Short-Term Forecasting of Non-Stationary Time Series †
<p>Algorithm for transforming non-stationary time series data.</p> "> Figure 2
<p>Statistical description of daily precipitation (<b>A</b>) and standardized precipitation index obtained from the gamma and Pearson_3 models (<b>B</b>), followed by the test of homogeneity for both the training and testing datasets (<b>C</b>,<b>D</b>).</p> "> Figure 3
<p>The flowchart summarizes the workflow of the proposed approach for time series data forecasting.</p> "> Figure 4
<p>Autocorrelation analysis illustrating the time lag detection using various data transformation methods.</p> "> Figure 5
<p>Results of training K-Nearest Neighbors (KNN) and Random Forest (RF) models to forecast the Standardized Precipitation Index (SPI), under different data transformation methods.</p> "> Figure 6
<p>Results of testing the K-Nearest Neighbors (KNN) and Random Forest (RF) models for the standardized precipitation index (SPI) forecasting on the original scale.</p> "> Figure 7
<p>Cross-validation analysis for SPI forecasting via K-Nearest Neighbors (KNN) and Random Forest (RF) using the maximum time delay. Coefficient of determination (R-squared), mean absolute error (MAE).</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Transformation
2.2. Machine-Leaning Model Forecast Based on the Time Lag
2.3. Metrics of Performance
2.4. Data Collection and Analysis
3. Proposed Method
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hegerl, G.C.; Brönnimann, S.; Schurer, A.; Cowan, T. The early 20th century warming: Anomalies, causes, and consequences. Wiley Interdiscip. Rev. Clim. Chang. 2018, 9, e522. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Drought modeling—A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H.; Soh, Y.W. Drought forecasting: A review of modelling approaches 2007–2017. J. Water Clim. Chang. 2020, 11, 771–799. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Pan, B.; Mazdiyasni, O.; Sadegh, M.; Jiwa, S.; Zhang, W.; Love, C.A.; Madadgar, S.; Papalexiou, S.M.; Davis, S.J.; et al. Status and prospects for drought forecasting: Opportunities in artificial intelligence and hybrid physical–statistical forecasting. Philos. Trans. R. Soc. A. 2022, 380, 20210288. [Google Scholar] [CrossRef]
- Li, J.L.; Xu, K.M.; Jiang, J.H.; Lee, W.L.; Wang, L.C.; Yu, J.Y.; Stephens, G.; Fetzer, E.; Wang, Y.H. An overview of CMIP5 and CMIP6 simulated cloud ice, radiation fields, surface wind stress, sea surface temperatures, and precipitation over tropical and subtropical oceans. J. Geophys. Res. Atmos. 2020, 125, e2020JD032848. [Google Scholar] [CrossRef]
- Ben-Bouallegue, Z.; Clare, M.C.; Magnusson, L.; Gascon, E.; Maier-Gerber, M.; Janoušek, M.; Rodwell, M.; Pinault, F.; Dramsch, J.S.; Lang, S.T.; et al. The rise of data-driven weather forecasting. arXiv 2023, arXiv:2307.10128. [Google Scholar]
- Kumar, S.; Merwade, V.; Kinter, J.L., III; Niyogi, D. Evaluation of temperature and precipitation trends and long-term persistence in CMIP5 twentieth-century climate simulations. J. Clim. 2013, 26, 4168–4185. [Google Scholar] [CrossRef]
- Alomar, M.K.; Khaleel, F.; Aljumaily, M.M.; Masood, A.; Razali, S.F.M.; AlSaadi, M.A.; Al-Ansari, N.; Hameed, M.M. Data-driven models for atmospheric air temperature forecasting at a continental climate region. PLoS ONE 2022, 17, e0277079. [Google Scholar] [CrossRef]
- Dalla Torre, D.; Lombardi, A.; Menapace, A.; Zanfei, A.; Righetti, M. Exploring the Feasibility of Data-Driven Models for Short-Term Hydrological Forecasting in South Tyrol: Challenges and Prospects. SN Appl. Sci. 2023; under review. [Google Scholar]
- Vlahović, V.; Vujošević, I. Long-term forecasting: A critical review of direct-trend extrapolation methods. Int. J. Electr. Power Energy Syst. 1987, 9, 2–8. [Google Scholar] [CrossRef]
- Франкo, П. Uncertainty in case of lack of information: Extrapolating data over time, with examples of climate forecast models. Український Метрoлoгічний Журнал/Ukr. Metrol. J. 2022, 3, 3–8. [Google Scholar]
- Mehrmolaei, S.; Keyvanpour, M.R. Time series forecasting using improved ARIMA. In Proceedings of the 2016 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 9 April 2016; pp. 92–97. [Google Scholar]
- Samal, K.K.R.; Babu, K.S.; Das, S.K.; Acharaya, A. Time series based air pollution forecasting using SARIMA and prophet model. In Proceedings of the 2019 International Conference on Information Technology and Computer Communications, Singapore, 16–18 August 2019; pp. 80–85. [Google Scholar]
- Afshar, N.R.; Fahmi, H. Rainfall forecasting using Fourier series. J. Civ. Eng. Archit. 2012, 6, 1258. [Google Scholar]
- Teala, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J. 2018, 3, 334–340. [Google Scholar] [CrossRef]
- Cheng, C.; Sa-Ngasoongsong, A.; Beyca, O.; Le, T.; Yang, H.; Kong, Z.; Bukkapatnam, S.T. Time series forecasting for nonlinear and non-stationary processes: A review and comparative study. Ice Trans. 2015, 47, 1053–1071. [Google Scholar] [CrossRef]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent neural networks for time series forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Abbasimehr, H.; Paki, R. Improving time series forecasting using LSTM and attention models. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 673–691. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, Z.; Luo, X.; Liu, X.; Wang, R.; Zhang, M.; Huo, Z. Internal and external coupling of Gaussian mixture model and deep recurrent network for probabilistic drought forecasting. Int. J. Environ. Sci. Technol. 2021, 18, 1221–1236. [Google Scholar] [CrossRef]
- Salles, R.; Belloze, K.; Porto, F.; Gonzalez, P.H.; Ogasawara, E. Nonstationary time series transformation methods: An experimental review. Knowl.-Based Syst. 2019, 164, 274–291. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.; Voukouvalas, E.; Sartini, L.; Feyen, L.; Besio, G.; Alfieri, L. The transformed-stationary approach: A generic and simplified methodology for non-stationary extreme value analysis. Hydrol. Earth Syst. Sci. 2016, 20, 3527–3547. [Google Scholar] [CrossRef]
- Surakhi, O.; Zaidan, M.A.; Fung, P.L.; Hossein Motlagh, N.; Serhan, S.; AlKhanafseh, M.; Ghoniem, R.M.; Hussein, T. Time-lag selection for time-series forecasting using neural network and heuristic algorithm. Electronics 2021, 10, 2518. [Google Scholar] [CrossRef]
- Grigonytė, E.; Butkevičiūtė, E. Short-term wind speed forecasting using ARIMA model. Energetika 2016, 62, 45–55. [Google Scholar] [CrossRef]
- Tajmouati, S.; Wahbi, B.E.; Bedoui, A.; Abarda, A.; Dakkon, M. Applying k-nearest neighbors to time series forecasting: Two new approaches. arXiv 2021, arXiv:2103.14200. [Google Scholar] [CrossRef]
- Hu, J.; Liu, B.; Peng, S. Forecasting salinity time series using RF and ELM approaches coupled with decomposition techniques. Stoch. Environ. Res. Risk Assess. 2019, 33, 1117–1135. [Google Scholar] [CrossRef]
- Renaud, O.; Victoria-Feser, M.-P. A robust coefficient of determination for regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef]
- Liao, J.; McGee, D. Adjusted coefficients of determination for logistic regression. Am. Stat. 2003, 57, 161–165. [Google Scholar] [CrossRef]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. Discuss. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Kim, T.K. T test as a parametric statistic. Korean J. Anesthesiol. 2015, 68, 540–546. [Google Scholar] [CrossRef]
- Majone, B.; Villa, F.; Deidda, R.; Bellin, A. Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region. Sci. Total Environ. 2016, 543, 965–980. [Google Scholar] [CrossRef]
Method | Samples | Training Data | Testing Data | ||||
---|---|---|---|---|---|---|---|
Mean | Median | CV | Mean | Median | CV | ||
Original_N | Autumn_SPI | 0.74 | 0.61 | 0.31 | 0.76 | 0.67 | 0.29 |
Winter_SPI | 0.61 | 0.94 | 0.42 | 0.86 | 0.62 | 0.47 | |
Spring_SPI | 0.54 | 0.41 | 0.40 | 0.58 | 0.44 | 0.26 | |
Summer_SPI | 0.50 | 0.54 | 0.22 | 0.56 | 0.50 | 0.14 | |
Linearization_N | Autumn_SPI | 0.61 | 0.46 | 0.27 | 0.76 | 0.72 | 0.25 |
Winter_SPI | 0.65 | 0.82 | 0.39 | 0.68 | 0.70 | 0.18 | |
Spring_SPI | 0.56 | 0.49 | 0.18 | 0.52 | 0.49 | 0.25 | |
Summer_SPI | 0.55 * | 0.52 | 0.17 | 0.46 | 0.59 | 0.17 | |
Sinusoidal_N | Autumn_SPI | 0.65 | 0.68 | 0.22 | 0.56 | 0.54 | 0.23 |
Winter_SPI | 0.67 | 0.73 | 0.19 | 0.58 | 0.67 | 0.41 | |
Spring_SPI | 0.52 | 0.47 | 0.16 | 0.50 | 0.55 | 0.28 | |
Summer_SPI | 0.56 | 0.50 | 0.29 | 0.50 | 0.54 | 0.11 |
Method | Sample | Time_lag | KNN | RF | ||||
---|---|---|---|---|---|---|---|---|
Day | R2_Adj | MAE | t-test (P) | R2_Adj | MAE | t_test (P) | ||
Original_N | Autumn_SPI | 154 | 0.65 | 0.47 | 0.79 | 0.87 | 0.21 | 0.71 |
Winter_SPI | 166 | 0.66 | 0.35 | 0.87 | 0.86 | 0.18 | 0.91 | |
Spring_SPI | 208 | 0.53 * | 0.51 | 0.04 | 0.81 | 0.25 | 0.63 | |
Summer_SPI | 221 | 0.51 | 0.33 | 0.01 | 0.81 | 0.15 | 0.76 | |
Linearization_N | Autumn_SPI | 224 | 0.86 | 0.11 | 0.88 | 0.71 | 0.38 | 0.53 |
Winter_SPI | 193 * | 0.86 | 0.15 | 0.89 | 0.68 | 0.28 | 0.28 | |
Spring_SPI | 208 | 0.81 | 0.25 | 0.74 | 0.53 | 0.42 | 0.11 | |
Summer_SPI | 224 | 0.78 | 0.17 | 0.61 | 0.62 | 0.30 | 0.26 | |
Sinusoidal_N | Autumn_SPI | 226 | 0.61 | 0.30 | 0.60 | 0.80 | 0.18 | 0.81 |
Winter_SPI | 170 | 0.63 | 0.28 | 0.53 | 0.81 | 0.17 | 0.24 | |
Spring_SPI | 208 | 0.56 | 0.39 | 0.04 | 0.77 | 0.27 | 0.11 | |
Summer_SPI | 229 | 0.53 | 0.26 | 0.02 | 0.78 | 0.16 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aieb, A.; Liotta, A.; Jacob, A.; Yaqub, M.A. Short-Term Forecasting of Non-Stationary Time Series. Eng. Proc. 2024, 68, 34. https://doi.org/10.3390/engproc2024068034
Aieb A, Liotta A, Jacob A, Yaqub MA. Short-Term Forecasting of Non-Stationary Time Series. Engineering Proceedings. 2024; 68(1):34. https://doi.org/10.3390/engproc2024068034
Chicago/Turabian StyleAieb, Amir, Antonio Liotta, Alexander Jacob, and Muhammad Azfar Yaqub. 2024. "Short-Term Forecasting of Non-Stationary Time Series" Engineering Proceedings 68, no. 1: 34. https://doi.org/10.3390/engproc2024068034