Interpretable AI for Short-Term Water Demand Forecasting †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimal Regression Trees
2.2. Feature Selection
2.3. Implementation Details
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niknam, A.; Zare, H.K.; Hosseininasab, H.; Mostafaeipour, A.; Herrera, M. A critical review of short-term water demand forecasting tools—What method should I use? Sustainability 2022, 14, 5412. [Google Scholar] [CrossRef]
- Xenochristou, M.; Hutton, C.; Hofman, J.; Kapelan, Z. Short-term forecasting of household water demand in the UK using an interpretable machine learning approach. J. Water Resour. Plan. Manag. 2021, 147, 04021004. [Google Scholar] [CrossRef]
- Interpretable AI Documentation. Available online: https://docs.interpretable.ai/stable/ (accessed on 12 January 2024).
- Gurobi Optimizer Reference Manual. Available online: https://www.gurobi.com/documentation/current/refman/index.html (accessed on 26 March 2024).
- Bertsimas, D.; Pawlowski, C.; Zhuo, Y.D. From predictive methods to missing data imputation: An optimization approach. J. Mach. Learn. Res. 2017, 18, 7133–7171. [Google Scholar]
- Bertsimas, D.; Dunn, J. Machine Learning under a Modern Optimization Lens; Dynamic Ideas LLC: Charlestown, MA, USA, 2019. [Google Scholar]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010. [Google Scholar] [CrossRef]
Category | Description | Features |
---|---|---|
Time | Temporal (seasonal, monthly, weekly, and diurnal) characteristics of the forecast period | Quarter, month Day of week, day type (weekend/holiday) Time of day |
Weather | Raw data corresponding to the forecast period collected from a local weather station | Air temperature Humidity Wind speed Rainfall depth |
Previous waterdemand | Historical water consumption data corresponding to the week preceding the forecast period | 1h lagged demand 24h lagged demand 168h lagged demand |
Validation Week | Method | MAE-24 h | MaxAE-24 h | MAE-144 h | Combined Score |
---|---|---|---|---|---|
18 to 24 July 2022 (W1) | SARIMAX | 11.52 | 36.93 | 11.49 | 59.94 |
Optimal Trees | 11.99 | 36.04 | 13.79 | 61.83 | |
24 to 30 October 2022 (W2) | SARIMAX | 11.29 | 30.13 | 14.49 | 55.90 |
Optimal Trees | 10.25 | 29.26 | 14.68 | 54.09 | |
09 to 15 January 2023 (W3) | SARIMAX | 10.09 | 33.11 | 11.70 | 54.90 |
Optimal Trees | 15.34 | 50.66 | 16.23 | 82.23 | |
25 February to 04 March 2023 (W4) | SARIMAX | 7.99 | 24.96 | 8.65 | 41.60 |
Optimal Trees | 10.57 | 30.96 | 12.01 | 53.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulusoy, A.-J.; Jara-Arriagada, C.; Liu, Y.; Jenks, B.; Stoianov, I. Interpretable AI for Short-Term Water Demand Forecasting. Eng. Proc. 2024, 69, 101. https://doi.org/10.3390/engproc2024069101
Ulusoy A-J, Jara-Arriagada C, Liu Y, Jenks B, Stoianov I. Interpretable AI for Short-Term Water Demand Forecasting. Engineering Proceedings. 2024; 69(1):101. https://doi.org/10.3390/engproc2024069101
Chicago/Turabian StyleUlusoy, Aly-Joy, Carlos Jara-Arriagada, Yuanyang Liu, Bradley Jenks, and Ivan Stoianov. 2024. "Interpretable AI for Short-Term Water Demand Forecasting" Engineering Proceedings 69, no. 1: 101. https://doi.org/10.3390/engproc2024069101
APA StyleUlusoy, A.-J., Jara-Arriagada, C., Liu, Y., Jenks, B., & Stoianov, I. (2024). Interpretable AI for Short-Term Water Demand Forecasting. Engineering Proceedings, 69(1), 101. https://doi.org/10.3390/engproc2024069101