Sensitivity to Geometric Detail in Fatigue Simulation of Electronic Components of Vehicles †
<p>CAD model of the investigated electronic package: (<b>a</b>) data required to create the part; (<b>b</b>) subpart created in a 3-dimensional environment.</p> "> Figure 2
<p>The different soldering geometries: (<b>a</b>) geometry type i; (<b>b</b>) geometry type ii; (<b>c</b>) geometry type iii; (<b>d</b>) geometry type iv; (<b>e</b>) geometry type v; and (<b>f</b>) geometry type vi.</p> "> Figure 3
<p>FEA model: (<b>a</b>) meshing of the model; (<b>b</b>) specifying loads.</p> "> Figure 4
<p>Definition of the sections: horizontal and vertical sections.</p> "> Figure 5
<p>Von Mises stresses developed in the vertical sections in case of the different geometry types: (<b>a</b>) geometry type i; (<b>b</b>) geometry type ii; (<b>c</b>) geometry type iii; (<b>d</b>) geometry type iv; (<b>e</b>) geometry type v; and (<b>f</b>) geometry type vi.</p> "> Figure 6
<p>Von Mises stresses developed in the horizontal sections in case of the different geometry types: (<b>a</b>) geometry type i; (<b>b</b>) geometry type ii; (<b>c</b>) geometry type iii; (<b>d</b>) geometry type iv; (<b>e</b>) geometry type v; and (<b>f</b>) geometry type vi.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Solder Geometry Variations
2.2. Finite Element Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, W.W.; Nguyen, L.T.; Selvaduray, G.S. Solder joint fatigue models: Review and applicability to chip scale packages. Microelectron. Reliab. 2000, 40, 231–244. [Google Scholar] [CrossRef]
- Su, S.; Akkara, F.J.; Thaper, R.; Alkhazali, A.; Hamasha, M.; Hamasha, S. A State-of-the-art Review of Fatigue Life Prediction Models for Solder Joint. J. Electron. Packag. 2019, 141, 040802. [Google Scholar] [CrossRef]
- Han, C.; Song, B. Development of life prediction model for lead-free solder at chip resistor. In Proceedings of the 8th Electronics Packaging Technology Conference, Singapore, 6–8 December 2006; pp. 781–786. [Google Scholar] [CrossRef]
- Rizvi, M.J.; Lu, H.; Bailey, C.J.; Bevan, E.; Pountney, N.; Coates, J. Finite element modelling of failures in thick film chip resistor solder joints. In Proceedings of the 5th International Microsystems Packaging Assembly and Circuits Technology Conference, Taipei, Taiwan, 20–22 October 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Zukowski, E. Probabilistische Lebensdauermodelle für Thermomechanische Ermüdung von Lötverbindungen in CSP-Bauelementen (Probabilistic Lifetime Models for Thermomechanical Fatigue of Solder Joints in CSP Devices). Ph.D. Thesis, Albert-Ludwigs-Universität, Freiburg, Germany, 2014. [Google Scholar]
- Ha, J.; Lai, Y.; Yang, J.; Yin, P.; Park, S. Enhanced solder fatigue life of chip resistor by optimizing solder shape. Microelectron. Reliab. 2023, 145, 114994. [Google Scholar] [CrossRef]
- Cheng, Z.N.; Wang, G.Z.; Chen, L.; Wilde, J.; Becker, K. Viscoplastic Anand model for solder alloys and its application. Solder. Surf. Mt. Technol. 2000, 12, 31–36. [Google Scholar] [CrossRef]
- Brakke, K.A. Surface Evolver Manual, Version 2.70, 25 August 2013. Susquehanna University, Selinsgrove, PA. Available online: https://kenbrakke.com/evolver/downloads/manual270.pdf (accessed on 16 July 2024).
- Mouser Electronics LQFP-48 ARM MCU Datasheets. Available online: https://hu.mouser.com/c/ds/semiconductors/embedded-processors-controllers/microcontrollers-mcu/arm-microcontrollers-mcu/?package%20%2F%20case=LQFP-48 (accessed on 16 July 2024).
Geometry | V | A | Cr. sec. | Mat. Model | σeq | γxy | τxy | PEEQ | σeq av. | γxy av. | τxy av. | PEEQ av. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(#) | (mm3) | (mm2) | (V./H.) | (E./P.) | (MPa) | (10−3) | (MPa) | (10−3) | (MPa) | (10−3) | (MPa) | (10−3) |
i | 3 × 10−3 | 0.122 | V. | E. | 1170 | 27.2 | 1170 | - | 62.8 | 0.503 | 7.19 | - |
P. | 93.5 | 69.5 | 53.5 | 166 | 39.8 | 0.400 | 5.97 | 3.27 | ||||
H. | E. | 273 | 4.37 | 62.4 | - | 47.6 | 0.686 | 9.80 | - | |||
P. | 82.4 | 17.7 | 45.6 | 13.5 | 37.7 | 0.417 | 7.12 | 1.09 | ||||
ii | 4 × 10−3 | 0.157 | V. | E. | 1250 | 15.9 | 227 | - | 61.8 | 0.339 | 4.84 | - |
P. | 107 | 55.4 | 50.4 | 181 | 38.4 | 0.253 | 5.89 | 3.31 | ||||
H. | E. | 185 | 4.26 | 60.8 | - | 42.4 | 0.362 | 5.17 | - | |||
P. | 85.1 | 19.0 | 45.5 | 10.5 | 34.9 | 0.235 | 4.74 | 0.802 | ||||
iii | 8 × 10−3 | 0.202 | V. | E. | 1130 | 22.5 | 321 | - | 58.5 | 0.732 | 10.4 | - |
P. | 93.1 | 158 | 45.1 | 161 | 39.9 | 1.87 | 10.0 | 1.88 | ||||
H. | E. | 118 | 2.45 | 35.0 | - | 31.3 | 0.289 | 4.13 | - | |||
P. | 85.4 | 4.24 | 40.1 | 3.19 | 30.2 | 0.180 | 3.79 | 0.098 | ||||
iv | 6 × 10−3 | 0.191 | V. | E. | 850 | 10.2 | 145 | - | 64.3 | 0.395 | 5.64 | - |
P. | 86.1 | 139 | 45.3 | 140 | 40.5 | 1.89 | 8.65 | 2.80 | ||||
H. | E. | 131 | 2.97 | 42.4 | - | 35.7 | 0.264 | 3.77 | - | |||
P. | 86.6 | 3.69 | 41.3 | 4.2 | 32.9 | 0.124 | 4.12 | 0.179 | ||||
v | 6 × 10−3 | 0.189 | V. | E. | 796 | 7.38 | 105 | - | 58.2 | 0.387 | 5.53 | - |
P. | 93.2 | 97.7 | 46.2 | 104 | 38.9 | 1.16 | 6.46 | 2.10 | ||||
H. | E. | 145 | 4.14 | 59.2 | - | 33.7 | 0.265 | 3.79 | - | |||
P. | 84.5 | 6.51 | 45.2 | 4.95 | 30.4 | 0.0827 | 3.53 | 1.70 | ||||
vi | 6 × 10−3 | 0.188 | V. | E. | 697 | 10.6 | 151 | - | 67.1 | 0.582 | 8.31 | - |
P. | 84.9 | 110 | 45.3 | 117 | 40.8 | 2.12 | 9.87 | 2.79 | ||||
H. | E. | 144 | 3.33 | 47.5 | - | 34.4 | 0.289 | 4.13 | - | |||
P. | 88.0 | 4.72 | 42.8 | 4.79 | 31.9 | 0.0868 | 3.62 | 0.211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, Z.Z.; Zelei, A. Sensitivity to Geometric Detail in Fatigue Simulation of Electronic Components of Vehicles. Eng. Proc. 2024, 79, 84. https://doi.org/10.3390/engproc2024079084
Kovács ZZ, Zelei A. Sensitivity to Geometric Detail in Fatigue Simulation of Electronic Components of Vehicles. Engineering Proceedings. 2024; 79(1):84. https://doi.org/10.3390/engproc2024079084
Chicago/Turabian StyleKovács, Zoltán Z., and Ambrus Zelei. 2024. "Sensitivity to Geometric Detail in Fatigue Simulation of Electronic Components of Vehicles" Engineering Proceedings 79, no. 1: 84. https://doi.org/10.3390/engproc2024079084