An Overview of the R&D of Flywheel Energy Storage Technologies in China
<p>Configuration of flywheel energy storage system.</p> "> Figure 2
<p>Six kinds of flywheel: (<b>a</b>) 1000 kWh flywheel concept design; (<b>b</b>) 200 Wh winding composite AMB flywheel; (<b>c</b>) woven fabric composite flywheel; (<b>d</b>) magnet element embedded fiber spoke flywheel; (<b>e</b>) 10 kWh composite flywheel (Tsinghua Univ.); and (<b>f</b>) 90 kWh steel flywheel (IET, CAS).</p> "> Figure 3
<p>A new type of M/G and flywheel. (<b>a</b>) The 3D model of the flywheel and M/G. (<b>b</b>) The profile view of the M/G.</p> "> Figure 4
<p>A 50–100 kN permanent magnetic bearing stator. (<b>a</b>) Permanent ring with sector blocks. (<b>b</b>) Halbach array magnetic ring.</p> "> Figure 5
<p>Charging and discharging principles of motor-power electronic system: (<b>a</b>) charging and (<b>b</b>) discharging.</p> "> Figure 5 Cont.
<p>Charging and discharging principles of motor-power electronic system: (<b>a</b>) charging and (<b>b</b>) discharging.</p> "> Figure 6
<p>Integration flywheel energy storage system.</p> "> Figure 7
<p>Flywheel energy storage unit and array built in China: (<b>a</b>) 500 kw/50 kWh FESU, 2023, and (<b>b</b>) 20 MW Flywheels Array, 2023.</p> "> Figure 8
<p>Simulink model of the control of FES and wind power system.</p> "> Figure 9
<p>FES application in PV power.</p> "> Figure 10
<p>Potential energy regenerating and load leveling of oil drilling rig.</p> ">
Abstract
:1. Introduction
2. Early Study Before Twenty Years Ago
3. Overview of Key Components in Recent 20 Years
3.1. Flywheel Rotor
3.2. Motor
3.3. Bearing and Rotor Dynamics
3.4. Motor Control and Power Electronics
4. FES System
5. Application
5.1. Wind and Solar Energy
5.2. Grid
5.3. Independent Power System
5.4. Ride-Through UPS
5.5. Aerospace
6. Key Technologies and Further Prospects
6.1. Flywheels
6.2. Motors
6.3. Bearings
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Lai, X.; Cheng, S. An analysis of prospects for application of large-scale energy storage technology in power systems. Autom. Electr. Power Syst. 2013, 37, 3–8. [Google Scholar]
- Amiryar, M.; Pullen, K. A review of flywheel energy storage system technologies and their applications. Appl. Sci. 2017, 7, 286. [Google Scholar] [CrossRef]
- Dai, X.; Deng, Z.; Liu, G.; Tang, X.; Zhang, F. Review on advanced flywheel energy storage system with large scale. Trans. China Electrotech. Soc. 2011, 26, 133–140. [Google Scholar]
- Rupp, A.; Baier, H.; Mertiny, P.; Secanell, M. Analysis of a flywheel energy storage system for light rail transit. Energy 2016, 107, 625–638. [Google Scholar] [CrossRef]
- Hedlund, M.; Lundin, J.; de Santiago, J.; Abrahamsson, J. Flywheel energy storage for automotive applications. Energies 2015, 8, 10636–10663. [Google Scholar] [CrossRef]
- Lappas, V.; Riche, D.; Hall, C.; Fausz, J.; Wilson, B. Survey of technology developments in flywheel attitude control and energy storage systems. J. Guid. Control Dyn. 2009, 32, 354–365. [Google Scholar] [CrossRef]
- Dai, X.; Wei, K.; Zhang, X.; Jiang, X.; Zhang, K. A review on flywheel energy storage technology in fifty years. Energy Storage Sci. Technol. 2018, 7, 765–782. [Google Scholar]
- Mao, Z. Feasibility study of flywheel energy storage in solar power generation. Adv. Technol. Electr. Eng. Energy 1983, 1, 36–39. [Google Scholar]
- Genta, G. Kinetic Energy Storage: Theory and Practice of Advanced Flywheel Systems; Butterworth and Co. Ltd.: Oxford, UK, 1985. [Google Scholar]
- Li, X.; Palazzolo, A. A review of flywheel energy storage systems: State of the art and opportunities. J. Energy Storage 2022, 46, 103576. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Lei, G.; Zhu, J. A review of flywheel energy storage system technologies. Energies 2023, 16, 6462. [Google Scholar] [CrossRef]
- Takarli, R.; Amini, A.; Khajueezadeh, M.; Zarbil, M.S.; Vahedi, A.; Kiyoumarsi, A.; Tarzamni, H.; Kyyra, J. A comprehensive review on flywheel energy storage systems: Survey on electrical machines, power electronics converters, and control systems. IEEE Access 2023, 11, 81224–81255. [Google Scholar] [CrossRef]
- Li, A. An analysis of design for flywheel energy storage system. Act Energiae Solaris Sin. 1982, 3, 43–51. [Google Scholar]
- Liu, J.; Wang, M. The application of flywheel energy storage in hydraulic press. Forg. Stamp. Technol. 1988, 3, 50–53. [Google Scholar]
- Zhang, J.; Chen, Z.; Yang, Y. The application of flywheel energy storage in Grid. Electr. Power Sci. Eng. 1997, 3, 4–7. [Google Scholar]
- Wu, G.; Chen, L.; Wang, G. Method of the modern dynamic design and analysis for high-speed energy storage flywheel. J. Mech. Eng. 1997, 33, 32–37. [Google Scholar]
- Cao, B. Energy conversion unit of flywheel energy storage system. Adv. Technol. Electr. Eng. Energy 1997, 4, 33–35. [Google Scholar]
- Wang, J.; Wu, X.; Zhou, L. High temperature superconducting magnetic levitation and flywheel energy storage. Physics 1997, 26, 226–232. [Google Scholar]
- Jin, N.; Xia, P. Flywheel electrical energy storage system. Electrotech. Appl. 1997, 1, 37–39. [Google Scholar]
- Ye, H.; Lin, L.; Jing, B.; Xia, P. The test research of vertical rotational structure of magnetic levitation with high Tc superconductors and permanent Magnets. Electrotech. Appl. 1999, 1, 17–19. [Google Scholar]
- Jiang, S.; Wei, H.; Shen, Z. Rotor dynamics of flywheel energy storage system. J. Vib. Eng. 2002, 15, 404–409. [Google Scholar]
- Wang, Z.; Xie, H.; Chen, B. Review on the flywheel energy storage with superconductivity magnetic bearings. Electr. Power Sci. Eng. 2000, 3, 1–4. [Google Scholar]
- Wei, H.; Dai, X.; Zhang, L.; Shen, Z. Recent advances in flywheel energy storage system. Acta Energiae Solaris Sin. 2002, 23, 748–753. [Google Scholar]
- Qin, Y.; Xia, Y.; Mao, T. Simplified initial stress analysis of composite flywheel in tension winding. Acta Mater. Compos. Sin. 2003, 20, 87–91. [Google Scholar]
- Tang, J.; Zhang, Y.; Ge, S.; Zhao, L. Hollow interference fitted multi-ring composite rotor of the superconducting attitude control and energy storage flywheel. J. Reinf. Plast. Compos. 2013, 32, 881–897. [Google Scholar] [CrossRef]
- Li, W.; Shen, Z. Composite material flywheel structure and energy-storing density. Acta Energiae Solaris Sin. 2001, 22, 96–101. [Google Scholar]
- Li, S.; Xu, C.; Wu, Y. Optimization of carbon fiber composite flywheel rotor. China Pet. Mach. 2003, 31, 20–23. [Google Scholar]
- Lin, Q.; Chen, H.; Tao, X. Investigation of technology enhancing flywheel by residual stress. J. Mech. Strength 2001, 23, 114–116. [Google Scholar]
- Yan, Y.; Zhang, H.; Liu, H. Study on the laminated structure of composites flywheel rotor for energy storage system. Fiber Compos. 2004, 3, 20–24. [Google Scholar]
- Qin, Y.; Xia, Y.; Mao, T. Analyses of the centrifugal stress of multi-ring intermixing composite flywheel. Acta Mater. Compos. Sin. 2004, 21, 157–161. [Google Scholar]
- Qin, Y.; Xia, Y.; Mao, T. Simplified and fine analyses of the full deformation and stress of pressfit of the hollow multi-ring composite flywheel. Acta Mater. Compos. Sin. 2003, 20, 95–99. [Google Scholar]
- Qiu, Z.; Zhang, W.; Zhang, H.; Zhang, J. 3D FEM strength analysis of composite flywheels for storing energy. J. Zhengzhou Univ. (Eng. Sci.) 2002, 34, 55–59. [Google Scholar]
- Dai, X.; Li, Y.; Yu, H. Design of high specific energy density flywheel. J. Tsinghua Univ. (Sci. Tech.) 2008, 48, 378–381. [Google Scholar]
- Zhang, X.; He, L.; Li, G.; Yang, L. Design of composite material energy storage flywheel rotor. Machinery 2012, 39, 33–35. [Google Scholar]
- Song, J.; Wang, J.; Luo, H.; Fan, X.; Gui, L. Study on the performance of stretching mechanics of carbon fiber reinforced composite ring. Compos. Sci. Eng. 2021, 6, 65–71. [Google Scholar]
- Chen, X.; Li, Y.; Huan, D.; Liu, H.; Li, L.; Li, Y. Influence of filament winding tension on the deformation of composite flywheel rotors with H-shaped hubs. Polymers 2022, 14, 1155. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, W.; Wang, Y.; Qin, R.; Liu, Y. Simulation and stress analysis of large capacity composite flywheel rotor. Energy Storage Sci. Technol. 2023, 12, 669–675. [Google Scholar]
- Yang, C.; Ma, L.; Wang, Z. Determination of the limiting rotational speed of energy storage composite flywheel based on strength. J. Wuhan Univ. Technol. 2002, 24, 53–56. [Google Scholar]
- Zhao, L.; Zhang, J.; Gao, C.; Han, B.; Fang, J. Research on structural reliability design method for flywheel rotor structure of IPACS. J. Astronaut. 2006, 27, 942–946. [Google Scholar]
- Liu, H. Study on the Damage and Fracture of the Composite Flywheel by the Acoustic Emission Method. Ph.D. Thesis, Technical University Wuhan, Wuhan, China, 2005. [Google Scholar]
- Ding, S.; Li, Y.; Dai, X. Structural finite element analysis and spin tests of energy storage flywheel. Mech. Sci. Technol. Aerosp. Eng. 2008, 27, 301–304. [Google Scholar]
- Wang, Y.; Dai, X.; Wei, K.; Guo, X. Progressive failure behavior of composite flywheels stacked from annular plain profiling woven fabric for energy storage. Compos. Struct. 2018, 194, 377–387. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, T.; Zhou, S.; Xu, K. An HB Structural optimization design about magnetic suspension energy storage flywheel based on PSO algorithm. Mech. Eng. Autom. 2013, 5, 7–9. [Google Scholar] [CrossRef]
- Wen, S.; Jiang, S. Optimum design of hybrid composite multi-ring flywheel rotor based on displacement method. Compos. Sci. Technol. 2012, 72, 982–988. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, W.; Ma, G.; Wu, C. Shape optimization of energy storage flywheel rotor. Struc. Multidiscip. Opt. 2017, 55, 739–750. [Google Scholar] [CrossRef]
- Wang, J.; Dai, X.; Xu, Y.; Pi, Z. Optimization design of a high-speed flywheel for energy storage with a mandrel hub assembly. Energy Storage Sci. Technol. 2020, 9, 1806–1811. [Google Scholar]
- Dai, X.; Hu, D.; Zhang, Z.; Chen, H.; Zhu, Y. Analysis and application of high strength alloy steel flywheel structure and material. Energy Storage Sci. Technol. 2021, 10, 1667–1673. [Google Scholar]
- Zhou, C. Research on the Dynamic Characteristics of Large-Capacity Energy Storage Flywheel Rotor-Support System. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2022. [Google Scholar]
- Hu, D.; Dai, X.; Li, W.; Zhu, Y.; Hai, S.; Zhi, L. A review of flywheel energy storage rotor materials and structures. J. Energy Storage 2023, 74, 109076. [Google Scholar]
- Yang, J.; Ye, C.; Liang, X.; Xu, W.; Xiong, F.; Xiang, Y.; Li, W. Investigation of a two-dimensional analytical model of the homopolar inductor alternator. IEEE Trans. App. Supercond. 2018, 28, 5205205. [Google Scholar] [CrossRef]
- Hong, C.; Huang, W.; Hu, Z. Calculation methods of equivalent circuit parameters for a dual stator solid rotor axial flux induction motor. IET Renew. Power Gener. 2018, 12, 1977–1983. [Google Scholar] [CrossRef]
- Hong, C.; Huang, W.; Hu, Z. Performance calculation of a dual stator solid rotor axial flux induction motor using the multi-slice and multi-layer method. IEEE Trans. Magn. 2019, 55, 8568993. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, J.; Fang, J. Analysis and design of coreless permanent magnet brushless DC machine in high-speed energy storage flywheel application. Trans. China Electrotech. Soc. 2004, 19, 24–28. [Google Scholar]
- Yu, Y.; Wang, Y.; Zhang, G.; Sun, F. Analysis of the comprehensive physical field for a new flywheel energy storage motor/generator on ships. J. Marine Sci. Appl. 2012, 11, 134–142. [Google Scholar] [CrossRef]
- Sun, X.; Su, B.; Wang, S.; Yang, Z.; Lei, G.; Zhu, J.; Guo, Y. Performance analysis of suspension force and torque in an IBPMSM with V-Shaped PMs for flywheel batteries. IEEE Trans. Magn. 2018, 54, 8382697. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, Y.; Huang, Y. Accurate mathematical model of bearingless flywheel motor based on Maxwell tensor method. Electron. Lett. 2016, 52, 950–952. [Google Scholar] [CrossRef]
- Zhu, H.; Lu, R. Design and analysis of novel bearingless permanent magnet synchronous motor for flywheel energy storage system. Prog. in Electromagn. Res. M 2016, 51, 147–156. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, Y.; Huang, Y. Radial force dynamic current compensation method of single winding bearingless flywheel motor. IET Power Electron. 2015, 8, 1224–1229. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Yuan, Y. Analysis and optimization of loss of high speed PMSM for flywheel energy storage. Micromotors 2021, 54, 19–22+79. [Google Scholar]
- Shen, S.; Zhu, H. Optimization design of outer rotor coreless bearingless permanent magnet synchronous motor. Micromotors 2021, 54, 20–26. [Google Scholar]
- Tian, Z.; Zhu, C.; Wang, D. Rotor eddy current loss in high speed permanent magnet motor for flywheel energy storage system. J. Zhejiang Univ. (Eng. Sci.) 2011, 45, 451–457. [Google Scholar]
- Zhao, J.; Gu, Z.; Li, B.; Liu, X.; Li, X.; Chen, Z. Research on the torque and back EMF performance of a high speed PMSM used for flywheel energy storage. Energies 2015, 8, 2867–2888. [Google Scholar] [CrossRef]
- Liu, K.; Fu, X.; Lin, M.; Tai, L. AC copper losses analysis of the ironless brushless DC motor used in a flywheel energy storage system. IEEE Trans. Appl. Supercond. 2016, 26, 7551122. [Google Scholar] [CrossRef]
- Liu, K.; Yin, M.; Hua, W.; Ma, Z.; Lin, M.; Kong, Y. Design and optimization of an external rotor ironless BLDCM used in a flywheel energy storage system. IEEE Trans. Magn. 2018, 54, 8392526. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, B.; Yuan, Y. Multi-Obiective optimal design of single winding bearingless switched reluctance motor for flywheel energy storage. Electr. Mach. Control Appl. 2018, 45, 53–58. [Google Scholar]
- Cheng, C.; Lin, Q.; Zhang, Z. Simulation design of permanent magnetic structure in a HTS maglev energy storage and attitude control flywheel. J. Rocket. Propuls. 2019, 45, 36–41. [Google Scholar]
- Zhu, Z.; Guo, X.; Jang, Y.; Sun, Y.; Chen, M. Decoupling design and analysis of an axial split phase permanent magnet bearingless Flywheel Machine. Proc. CSEE 2019, 39, 7366–7374. [Google Scholar]
- Wang, P.; Shi, L. Analysis of structural parameters for dual-rotor induction motors used in energy storage drives. Adv. Technol. Electr. Eng. Energy 2020, 39, 1–9. [Google Scholar]
- Chen, Y.; Zang, B. Analysis of alternating flux density harmonics inside the rotor of a 1 MW high-speed interior permanent magnet synchronous machine used for flywheel energy storage systems. J. Energy Storage 2022, 55, 105664. [Google Scholar] [CrossRef]
- Lv, D.; Lv, Q.; Li, Y.; Zhou, Y.; Zhen, J.; Chen, H. The design and optimization of highspeed permanent magnet machines for maglev flywheel energy storage system. Large Electr. Mach. Hydraul. Turbine 2022, 2, 6–12. [Google Scholar]
- Jian, C.; Meng, K.; Zhou, R.; Hai, R.; Jia, D. Optimization of air gap flux density waveform of permanent magnet synchronous motor for flywheel energy storage. China Sci. Pap. 2023, 18, 927–934. [Google Scholar]
- Wang, H.; Liu, K.; Yu, X.; Ao, P.; Zhang, Z. Design, analysis, and testing of a novel permanent magnet compulsator. IEEE Trans Plasma Sci. 2015, 43, 1040–1080. [Google Scholar] [CrossRef]
- Wang, H.; Liu, K.; Zhu, B.; Feng, J.; Ao, P.; Zhang, Z. Analytical investigation and scaled prototype tests of a novel permanent magnet compulsator. IEEE Trans. Magn. 2015, 51, 7065239. [Google Scholar]
- Ye, C.; Yang, J.; Xu, W.; Xiong, F.; Liang, X. A novel multi-unit out-rotor homopolar inductor machine for flywheel energy storage system. IEEE Trans. Magn. 2018, 54, 8370229. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Dai, X.; Zhang, H.; Chen, H. Overview of the motor/generator rotor cooling system in a flywheel energy storage system. Energy Storage Sci. Technol. 2023, 12, 3131–3144. [Google Scholar]
- Wang, C.; Bai, G.; Zhang, Y. Temperature field analysis of permanent magnet synchronous motor for flywheel energy storage. J. Chongqing Univ. Technol. (Nat. Sci.) 2024, 38, 148–153. [Google Scholar]
- Dai, X.; Jiang, X.; Wang, Q.; Wang, Y.; Wang, S. The design and testing of a 1 MW/60 MJ flywheel energy storage power system. Trans. China Electrotech. Soc. 2017, 32, 169–175. [Google Scholar]
- Zhang, Y.; Jiang, S. Dynamics analysis of active magnetic suspension flywheel. Acta Energiae Solaris Sin. 2004, 25, 254–258. [Google Scholar]
- Deng, Z.; Wang, J.; Wang, S.; Zheng, J.; Ma, G.; Lin, Q.; Zhang, Y. Status of high Tc superconducting flywheel nergy storage system. Trans. China Electrotech. Soc. 2008, 23, 1–10. [Google Scholar]
- Zhao, H.; Yang, Z. Study on design of flywheel energy storage device. Acta Energiae Solaris Sin. 2002, 23, 493–497. [Google Scholar]
- Dai, X.; Wei, H.; Shen, Z. Study on whirl modal damping of energy storage flywheel-bearing system. J. Vib. Eng. 2002, 15, 98–101. [Google Scholar]
- Dai, X.; Wei, H.; Shen, Z. Dynamics design and experiment study of the rotor bearing system of a flywheel energy storage system. Chin. J. Mech. Eng. 2003, 39, 97–101. [Google Scholar] [CrossRef]
- Dong, Z.; Dai, X.; Li, Y.L. Idling loss of flywheel energy storage system supported by spiral groove cone bearings. Mech. Sci. Technol. 2006, 25, 1434–1437. [Google Scholar]
- Lu, X.; Di, L.; Lin, Z.; Hu, Y.; Wu, H. Characteristic model based all-coefficient adaptive control of an AMB suspended energy storage flywheel test rig. Sci. China Inf. Sci. 2018, 61, 112204. [Google Scholar] [CrossRef]
- Tang, J.; Fang, J.; Wen, W. Superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel for spacecraft. IEEE Trans. Appl. Supercond. 2012, 22, 6328305. [Google Scholar]
- Su, Z.; Wang, D.; Chen, J.; Zhang, X.; Wu, L. Improving operational performance of magnetically suspended flywheel with PM-biased magnetic bearings using adaptive resonant controller and nonlinear compensation method. IEEE Trans. Magn. 2016, 52, 7379006. [Google Scholar] [CrossRef]
- Tang, J.; Wang, K.; Xiang, B. Stable control of high-speed rotor suspended by superconducting magnetic bearings and active magnetic bearings. IEEE Trans. Ind. Electron. 2017, 64, 3319–3328. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, C.; Chen, L. Unbalance compensation control of active magnetic bearing-rigid flywheel rotor system based on unbalance coefficients identification. Proc. CSEE 2018, 38, 3699–3708. [Google Scholar]
- Liu, M.; Wang, P.; Bi, W.; Zhang, W.; Zhang, J. Analysis and elimination of power frequency interference of displacement signal in magnetic suspension flywheel. Chin. J. Electron. Devices 2021, 44, 579–584. [Google Scholar]
- Liu, G. Research on optimization design and control of magnetic bearings support system for flywheel energy storage. Ph.D. Thesis, Jiangsu University, Zhenjiang, China, 2022. [Google Scholar]
- Shi, G.; Fan, Y. Application of hybrid magnetic bearing in magnetic suspension flywheel energy storage system. Electrotech. Appl. 2007, 26, 94–97. [Google Scholar]
- Zhao, X.; Deng, Z.; Wang, X.; Wang, B. Power loss reduction strategy of axial magnetic bearing in flywheel storage equipment application. Electr. Mach. Control 2011, 15, 7–12. [Google Scholar]
- Fang, J.; Wang, X.; Wei, T.; Tang, E.; Fan, Y. Homopolar 2-pole radial permanent-magnet biased magnetic bearing with low rotating loss. IEEE Trans. Magn. 2012, 48, 2293–2303. [Google Scholar]
- Zhu, R.; Xu, W.; Ye, C.; Zhu, J. Novel heteropolar radial hybrid magnetic bearing with low rotor core loss. IEEE Trans. Magn. 2017, 53, 7915741. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Liu, K.; Wei, J.; Hu, H. Modeling and control strategies of a novel axial hybrid magnetic bearing for flywheel energy storage system. IEEE/ASME Trans. Mechatron. 2022, 27, 3819–3829. [Google Scholar] [CrossRef]
- Ju, L.; Jiang, S. Nonlinear dynamics analysis for electromechanical coupling of flywheel energy storage system. Sci. China Ser. E Technol. Sci. 2006, 36, 68–83. [Google Scholar]
- Jiang, S.; Ju, L. Study on electromechanical coupling nonlinear vibration of flywheel energy storage system. Sci. China Ser. E Technol. Sci. 2006, 49, 61–77. [Google Scholar] [CrossRef]
- Chen, J.; Liu, K.; Xiao, K.; Wang, H. Investigation on the dynamics character of electromechanical coupling for flywheel energy storage system based on active magnetic bearing. Mech. Sci. Technol. Aerosp. Eng. 2012, 31, 562–567. [Google Scholar]
- Zhang, C.; Dai, X.J.; Meng, X. Online balancing of the rotor-bearing unit of the flywheel energy storage system. Energy Storage Sci. Technol. 2013, 2, 181–184. [Google Scholar]
- Chen, J.; Liu, K.; Liang, W.; Tian, Y. Study on nonlinear dynamics of electromechanical coupling in flywheel energy storage system based on active magnetic bearings. J. Dyn. Control. 2013, 11, 225–234. [Google Scholar]
- Zhang, C.; Tseng, K.; Nguyen, T.; Zhao, G. Stiffness analysis and levitation force control of active magnetic bearing for a partially-self-bearing flywheel system. Int. J. Appl. Electromagnet. Mech. 2011, 36, 229–242. [Google Scholar] [CrossRef]
- Zhang, C.; Tseng, K. Design and control of a novel flywheel energy storage system assisted by hybrid mechanical-magnetic bearings. Mechatronics 2013, 23, 297–309. [Google Scholar] [CrossRef]
- Deng, Z.; Lin, Q.; Wang, J.; Zheng, J.; Jiang, D.; Ma, G.; Liu, W.; Wang, S.; Zhang, Y. Prototype of high temperature superconducting magnetic levitation flywheel energy storage system. Chin. J. Low Temp. Phys. 2009, 31, 311–314. [Google Scholar]
- Shen, Z.; Fang, J.; Li, Y.; Li, H.; Yu, T.; Dong, D.; Xiao, L.; Deng, M.; Jiao, Y. Simulation and experimental analysis on the levitation force of HTS flywheel energy storage system. Cryog. Supercond. 2013, 41, 8–12. [Google Scholar]
- Jiang, Z.; Gou, X. Eddy damping effect of additional conductors in superconducting levitation systems. Phys. C Supercond. Appl. 2015, 519, 112–127. [Google Scholar] [CrossRef]
- Xu, K.; Wu, D.; Jiao, Y.; Zheng, M. A fully superconducting bearing system for flywheel applications. Supercond. Sci. Technol. 2016, 29, 064001. [Google Scholar] [CrossRef]
- Li, W.; Zhang, G.; Ai, L.; Qiu, Q.; Liu, G.; Song, N.; Gao, Z. A three-dimensional measurement system for high-temperature superconducting magnetic bearings. IEEE Trans. Appl. Supercond. 2018, 28, 9001505. [Google Scholar] [CrossRef]
- Sun, C.; Ren, X.; Yang, S.; Liu, W.; Jing, H.; Yang, Y.; Pang, P.; Tan, X.; Li, T.; Zhang, Y.; et al. Research on dynamic suspension coupling characteristics of a 2 kWh/100 kW superconducting flywheel rotor. Superconductivity 2019, 47, 33–38. [Google Scholar]
- Wang, H.; Jiang, S.; Shen, Z. The dynamic analysis of an energy storage flywheel system with hybrid bearing support. J. Vib. Acoust. Trans. ASME 2009, 131, 051006-1–051006-9. [Google Scholar] [CrossRef]
- Tang, C.; Dai, X.; Zhang, X.; Jiang, L. Rotor dynamics analysis and experiment study of the flywheel spin test system. J. Mech. Sci. Technol. 2012, 26, 2669–2677. [Google Scholar] [CrossRef]
- Qiu, Y.; Jiang, S. Suppression of low-frequency vibration for rotor-bearing system of flywheel energy storage system. Mech. Syst. Signal Process. 2019, 121, 496–508. [Google Scholar] [CrossRef]
- Jia, X.; Wang, J.; Xu, Y.; Zhang, K. Rubbing behavior research of flywheel rotor for energy storage in view of influence of contact parameters. Energy Storage Sci. Technol. 2021, 10, 1643–1649. [Google Scholar]
- Ren, Z.; Huang, T.; Yang, L. Radial vibration analysis of rigid flywheel rotor-foundation coupling system. Mach. Des. Manuf. 2021, 3, 27–32. [Google Scholar]
- Xie, Y.; Cheng, S.; Wang, X.; Wei, Z. Energy conversion link in flywheel energy storage system and its implementation. Electr. Appl. 2001, 1, 26–29. [Google Scholar]
- Meng, Y.; Li, T.; Xun, S. Simulation of discharge section in flywheel energy storage using distributed electric energy control technology. Power Syst. Technol. 2008, 32, 60–64. [Google Scholar]
- Sun, Q.; Wang, F. Design of stable voltage output of flywheel energy storage system by PWM mode. Electr. Mach. Control Appl. 2006, 33, 28–30. [Google Scholar]
- Liu, Z.; Wang, C.; Li, C. Modeling and simulation of single axis energy storage and attitude control system. J. China Univ. Pet. 2007, 31, 154–158. [Google Scholar]
- Wei, Y.; Wang, Y.; Zhang, D.; Qin, H. Research on digital rectifier of flywheel energy storage. Power Electron. 2007, 41, 93–95. [Google Scholar]
- Huang, Y.; Jiang, X.; Qiu, A. Energy feedback control for flywheel energy storage system. J. Tsinghua Univ. (Sci. Tech.) 2008, 48, 1085–1088. [Google Scholar]
- Xun, S.; Li, T.; Zhou, Z. Study on passivity control method for flywheel energy storage system discharging unit. Electr. Mach. Control 2010, 14, 7–12. [Google Scholar]
- Cheng, W.; Zhu, C. Control analysis of PM brushless DC motor used in flywheel energy storage system. J. Mech. Electr. Eng. 2012, 29, 754–772. [Google Scholar]
- Tang, S.; Li, Z.; Jiang, Y. Studying on improved algorithm self-adaptive single neuron PID controller in flywheel energy storage system. Mach. Des. Manuf. 2009, 5, 127–129. [Google Scholar]
- Li, Z.; Tang, S.; Jiang, Y. Studying on fuzzy self-adaptive single neuron PID controller in flywheel energy storage system. Small Spec. Electr. Mach. 2009, 1, 32–35. [Google Scholar]
- Fu, J.; Liu, G. Design of feedforward-feedback controller for discharging system of magnetic suspended flywheel energy storage. Aviat. Precis. Manuf. Technol. 2012, 48, 30–33. [Google Scholar]
- Wang, N.; Li, Y.; Zhang, W.; Chang, X.; Xue, W. A nonlinear control algorithm for flywheel energy storage systems in discharging mode. Proc. CSEE 2013, 33, 1–7. [Google Scholar]
- Chang, X.; Li, Y.; Zhang, W.; Wang, N.; Xue, W. Active disturbance rejection control for a flywheel energy storage system. IEEE Trans. Ind. Electron. 2015, 62, 991–1001. [Google Scholar] [CrossRef]
- Li, S.; Fu, Y.; Liu, P. Position estimation and compensation based on a two-step extended sliding-mode observer for a MSFESS. Sensors 2018, 18, 2467. [Google Scholar] [CrossRef]
- Xiang, B.; Wang, X.; Wong, W. Process control of charging and discharging of magnetically suspended flywheel energy storage system. J. Energy Storage 2022, 47, 103629. [Google Scholar] [CrossRef]
- Liu, Y. Direct Torque Control of Electrically Excited Synchronous Motor Flywheel Energy Storage System Based on Novel Excitation Control. Adv. Technol. Electr. Eng. Energy 2019, 39, 5–12. [Google Scholar]
- Sun, Y.; Zhang, K.; Yuan, Y.; Yang, F. Torque ripple suppression control of bearingless brushless DC motor in wide speed regulation range. Prog. Electromagn. Res. C 2018, 84, 87–101. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Zhang, M.; Peng, D. A discharge control strategy of high-speed flywheel energy storage system. Int. J. Power Energy Syst. 2014, 34, 51–62. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Wang, M. An improved discharge control strategy with load current and rotor speed compensation for Flywheel Energy Storage System. Trans. China Electrotech. Soc. 2015, 30, 6–17. [Google Scholar]
- Du, Y.; Zheng, T.; Guo, X.; Liu, Y.M. Research on problem of regenerative braking process of flywheel energy storage system. Trans. China Electrotech. Soc. 2013, 28, 157–162. [Google Scholar]
- Zeng, C.; Qiu, Z. Closed-loop Power Generation of Induction Generator for Flywheel Energy Storage System Based on Modulation Ratio Control. Proc. CSU-EPSA 2018, 30, 95–100. [Google Scholar]
- Chen, Y.; Yang, J.; Zhang, X. A Discharge Strategy for Flywheel Energy Storage Systems Based on Feed forward Compensation of Observed Total Dissipative Power and Rotational Speed. Proc. CSEE 2020, 40, 2358–2368. [Google Scholar]
- Zhang, D.; Jiang, J.; Chen, Y.; Zhang, L.; Zhao, S.; Zhang, J.; Li, S.; Wei, T. Research on control strategy of high speed flywheel energy storage system in metro traction power supply system. Electr. Mach. Control 2020, 24, 1–8. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, M.; Zhou, J.; Chen, X.; Wen, J. Small Signal Model Analysis of Network/Storage Coordination Virtual Synchronous Generator Control Based on Flywheel Energy Storage System. Proc. CSEE 2020, 40, 6236–6248. [Google Scholar]
- Li, Z.; Nie, Z.; Xu, J.; Li, H.; Ai, S. Harmonic analysis and neutral point potential control of interleaved parallel three-level inverters for flywheel energy storage system. Front. Energy Res. 2022, 9, 811845. [Google Scholar] [CrossRef]
- Wei, H.; Dai, X.; Shen, Z. Theoretical calculation and experimental study on the wind loss of the energy storage flywheel. J. Mech. Eng. 2005, 41, 188–193. [Google Scholar] [CrossRef]
- Dai, X.; Yu, H.; Li, Y. Efficient test on the charging and discharging of the flywheel energy storage system. Trans. China Electrotech. Soc. 2009, 24, 20–24. [Google Scholar]
- Zhu, G.; Liu, J.; Sun, X. Numerical simulation and experimental study of self-pumping vacuum flywheel energy storage device. Mech. Sci. Technol. Aerosp. Eng. 2012, 31, 1037–1041. [Google Scholar]
- Xu, Y.; Fang, J. Development of low power loss energy storage flywheel. Trans. China Electrotech. Soc. 2008, 23, 11–16. [Google Scholar]
- Liu, W.; Kang, D.; Zhang, C.; Peng, G.; Yang, X.; Wang, S. Design of a high-Tc superconductive maglev flywheel system at 100-kW level. IEEE Trans. Appl. Supercond. 2016, 26, 7428844. [Google Scholar]
- Li, S.; Fu, Y.; Liu, P.; Dai, X.; Li, Y. Research on twin trawling charging-discharging experimental method for the magnetically suspended flywheel-based dynamic UPS system. Energy Storage Sci. Technol. 2018, 7, 828–833. [Google Scholar]
- Yu, Z.; Sun, X.; Qiu, Q.; Liu, Y.; Wen, C. Levitation Test and Rotation Experiment of Radial-Type Superconducting Flywheel Energy Storage System Prototype with External Motor. Trans. China Electro Tech. Soc. 2019, 34, 2166–2175. [Google Scholar]
- Liu, P.; Li, S.; Li, G.; Dai, X. Experimental research on DC power recycling system in the subway-based on the magnetically suspended energy storage flywheel array. Energy Storage Sci. Technol. 2020, 9, 910–917. [Google Scholar]
- Sui, Y.; Liang, S.; Huang, D.; Dai, X. Simulation Study on Frequency Modulation Process of Coal Burning Plants with Auxiliary of Flywheel Energy Storage. Proc. CSEE 2020, 40, 2597–2606. [Google Scholar]
- Hu, D.; Zhu, S.; Wei, X.; Cui, Y.; Zhu, B.; Dai, X.; Li, W.; Chen, H. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting. Energy Storage Sci. Technol. 2024, 13, 1542–1550. [Google Scholar]
- Ruan, J.; Zhang, J.; Wang, J. Improvement of stability of wind farms connected to power grid using flywheel energy storage system. Electr. Power Sci. Eng. 2008, 24, 5–8. [Google Scholar]
- Chen, X.; Tang, S.; Liu, G. Application of flywheel energy storage battery in wind power system of net work -forming. Mach. Electron. 2005, 3, 26–28. [Google Scholar]
- Wang, J.; Wang, K.; Chen, Q. Fuzzy neural network control strategy of wind generation and flywheel energy storage combined system. J. Syst. Simul. 2007, 19, 4017–4020. [Google Scholar]
- Hu, X.; Sun, C.; Liu, R.; Liao, Y. An active power smoothing strategy for direct-driven permanent magnet synchronous generator based wind turbine using flywheel energy storage. Autom. Electr. Power Syst. 2010, 34, 79–83. [Google Scholar]
- Liu, S.; Sun, H.; Gu, M.; Wen, J. Novel structure and operation control of a flywheel energy storage system associated to wind generator connected to power grid. Trans. China Electrotech. Soc. 2012, 27, 248–254. [Google Scholar]
- Wang, L.; Du, X.; Song, Y. Coordinated control of flywheel energy storage matrix system for wind farm. Power Syst. Technol. 2013, 37, 3406–3412. [Google Scholar]
- Yu, B.; Wei, Z.; Yang, B.; Tao, Y.; Li, G.; Wang, D.; Sang, B. Control strategy of flywheel energy-storage system for wind farm without interconnection with grid. Electr. Drive 2013, 43, 56–60. [Google Scholar]
- Xiong, Q.; Liao, Y.; Yao, J. Active power smoothing control of direct-driven permanent magnet synchronous wind power generation system with flywheel energy storage unit. Electr. Power Autom. Equip. 2013, 33, 97–105. [Google Scholar]
- Lai, J.; Song, Y.; Du, X. Hierarchical coordinated control of flywheel energy storage matrix systems for wind farms. IEEE ASME Trans Mechatron 2018, 23, 48–56. [Google Scholar] [CrossRef]
- Yao, J.; Yu, M.; Gao, W.; Zeng, X. Frequency regulation control strategy for PMSG wind-power generation system with flywheel energy storage unit. IET Renew. Power Gener. 2017, 11, 1082–1093. [Google Scholar] [CrossRef]
- Zhao, P.; Dai, Y.; Wang, J. Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application. Energy 2014, 70, 674–684. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Guo, H.; Zhang, X.; Guo, C.; Chen, H. A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations. Renew. Energy 2018, 125, 121–132. [Google Scholar] [CrossRef]
- Shao, Q.; Zhao, Y.; Du, S.; Du, Y. A novel hybrid energy storage strategy based on flywheel and lead-acid battery in wind power generation system. Int. J. Control Autom. 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Ma, J.; Wei, Z.; Tang, T.; Li, R.; Jing, W.; Yuan, Y.; Sun, Y.; Sun, G. Active power smoothing control for photovoltaic-flywheel system using fuzzy control. Water Resour. Power 2013, 31, 160–162. [Google Scholar]
- Zhang, J.; Liu, Y.; Wu, Z.; Bao, M.; Fu, W. Suppression strategy for DC microgrid bus voltage fluctuation of hybrid flywheel and battery energy storage. Control Instrum. Chem. Ind. 2022, 49, 699–706. [Google Scholar]
- Xu, Q.; Teng, W.; Wu, X.; Liu, Y.; Liang, S. Capacity configuration method of flywheel storage system for suppressing power fluctuation of wind farms. Energy Storage Sci. Technol. 2022, 11, 3906–3914. [Google Scholar]
- Li, S.; Wang, J.; Li, G.; Wang, D.; Cui, Y. Demonstration applications in wind solar energy storage field based on MW flywheel array system. Energy Storage Sci. Technol. 2022, 11, 583–592. [Google Scholar]
- The Project of “Research on Key Technologies of MW Flywheel Energy Storage” Was Successfully Connected to the Grid. Available online: https://kjt.nmg.gov.cn/kjdt/gzdt/kjtgz/202306/t20230609_2330256.html (accessed on 9 June 2023).
- Li, X.; Tu, W.; Ma, L.; Jiang, M.; Ji, S. Research on role and application of power type energy storage technology in primary frequency modulation of new energy stations. Sol. Energy 2024, 2, 76–85. [Google Scholar]
- Zhu, X.; Yao, J.; Jiang, K.; Xia, X.; Wen, Y.; Long, H. Enhanced control of direct-drive permanent magnet wind power generation system containing flywheel energy storage unit during asymmetrical fault in power grid. Power Syst. Technol. 2013, 37, 1454–1463. [Google Scholar]
- Zhu, J.; Jiang, X.; Huang, L. Topologies and charging strategies of the dynamic voltage restorer with flywheel energy storage. Electr. Mach. Control 2009, 13, 317–321. [Google Scholar]
- Zhou, L.; Qi, Z. Modeling and simulation of flywheel energy storage unit for voltage sag in distribution network. Power Syst. Technol. 2009, 33, 152–158. [Google Scholar]
- Ji, L.; Zhang, J. Research on generalized momentum compensation method of flywheel energy storage in renewable energy power system. Proc. CSEE 2010, 30, 101–106. [Google Scholar]
- Shi, L.; Chen, Z.; Wang, H.; Tang, G. Damping of power system low-frequency oscillations with FESS. Autom. Electr. Power Syst. 2010, 34, 29–33. [Google Scholar]
- Shi, L.; Zhang, L.; Chen, S.; Tang, G. Coordination and optimization of FESS-based stabilizers and PSS in multi-machine power systems. Proc. CSEE 2011, 31, 1–8. [Google Scholar]
- Shi, L.; Zhang, L.; Chen, S.; Zhuang, M. Application of FESS in damping power system multi-mode oscillations. J. Southeast Univ. (Nat. Sci. Ed.) 2012, 42, 323–327. [Google Scholar]
- Tang, X.; Liu, W.; Zhou, L.; Qi, Z. Flywheel array energy storage system. Energy Storage Sci. Technol. 2013, 2, 208–221. [Google Scholar]
- Xue, J.; Ye, J.; Wang, C.; Yang, B.; Yan, S. Frequency regulation application and economic analysis of flywheel energy storage in a regional power grid. Power Syst. Clean Energy 2013, 29, 113–118. [Google Scholar]
- Li, Y.; Chen, Y.; Li, Y. Design of regenerative braking and power quality harnessed synthetically system in traction substation based on flywheel energy storage. Energy Storage Sci. Technol. 2022, 11, 3883–3894. [Google Scholar]
- Qingdao Metro. Flywheel Energy Storage Project: Steering Qingdao’s Urban Rail Transit onto the Green Fast Track [EB/OL]. Available online: http://www.qd-metro.com/planning/view.php?id=5565 (accessed on 25 April 2022).
- Liu, H.; Xu, X.; Wei, S.; Feng, Y.; Xu, F. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of North China power grid. Energy Storage Sci. Technol. 2023, 12, 1176–1184. [Google Scholar]
- Luo, Y.; Tian, L.; Wang, Y.; Li, J.; Li, J. Coordinated control strategy and optimal capacity configuration for flywheel energy storage participating in primary frequency regulation of power grid. Autom. Electr. Power Syst. 2022, 46, 71–82. [Google Scholar]
- Liang, Z.; Liu, J.; Hong, F.; Fang, F.; Wang, Z.; Wang, H.; Su, S.; Liang, L.; Ji, W. Research and Engineering Application of Frequency Modulation Technology of Power-level High-power Flywheel Energy Storage System Coupled with Thermal Power Unit. Proc. CSEE 2024, 1–14. [Google Scholar]
- State Power Investment Changfeng Wind Farm Flywheel Energy Storage Project Passes Frequency Modulation Field Test. Available online: http://www.spic.com.cn/xtdt1/202305/t20230508_321539.html (accessed on 8 May 2023).
- Huang, Y.; Dong, Q.; Zhu, J. Simulation research on microgrid with flywheel and diesel generators combined energy storage system. Adv. Technol. Electr. Eng. Energy 2011, 30, 32–37. [Google Scholar]
- Jin, L.; Jiang, X.; Zhang, C.; Tong, M. Research on oil rig based on the flywheel energy storage system. Micromotors 2012, 45, 27–30. [Google Scholar]
- Zhang, C.; Dai, X.; Su, A.; Li, S.; Dong, S.; Fan, J. Experimental study of flywheel energy storage and peak regulation of rig power system. China Pet. Mach. 2013, 41, 3–6. [Google Scholar]
- He, J.; Ao, G.; Guo, J.; Chen, Z.; Yang, L. Hybrid electric vehicle with flywheel energy storage system. WSEAS Trans. Syst. 2009, 8, 638–648. [Google Scholar]
- Yang, F.; Yu, F.; Zhang, X.; He, H. Research on the mathematical models and simulation of the flywheel energy storage systems. Mar. Electr. Electron. Eng. 2011, 31, 3–7. [Google Scholar]
- Fan, B.; Wang, C.; Yang, Q.; Liu, W.; Wang, G. Performance guaranteed control of flywheel energy storage system for pulsed power load accommodation. IEEE Trans. Power Syst. 2018, 33, 3994–4004. [Google Scholar] [CrossRef]
- Xu, Y.; Pi, H.; Ren, T.; Yang, Y.; Ding, H.; Peng, T.; Li, L. Design of a multipulse high-magnetic-field system based on flywheel energy storage. IEEE Trans. Appl. Supercond. 2016, 26, 7433970. [Google Scholar] [CrossRef]
- Liu, G.; Ye, C.; Yang, J.; Liang, X.; Xu, W. The control strategy and experiment research of integrated energy storage pulsed alternator. IEEE Trans. Plasma Sci. 2017, 4, 1220–1226. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Z.; Yu, Y.; Liu, Y. Hybrid Energy Storage Power Distribution Strategy for Micro Gas Turbine Power Generation System Based on Variational Mode Decomposition. J. Xian Jiatong Univ. 2024, 3, 1–12. [Google Scholar]
- Chen, J.; Jiang, X.; Zhu, D.; Wei, H. UPS using flywheel energy storage. J. Tsinghua Univ. (Sci. Tech.) 2004, 44, 1321–1324. [Google Scholar]
- Han, B.; Fang, J.; Wu, Y. Simulation of an integrated power/attitude control system with single axis double flywheels. J. Syst. Simul. 2006, 18, 2511–2515. [Google Scholar]
- Jia, Y.; Xu, S. Spacecraft attitude tracking and energy storage using flywheels. Chin. J. Aeronauts. 2005, 18, 1–7. [Google Scholar] [CrossRef]
Prototypes or Products | Specification | Organization | Years |
---|---|---|---|
Experimental | 0.300 kWh composite flywheel 42,000 rpm PMB + MB 200 W PMBLDC | Tsinghua University, Beijing, China | 2002 |
Experimental | 3 Units FESS array 1 kWh steel flywheel 8000 rpm MB 5 kW PMM | IEE, CAS, Beijing, China | 2008 |
Industrial | 8.3 kWh composite flywheel 15,000 rpm AMB 300 kW PMM | Beijing Qifeng Juneng Technology, Beijing, China | 2016 |
Industrial | 3.0 Wh steel flywheel 10,500 rpm AMB 200 kW PMM | Beijing Honghui International Energy Technology, Beijing, China | 2016 |
Industrial | 3.9 kWh composite flywheel 36,000 rpm PM+MB 333 kW PMM | Dunshi Cineng Technology, Shijiazhuang, China | 2017 |
Engineering demonstration | 16.7 kWh steel flywheel 2700 rpm PMB + MB 1000 kW PMM | Tsinghua University, Beijing, China; Sinopec, Puyang, China | 2016 |
Experimental | 3.3 kWh steel flywheel 8000 rpm PMB + BM 300 kW RSM | Tsinghua University, Beijing, China; Tellhow Technology, Nanchang, China | 2017 |
Experimental | 10 kWh composite 18,000 rpm AMB 400 kW PMM | Tsinghua University, Beijing, China; IET, CAS, Beijing, China | 2021 |
Engineering demonstration | 125 kWh steel 5200 rpm AMB + PM 500 kW/630 kW PMM | Huachi Kinetic Energy (Beijing) Technology Co., Ltd., Beijing, China | 2022 |
Engineering demonstration | 33.3 kWh steel 8800 rpm 1000 kW PMM | Candela (Shenzhen) New Energy Technology Co., Ltd., Shenzhen, China | 2023 |
Engineering demonstration | 50 kWh steel 6600 rpm AMB 500 kW PMM | IET, CAS (Institute of Engineering Thermophysics, Chinese Academy of Sciences), Beijing, China | 2023 |
Engineering demonstration | 37.8 kWh steel 10,500 rpm AMB + MB 1000 kW PMM | Beijing Honghui International Energy Technology, Beijing, China | 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Ma, X.; Hu, D.; Duan, J.; Chen, H. An Overview of the R&D of Flywheel Energy Storage Technologies in China. Energies 2024, 17, 5531. https://doi.org/10.3390/en17225531
Dai X, Ma X, Hu D, Duan J, Chen H. An Overview of the R&D of Flywheel Energy Storage Technologies in China. Energies. 2024; 17(22):5531. https://doi.org/10.3390/en17225531
Chicago/Turabian StyleDai, Xingjian, Xiaoting Ma, Dongxu Hu, Jibing Duan, and Haisheng Chen. 2024. "An Overview of the R&D of Flywheel Energy Storage Technologies in China" Energies 17, no. 22: 5531. https://doi.org/10.3390/en17225531