A Bidirectional Resonant Converter Based on Partial Power Processing
<p>Partial power regulation architecture.</p> "> Figure 2
<p>Voltage and power distribution of the converter.</p> "> Figure 3
<p>Bidirectional half-bridge LLC resonant circuit (<b>a</b>) Main circuit topology. (<b>b</b>) LLC fundamental equivalent circuit.</p> "> Figure 4
<p>The main waveform of the split-capacitor LLC volt-doubling resonant converter. (<b>a</b>) Key forward waveform. (<b>b</b>) Key backward waveform.</p> "> Figure 5
<p>Partial power-processing bidirectional resonant converter architecture.</p> "> Figure 6
<p>Key waveform of Buck converter in FCCM mode.</p> "> Figure 7
<p>Mode of synchronous Buck converter in FCCM mode. (<b>a</b>) Mode 1 [<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math>]. (<b>b</b>) Mode 2 [<math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>t</mi> <mn>2</mn> </msub> </semantics></math>]. (<b>c</b>) Mode 3 [<math display="inline"><semantics> <msub> <mi>t</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>t</mi> <mn>3</mn> </msub> </semantics></math>]. (<b>d</b>) Mode 4 [<math display="inline"><semantics> <msub> <mi>t</mi> <mn>3</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>t</mi> <mn>4</mn> </msub> </semantics></math>]. (<b>e</b>) Mode 5 [<math display="inline"><semantics> <msub> <mi>t</mi> <mn>4</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>t</mi> <mn>5</mn> </msub> </semantics></math>]. (<b>f</b>) Mode 6 [<math display="inline"><semantics> <msub> <mi>t</mi> <mn>5</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>t</mi> <mn>6</mn> </msub> </semantics></math>].</p> "> Figure 8
<p>Partial power regulation circuit gain characteristic diagram.</p> "> Figure 9
<p>Photograph of the designed converter prototype.</p> "> Figure 10
<p>The key waveforms of the LLC-DCX circuit under the output condition of 400 V/2.22 A. (<b>a</b>) Key waveforms of <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math> and resonant current. (<b>b</b>) Key waveforms of <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> and resonant current. (<b>c</b>) Key waveforms of <math display="inline"><semantics> <msub> <mi>S</mi> <mn>6</mn> </msub> </semantics></math> and resonant current.</p> "> Figure 11
<p>The key waveforms of synchronous Buck circuit under different output voltages (<math display="inline"><semantics> <msub> <mi>I</mi> <mrow> <mi>o</mi> <mn>2</mn> </mrow> </msub> </semantics></math> = 2.22 A). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>7</mn> </msub> </semantics></math> and inductor current waveforms (<math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math> = 350 V). (<b>b</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>7</mn> </msub> </semantics></math> and inductor current waveforms (<math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math> = 400 V). (<b>c</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>7</mn> </msub> </semantics></math> and inductor current waveforms (<math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math> = 450 V).</p> "> Figure 12
<p>The key waveforms of the LLC-DCX circuit under the output condition of 400V/2.22A. (<math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math> = 400 V). (<b>a</b>) Key waveforms of <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math> and resonant current. (<b>b</b>) Key waveforms of <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> and resonant current. (<b>c</b>) Key waveforms of <math display="inline"><semantics> <msub> <mi>S</mi> <mn>6</mn> </msub> </semantics></math> and resonant current.</p> "> Figure 13
<p>The key waveforms of the synchronous Boost circuit with different input parameters on the secondary side. (<math display="inline"><semantics> <msub> <mi>U</mi> <mn>1</mn> </msub> </semantics></math> = 400 V). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>8</mn> </msub> </semantics></math> and inductor current waveforms (<math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math> = 350 V). (<b>b</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>8</mn> </msub> </semantics></math> and inductor current waveforms (<math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math> = 400 V). (<b>c</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>8</mn> </msub> </semantics></math> and inductor current waveforms (<math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math> = 450 V).</p> "> Figure 14
<p>The distribution of power in the forward mode.</p> "> Figure 15
<p>Constant-current–constant-voltage charging efficiency curve in forward mode.</p> "> Figure 16
<p>Power distribution in the backward mode.</p> "> Figure 17
<p>Efficiency graph of the converter during backward operation.</p> ">
Abstract
:1. Introduction
2. The Structure of Partial Power Processing
- (1)
- The gain characteristic of the LLC-DCX converter is minimally affected by the switching frequency and load variations, allowing the main power circuit to maintain high efficiency across its entire operational range.
- (2)
- The LLC-DCX converter works in the inductive region and can achieve full-range ZVS. In theory, it is also possible to enhance efficiency by increasing the excitation inductance, thereby reducing circulating and conduction losses.
- (3)
- The LLC-DCX converter operates at the resonant frequency in an open-loop configuration, which simplifies the control algorithm and improves system consistency.
- (4)
- By operating solely at resonant frequency points, the LLC-DCX converter optimizes the design of magnetic components. This reduction in magnetic core volume leads to improved efficiency and power density.
3. Synchronous Buck Voltage Regulation Circuit
4. Parameter Design
4.1. ZVS Condition
4.2. Circuit Parameter Design
- (1)
- Synchronous Buck circuit parameter design
- (2)
- Transformer turn ratio design
5. Experimental Verification
5.1. Forward Mode
5.2. Backward Mode
5.3. Analysis of Experimental Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, D.; Martinez, S. A Three-Port DC-DC Converter with Partial Power Regulation for a Photovoltaic Generator Integrated with Energy Storage. Electronics 2024, 13, 2304. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Li, M. Control Strategy for Bus Voltage in a Wind–Solar DC Microgrid Incorporating Energy Storage. Electronics 2024, 13, 5018. [Google Scholar] [CrossRef]
- Kim, K.M. Three-Level Double LLC Resonant Converter with Ripple-Free Input Current for DC Microgrid Application. Electronics 2024, 13, 4299. [Google Scholar] [CrossRef]
- Jin, K.; Ruan, X. Hybrid full-bridge three-level LLC resonant converter—A novel DC–DC converter suitable for fuel-cell power system. IEEE Trans. Ind. Electron. 2006, 53, 1492–1503. [Google Scholar] [CrossRef]
- Demirel, I.; Erkmen, B. A very low-profile dual output LLC resonant converter for LCD/LED TV applications. IEEE Trans. Power Electron. 2013, 29, 3514–3524. [Google Scholar] [CrossRef]
- Jin, T.; Xiao, X.S.; Zhang, Z.; Wu, W.; Yuan, Y.; Mao, X. Hybrid Control for Three-Level LLC Resonant Converter of Dual-Bridge for Wide Output Range. IEEE Trans. Power Electron. 2023, 38, 8612–8623. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, L.; Wang, H.; Liu, Y.F.; Sen, P.C. An accurate design algorithm for LLC resonant converters—Part I. IEEE Trans. Power Electron. 2015, 31, 5435–5447. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, Q.; Du, X.; Altin, N.; Alonso, J.M.; Mantooth, H.A. Analysis and design of the LLC resonant converter with variable inductor control based on time-domain analysis. IEEE Trans. Ind. Electron. 2019, 67, 5432–5443. [Google Scholar] [CrossRef]
- Mumtahina, U.; Wolfs, P.J. Multimode optimization of the phase-shifted LLC series resonant converter. IEEE Trans. Power Electron. 2018, 33, 10478–10489. [Google Scholar] [CrossRef]
- Khan, S.; Sha, D.; Jia, X.; Wang, S. Resonant LLC DC–DC converter employing fixed switching frequency based on dual-transformer with wide input-voltage range. IEEE Trans. Power Electron. 2020, 36, 607–616. [Google Scholar] [CrossRef]
- Guo, T.; Jia, P.; Zhang, X.; Zhang, Y.; Zhu, X. Analysis of the time-domain model of the LLC series resonant converter with frequency and single phase shifted control. IET Power Electron. 2024, 17, 1216–1234. [Google Scholar] [CrossRef]
- Tang, X.; Xing, Y.; Wu, H.; Zhao, J. An improved LLC resonant converter with reconfigurable hybrid voltage multiplier and PWM-plus-PFM hybrid control for wide output range applications. IEEE Trans. Power Electron. 2019, 35, 185–197. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, S.; Liu, J.; Mantooth, H.A. Hybrid PFM and PWM Modulation Strategy for Stacked Structure LLC Resonant Converter with Wide Input Voltage Range Application. IEEE Trans. Ind. Appl. 2024, 60, 4038–4053. [Google Scholar] [CrossRef]
- Shen, Q.; Sun, Q.; Chu, E.; Sun, C. Model Based Switching Frequency Secondary-Side Phase Shift Angle Matching for Optimizing Efficiency of PV Microconverter. IEEE Trans. Power Electron. 2024, 40, 3636–3656. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Y.; Wu, X. Research on Wide Input Voltage LLC Resonant Converter and Compound Control Strategy. Electronics 2022, 11, 3379. [Google Scholar] [CrossRef]
- Zuo, Y.; Shen, X.; Martinez, W. Reconfigurable LLC Resonant Converter for Wide Voltage Range and Reduced Voltage Stress in DC-Connected EV Charging Stations. IEEE Trans. Power Electron. 2025, 40, 3838–3843. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, J.; Gao, Y.; Wang, D.; Yang, Q. Hybrid variable frequency LLC resonant converter with wide output voltage range. IEEE Trans. Power Electron. 2023, 38, 11038–11049. [Google Scholar] [CrossRef]
- Alaql, F.; Alfraidi, W.; Alhatlani, A.; Al-Shamma’a, A.A.; Hussein Farh, H.M.; Allehyani, A. A Detailed Analysis and Gain Derivation of Reconfigurable Voltage Rectifier-Based LLC Converter. Electronics 2024, 13, 3788. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, J.; Sun, X.; Deng, Y.; Shu, Z. A Dual-Transformer-Based LLC Resonant Converter with Ultrawide Output Voltage Range. IEEE Trans. Power Electron. 2024, 40, 2457–2471. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, H.; Han, B.; Choi, S. New parallel loaded resonant converter with wide output voltage range. IEEE Trans. Power Electron. 2017, 33, 3106–3114. [Google Scholar] [CrossRef]
- Wu, X.; Li, R.; Cai, X. Modified LLC resonant converter with LC antiresonant circuit in parallel branch for wide voltage range application. IEEE Trans. Power Electron. 2021, 37, 7387–7399. [Google Scholar] [CrossRef]
- Teng, J.H.; Chen, S.S.; Chou, Z.X.; Liu, B.H. Novel half-bridge LLC resonant converter with variable resonant inductor. IEEE Trans. Ind. Appl. 2023, 59, 6952–6962. [Google Scholar] [CrossRef]
- Liu, T.; Wu, X.; Yang, S. 1 MHz 48–12 V Regulated DCX with Single Transformer. IEEE J. Emerg. Sel. Topics Power Electron. 2021, 9, 38–47. [Google Scholar] [CrossRef]
- Neumayr, D.; Vöhringer, M.; Chrysogelos, N.; Deboy, G.; Kolar, J.W. P3 DCT—Partial-Power Pre-Regulated DC Transformer. IEEE Trans. Power Electron. 2019, 34, 6036–6047. [Google Scholar] [CrossRef]
- Liu, Y.C.; Chen, C.; Chen, K.D.; Syu, Y.L.; Dung, N.A. High-frequency and high-efficiency isolated two-stage bidirectional DC–DC converter for residential energy storage systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 1994–2006. [Google Scholar] [CrossRef]
- Jin, F.; Nabih, A.; Chen, C.; Chen, X.; Li, Q.; Lee, F.C. A high efficiency high density dc/dc converter for battery charger applications. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; Volume 8, pp. 1994–2006. [Google Scholar]
- Liu, Q.; Qian, Q.; Ren, B.; Xu, S.; Sun, W.; Yang, L. A two-stage buck–boost integrated llc converter with extended zvs range and reduced conduction loss for high-frequency and high-efficiency applications. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 727–743. [Google Scholar] [CrossRef]
- Lu, Z.; Su, M.; Xu, G.; Li, L.; Liu, Y.; Chen, X. Integrated quasi-two-stage buck-lc converter with wide voltage gain range. IEEE Trans. Power Electron. 2024, 39, 9827–9838. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Fei, C.; Lee, F.C.; Li, Q. Singlestage high-efficiency 48/1 v sigma converter with integrated magnetics. IEEE Trans. Ind. Electron. 2019, 67, 192–202. [Google Scholar] [CrossRef]
- Wei, R.; Ding, L.; Li, Y. Efficiency-oriented optimized design and control of hybrid fsbb-cllc converters with partial power processing capability. IEEE Trans. Power Electron. 2024, 39, 6364–6375. [Google Scholar] [CrossRef]
- Uno, M.; Oyama, R.; Sugiyama, K. Partially isolated single-magnetic multiport converter based on integration of series-resonant converter and bidirectional PWM converter. IEEE Trans. Power Electron. 2018, 33, 9575–9587. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, X.; Zhang, Z.; Kang, Z.; Jin, T. A novel phase-shift pulsewidth modulation method for lightload bidirectional resonant converter. IEEE Trans. Power Electron. 2022, 38, 3257–3267. [Google Scholar] [CrossRef]
- Malan, W.L.; Vilathgamuwa, D.M.; Walker, G.R. Modeling and control of a resonant dual active bridge with a tuned cllc network. IEEE Trans. Power Electron. 2015, 31, 7297–7310. [Google Scholar] [CrossRef]
- Lee, B.-K.; Kim, J.-P.; Kim, S.-G.; Lee, J.-Y. An isolated/bidirectional pwm resonant converter for v2g (h) ev on-board charger. IEEE Trans. Veh. Technol. 2017, 66, 7741–7750. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, Q.; Mantooth, H.A. Synchronous rectification for LLC resonant converter: An overview. IEEE Trans. Power Electron. 2021, 37, 3691–3696. [Google Scholar] [CrossRef]
- De Simone, S.; Adragna, C.; Spini, C.; Gattavari, G. Design-oriented steady-state analysis of LLC resonant converters based on FHA. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006, Taormina, Italy, 23–26 May 2006; pp. 200–207. [Google Scholar]
- Jiang, C.; Liu, H. A Novel Interleaved Parallel Bidirectional Dual-Active-Bridge DC–DC Converter with Coupled Inductor for More-Electric Aircraft. IEEE Trans. Ind. Electron. 2021, 68, 1759–1768. [Google Scholar] [CrossRef]
Parameter | Forward Operation Status | Backward Operation Status |
---|---|---|
Primary-side voltage /V | 400 | 400 |
Secondary-side voltage /V | 350–450 | 350–450 |
Maximum output power/kW | 1 | 1 |
Output current/A | 2.22 | 2.5 |
Parameter | Value | Model |
---|---|---|
Resonant frequency /kHz | 100 | - |
:: | 23:17:11 | - |
LLC resonant capacitor /nF | 48 | MMKP123J3A1001 |
LLC resonant inductance /μH | 52.44 | PQ26/25 |
LLC excitation inductance /μH | 160 | PQ35/35 |
Buck/Boost inductance /μH | 30 | PQ26/25 |
DCX primary and secondary switches | - | IPW60R105CFD7 |
Buck/Boost switches | - | IPW60R105CFD7 |
Performance | Converter in [10] | Converter in [30] | Converter in [31] | Converter in [32] | Converter in [37] | Proposed |
---|---|---|---|---|---|---|
Input voltage | 160–320 V | 120–250 V | 36 V | 200 V | 28 V | 400 V |
Output voltage | 400 V | 150 V | 42–45 V | 200 V | 270 V | 350–450 V |
Topology | LLC | FSBB + LLC | PWM converter + LLC | CLLC | DAB | LLC + Buck |
Direction | Unidirectional | Unidirectional | Unidirectional | Bidirectional | Bidirectional | Bidirectional |
Output power | 1 kW | 1 kW | 150 W | 800 W | 250 W | 1 kW |
Switching frequency | 106 kHz | 100 kHz | 105 kHz | 100 kHz | 50 kHz | 100 kHz |
Modulation mode | PWM | PWM + PS | PWM + PFM | PWM + PS | PWM + PS | PWM |
Peak efficiency | 95.2% | 96.7% | 97% | × | × | 97.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, Z.; Zhao, Q. A Bidirectional Resonant Converter Based on Partial Power Processing. Electronics 2025, 14, 910. https://doi.org/10.3390/electronics14050910
Liu J, Wu Z, Zhao Q. A Bidirectional Resonant Converter Based on Partial Power Processing. Electronics. 2025; 14(5):910. https://doi.org/10.3390/electronics14050910
Chicago/Turabian StyleLiu, Junfeng, Zhouzhou Wu, and Qinglin Zhao. 2025. "A Bidirectional Resonant Converter Based on Partial Power Processing" Electronics 14, no. 5: 910. https://doi.org/10.3390/electronics14050910
APA StyleLiu, J., Wu, Z., & Zhao, Q. (2025). A Bidirectional Resonant Converter Based on Partial Power Processing. Electronics, 14(5), 910. https://doi.org/10.3390/electronics14050910