enhanced N-(Aminobutyl)-N-(Ethylisoluminol). J. Electrochem. Soc. 2019, 166, B49. [Google Scholar] [CrossRef]
- Ishizaki, S.; Kuramitz, H.; Sugawara, K. Voltammetric Sensing of Soybean Agglutinin Using an Electrode Modified with Electron-transfer, Carbohydrate-mimetic/Cross-linker-peptide-collagen Film. Electroanalysis 2022, 34, 464–473. [Google Scholar] [CrossRef]
- Rizzi, C.; Galeoto, L.; Zoccatelli, G.; Vincenzi, S.; Chignola, R.; Peruffo, A.D.B. Active Soybean Lectin in Foods: Quantitative Determination by ELISA Using Immobilised Asialofetuin. Food Res. Int. 2003, 36, 815–821. [Google Scholar] [CrossRef]
- Wang, T.-H.; Lee, M.-H.; Su, N.-W. Screening of Lectins by an Enzyme-Linked Adsorbent Assay. Food Chem. 2009, 113, 1218–1225. [Google Scholar] [CrossRef]
- Brandon, D.L.; Friedman, M. Immunoassays of Soy Proteins. J. Agric. Food Chem. 2002, 50, 6635–6642. [Google Scholar] [CrossRef]
- Nachbar, M.S.; Oppenheim, J.D. The Production and Purification of Specific Anti-Soybean Agglutinin Antibody by Affinity Chromatography. BBA Gen. Subj. 1973, 320, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Cucu, T.; Devreese, B.; Kerkaert, B.; Rogge, M.; Vercruysse, L.; Meulenaer, B. ELISA-Based Detection of Soybean Proteins: A Comparative Study Using Antibodies Against Modified and Native Proteins. Food Anal. Methods 2012, 5, 1121–1130. [Google Scholar] [CrossRef]
- Ma, X.; Sun, P.; He, P.; Han, P.; Wang, J.; Qiao, S.; Li, D. Development of Monoclonal Antibodies and a Competitive ELISA Detection Method for Glycinin, an Allergen in Soybean. Food Chem. 2010, 121, 546–551. [Google Scholar] [CrossRef]
- Morishita, N.; Matsumoto, T.; Morimatsu, F.; Toyoda, M. Detection of Soybean Proteins in Fermented Soybean Products by Using Heating Extraction. J. Food Sci. 2014, 79, T1049–T1054. [Google Scholar] [CrossRef] [PubMed]
- Li, T. Mouse Moloclonal Antibody Based Indirect Elisa for Soybean Lectin (Glycine max L.) Detection. Master’s Thesis, Florida State University, Tallahassee, FL, USA, 2018. [Google Scholar]
- Gu, Y.; Guo, Y.; Deng, Y.; Song, H.; Nian, R.; Liu, W. Development of a Highly Sensitive Immunoassay Based on Pentameric Nanobodies for Carcinoembryonic Antigen Detection. Anal Chim Acta 2023, 1279, 341840. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, H.; Fu, Y.; Wang, Z.; Gao, Q.; Yang, D.; Kang, J.; Chen, L.; An, Z.; Hammock, B.D. Establishment of an Indirect Competitive Immunoassay for the Detection of Dicamba Based on a Highly Specific Nanobody. Sci. Total Environ. 2024, 917, 170567. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, Z.; He, Z.; Xie, X.; Liu, X. Combination of Nanobody and Peptidomimetic to Develop Novel Immunoassay Platforms for Detecting Ochratoxin A in Cereals. Food Chem. 2023, 429, 137018. [Google Scholar] [CrossRef] [PubMed]
- Flicker, S.; Zettl, I.; Tillib, S.V. Nanobodies-Useful Tools for Allergy Treatment? Front. Immunol. 2020, 11, 576255. [Google Scholar] [CrossRef] [PubMed]
- Salvador, J.-P.; Vilaplana, L.; Marco, M.-P. Nanobody: Outstanding Features for Diagnostic and Therapeutic Applications. Anal. Bioanal. Chem. 2019, 411, 1703–1713. [Google Scholar] [CrossRef]
- Qiu, Y.; You, A.; Fu, X.; Zhang, M.; Cui, H.; Zhang, B.; Qin, W.; Ye, Z.; Yu, X. Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies. Foods 2022, 11, 2780. [Google Scholar] [CrossRef]
- Asaadi, Y.; Jouneghani, F.F.; Janani, S.; Rahbarizadeh, F. A Comprehensive Comparison between Camelid Nanobodies and Single Chain Variable Fragments. Biomarker Res. 2021, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhu, J.; Wang, Y.; Yang, M.; Zhang, Q.; Zhang, C.; Nan, Y.; Zhou, E.-M.; Sun, Y.; Zhao, Q. A Simple Nanobody-Based Competitive ELISA to Detect Antibodies against African Swine Fever Virus. Virol Sin. 2022, 37, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, V.J.B.; Levisson, M.; Eppink, M.H.M.; Smidt, H.; van der Oost, J. Alternative Affinity Tools: More Attractive than Antibodies? Biochem. J. 2011, 436, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Muyldermans, S.; Baral, T.N.; Retamozzo, V.C.; De Baetselier, P.; De Genst, E.; Kinne, J.; Leonhardt, H.; Magez, S.; Nguyen, V.K.; Revets, H. Camelid Immunoglobulins and Nanobody Technology. Vet. Immunol. Immunopathol. 2009, 128, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, H.-D.; Cao, Y.; Wang, Z.-Y.; Yang, T.; Wang, J.-H. M13 Phage: A Versatile Building Block for a Highly Specific Analysis Platform. Anal. Bioanal. Chem. 2023, 415, 3927–3944. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Zhan, S.; Feng, L.; Chen, X.; Guo, Q.; Guo, Y.; He, Q.; Xiong, Y. Chemical Modification of M13 Bacteriophage as Nanozyme Container for Dramatically Enhanced Sensitivity of Colorimetric Immunosensor. Sens. Actuators B 2021, 346, 130368. [Google Scholar] [CrossRef]
- Fang, H.; Zhou, Y.; Ma, Y.; Chen, Q.; Tong, W.; Zhan, S.; Guo, Q.; Xiong, Y.; Tang, B.Z.; Huang, X. M13 Bacteriophage-Assisted Recognition and Signal Spatiotemporal Separation Enabling Ultrasensitive Light Scattering Immunoassay. ACS Nano 2023, 17, 18596–18607. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Tang, Z.; Chen, Q.; Liu, X. Development of a Biotin biotin–streptavidin Streptavidin-Amplified Nanobody-Based ELISA for Ochratoxin A in Cereal. Ecotoxicol. Environ. Saf. 2019, 171, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Tian, Y.; Teng, W.; Qiu, X.; Li, M. Plasmonic Colorimetric Immunosensor Based on Poly-HRP and AuNS Etching for Tri-Modal Readout of Small Molecule. Talanta 2023, 265, 124883. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Leng, Y.; Li, X.; Huang, X.; Xiong, Y. Emerging Strategies to Enhance the Sensitivity of Competitive ELISA for Detection of Chemical Contaminants in Food Samples. TrAC Trends Anal. Chem. 2020, 126, 115861. [Google Scholar] [CrossRef]
- Qiu, Y.; You, A.; Zhang, M.; Cui, H.; Fu, X.; Wang, J.; Huang, H.; Shentu, X.; Ye, Z.; Yu, X. Phage-Displayed Nanobody-Based Fluorescence-Linked Immunosorbent Assay for the Detection of Cry3Bb Toxin in Corn. LWT 2022, 171, 114094. [Google Scholar] [CrossRef]
- Bai, M.; Wang, Y.; Zhang, C.; Wang, Y.; Wei, J.; Liao, X.; Wang, J.; Anfossi, L.; Wang, Y. Nanobody-Based Immunomagnetic Separation Platform for Rapid Isolation and Detection of Salmonella Enteritidis in Food Samples. Food Chem. 2023, 424, 136416. [Google Scholar] [CrossRef]
Samples | Added (μg/kg) | This Work | Commercial ELISA Kit | ||||
---|---|---|---|---|---|---|---|
Detected (μg/kg) | Recovery (%) | CV (%) | Detected (μg/kg) | Recovery (%) | CV (%) | ||
Wheat flour | 500 | 605.55 ± 23.23 | 121.11 | 3.84 | 428.04 ± 9.18 | 85.61 | 2.14 |
1000 | 902.13 ± 78.12 | 90.21 | 8.66 | 1140.31 ± 20.73 | 114.03 | 1.82 | |
2000 | 1770.62 ± 34.54 | 88.53 | 1.95 | 2144.50 ± 97.13 | 107.23 | 4.53 | |
4000 | 3533.20 ± 117.78 | 88.33 | 3.33 | 3182.52 ± 92.99 | 79.56 | 2.92 | |
Albumen powder | 500 | 447.83 ± 48.56 | 89.56 | 10.84 | 475.92 ± 68.43 | 95.67 | 14.3 |
1000 | 789.82 ± 9.51 | 78.98 | 1.47 | 884.01 ± 62.24 | 88.56 | 7.04 | |
2000 | 1846.48 ± 189.78 | 92.32 | 10.27 | 1923.47 ± 45.21 | 96.23 | 2.35 | |
4000 | 3214.88 ± 78.98 | 80.32 | 2.46 | 3482.66 ± 173.15 | 87.11 | 4.97 | |
Whole milk powder | 500 | 475.86 ± 7.67 | 95.17 | 1.61 | 574.09 ± 57.58 | 115.12 | 10.02 |
1000 | 897.80 ± 37.89 | 89.78 | 4.22 | 1114.48 ± 49.30 | 111.78 | 4.43 | |
2000 | 1564.20 ± 56.78 | 78.21 | 3.63 | 1631.10 ± 41.36 | 82.33 | 2.54 | |
4000 | 4366.84 ± 178.64 | 109.17 | 4.08 | 3472.65 ± 58.20 | 87.23 | 1.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Qiu, Y.; You, A.; Song, S.; Yang, Q.; Zhang, B.; Fu, X.; Ye, Z.; Yu, X. Development of a Phage-Displayed Nanobody-Based Competitive Immunoassay for the Sensitive Detection of Soybean Agglutinin. Foods 2024, 13, 1893. https://doi.org/10.3390/foods13121893
Zhang M, Qiu Y, You A, Song S, Yang Q, Zhang B, Fu X, Ye Z, Yu X. Development of a Phage-Displayed Nanobody-Based Competitive Immunoassay for the Sensitive Detection of Soybean Agglutinin. Foods. 2024; 13(12):1893. https://doi.org/10.3390/foods13121893
Chicago/Turabian StyleZhang, Menghan, Yulou Qiu, Ajuan You, Siyi Song, Qin Yang, Biao Zhang, Xianshu Fu, Zihong Ye, and Xiaoping Yu. 2024. "Development of a Phage-Displayed Nanobody-Based Competitive Immunoassay for the Sensitive Detection of Soybean Agglutinin" Foods 13, no. 12: 1893. https://doi.org/10.3390/foods13121893
APA StyleZhang, M., Qiu, Y., You, A., Song, S., Yang, Q., Zhang, B., Fu, X., Ye, Z., & Yu, X. (2024). Development of a Phage-Displayed Nanobody-Based Competitive Immunoassay for the Sensitive Detection of Soybean Agglutinin. Foods, 13(12), 1893. https://doi.org/10.3390/foods13121893