Taguchi Analysis of Hardness and Strength of Hot Compressed Duplex Steel Using Gleeble Thermomechanical System †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kosmatsky, Y.I.; Barichko, B.V.; Fokin, N.V.; Nikolenko, V.D. Application of the Gleeble 3800 System in Developing Hot Pipe Extrusion and Pipe End Upsetting Technologies. Metallurgist 2021, 65, 404–411. [Google Scholar] [CrossRef]
- Churyumov, A.Y.; Bazlov, A.I.; Tsar’kov, A.A.; Mikhaylovskaya, A.V. Study of the structure and properties of a wrought Al–Mg–Mn aluminum alloy on a Gleeble 3800 simulator designed for physical modeling of thermomechanical processes. Metallurgist 2012, 56, 618–623. [Google Scholar] [CrossRef]
- Mandziej, S. Testing for Susceptibility to Hot Cracking on Gleeble™ Physical Simulator. In Hot Cracking Phenomena in Welds; Böllinghaus, T., Herold, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Zhang, C.; Bellet, M.; Bobadilla, M.; Shen, H.; Liu, B. A Coupled Electrical–Thermal–Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature. Metall. Mater. Trans. A 2010, 41, 2304–2317. [Google Scholar] [CrossRef]
- Das, C.R.; Bhaduri, A.K.; Lakshmi, S.; Chakravarty, S.; Kar, S.K.; Albert, S.K. Influence of boron and nitrogen on microstructure and hardness of heat-affected zone of modified 9Cr–1Mo steel—Gleeble simulation study. Weld. World 2015, 59, 513–519. [Google Scholar] [CrossRef]
- Patra, S.; Roy, S.; Kumar, V.; Haldar, A.; Chakrabarti, D. Ferrite Grain Size Distributions in Ultra-Fine-Grained High-Strength Low-Alloy Steel After Controlled Thermomechanical Deformation. Metall. Mater. Trans. A 2011, 42, 2575–2590. [Google Scholar] [CrossRef]
- Karmakar, A.; Misra, R.D.K.; Neogy, S.; Chakrabarti, D. Development of Ultrafine-Grained Dual-Phase Steels: Mechanism of Grain Refinement During Intercritical Deformation. Metall. Mater. Trans. A 2013, 44, 4106–4118. [Google Scholar] [CrossRef]
- Nikhil, R.; Krishnan, S.A.; Moitra, A.; Vasudevan, M. Tensile Deformation Study on Heat Affected Zone of Mod. 9Cr-1Mo Steel Weld. J. Mater. Eng. Perform. 2023, 32, 2288–2297. [Google Scholar] [CrossRef]
- Rajput, S.K.; Mehta, Y.; Chaudhari, G.P.; Nath, S.K. Optimized Thermomechanical Processing for Fine-Grained Dual-Phase Microstructure Using Deformation-Induced Ferrite Transformation. J. Mater. Eng. Perform. 2020, 29, 4260–4274. [Google Scholar] [CrossRef]
- Chobaut, N.; Carron, D.; Saelzle, P.; Drezet, J.-M. Measurements and Modeling of Stress in Precipitation-Hardened Aluminum Alloy AA2618 during Gleeble Interrupted Quenching and Constrained Cooling. Metall. Mater. Trans. A 2016, 47, 5641–5649. [Google Scholar] [CrossRef]
Material | Elements in Composition | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | P | S | Cr | Mo | Ni | N | |
ALDSS 2205 | 0–0.30 | 2.00 | 1.00 | 0.030 | 0.020 | 21.0–23.0 | 2.5–3.5 | 4.5–6.5 | 0.08–0.20 |
Parameter | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Temperature | 900 °C | 1000 °C | 1100 °C |
Strain | 50% | 60% | 70% |
Strain Rate | 5 | 10 | 15 |
Temperature (°C) | Strain (%) | Strain Rate (s−1) | Average Hardness | |
---|---|---|---|---|
900 | 50 | 5 | 269.2 | 48.6015 |
900 | 60 | 10 | 303.6 | 49.6461 |
900 | 70 | 15 | 271.4 | 48.6722 |
1000 | 50 | 10 | 280.0 | 48.9432 |
1000 | 60 | 15 | 300.6 | 49.5598 |
1000 | 70 | 5 | 270.0 | 48.6273 |
1100 | 50 | 15 | 259.8 | 48.2928 |
1100 | 60 | 5 | 283.4 | 49.0480 |
1100 | 70 | 10 | 279.0 | 48.9121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan, A.V.; Ananthapadmanaban, D.; Vasan, K. Taguchi Analysis of Hardness and Strength of Hot Compressed Duplex Steel Using Gleeble Thermomechanical System. Eng. Proc. 2024, 61, 5. https://doi.org/10.3390/engproc2024061005
Krishnan AV, Ananthapadmanaban D, Vasan K. Taguchi Analysis of Hardness and Strength of Hot Compressed Duplex Steel Using Gleeble Thermomechanical System. Engineering Proceedings. 2024; 61(1):5. https://doi.org/10.3390/engproc2024061005
Chicago/Turabian StyleKrishnan, Anirudh Venkatraman, Dattaguru Ananthapadmanaban, and Keerthi Vasan. 2024. "Taguchi Analysis of Hardness and Strength of Hot Compressed Duplex Steel Using Gleeble Thermomechanical System" Engineering Proceedings 61, no. 1: 5. https://doi.org/10.3390/engproc2024061005