Inertial Optimization Based Two-Step Methods for Solving Equilibrium Problems with Applications in Variational Inequality Problems and Growth Control Equilibrium Models
<p>Experiment in <a href="#sec6dot1dot1-energies-13-03292" class="html-sec">Section 6.1.1</a>: Algorithm 1 behaviour for different values of <math display="inline"><semantics> <msub> <mi>ϑ</mi> <mi>n</mi> </msub> </semantics></math>.</p> "> Figure 2
<p>Comparison of Algorithm 1 with Algorithm 1 in [<a href="#B19-energies-13-03292" class="html-bibr">19</a>], Algorithm 1 in [<a href="#B21-energies-13-03292" class="html-bibr">21</a>], and Algorithm 3.1 in [<a href="#B35-energies-13-03292" class="html-bibr">35</a>,<a href="#B36-energies-13-03292" class="html-bibr">36</a>].</p> "> Figure 3
<p>Algorithm 2 behaviour with respect to different step-size sequences <math display="inline"><semantics> <msub> <mi>λ</mi> <mi>n</mi> </msub> </semantics></math>.</p> "> Figure 4
<p>Experiment in <a href="#sec6dot2dot1-energies-13-03292" class="html-sec">Section 6.2.1</a>: Algorithm 1 behaviour regarding different values of <math display="inline"><semantics> <msub> <mi>ϑ</mi> <mi>n</mi> </msub> </semantics></math>.</p> "> Figure 5
<p>Experiment in <a href="#sec6dot2dot2-energies-13-03292" class="html-sec">Section 6.2.2</a>: Comparison of Algorithm 1 with Algorithm 3.1 in [<a href="#B35-energies-13-03292" class="html-bibr">35</a>,<a href="#B36-energies-13-03292" class="html-bibr">36</a>].</p> "> Figure 6
<p>Experiment in <a href="#sec6dot3dot1-energies-13-03292" class="html-sec">Section 6.3.1</a>: Algorithm 2 behaviour with respect to step-size sequences <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>n</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mi>q</mi> </msup> </mfrac> </mrow> </semantics></math>.</p> "> Figure 7
<p>Experiment in <a href="#sec6dot3dot1-energies-13-03292" class="html-sec">Section 6.3.1</a>: Algorithm 2 behaviour with respect to step-size sequences <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>n</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mo>(</mo> <mo form="prefix">log</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>q</mi> </msup> </mfrac> </mrow> </semantics></math>.</p> "> Figure 8
<p>Experiment in <a href="#sec6dot3dot2-energies-13-03292" class="html-sec">Section 6.3.2</a>: Comparison of Algorithm 2 with Algorithm 1 (<tt>EgM</tt>) in [<a href="#B23-energies-13-03292" class="html-bibr">23</a>] and Algorithm 3.1 (<tt>PEgM</tt>) in [<a href="#B45-energies-13-03292" class="html-bibr">45</a>].</p> ">
Abstract
:1. Introduction
2. Background
- (1)
- strongly monotone if
- (2)
- monotone if
- (3)
- strongly pseudomonotone if
- (4)
- pseudomonotone if
- (5)
- satisfying the Lipschitz-type condition on K if there exist constants such thatholds.
- (i)
- with
- (ii)
- (i)
- For each , exists;
- (ii)
- Every sequentially weak cluster point of belongs to K;
3. Inertial Popov’s Two-Step Subgradient Extragradient Algorithm for Pseudomonotone EP
Algorithm 1 (Two-step Subgradient Extragradient Algorithm for Pseudomonotone EP) |
|
- (A1)
- for all and f is pseudomonotone on K;
- (A2)
- f satisfy the Lipschitz-type condition on through two positive constants and ;
- (A3)
- for all and satisfy ;
- (A4)
- is convex and subdifferentiable on for each
4. Inertial Popov’s Two-Step Subgradient Extragradient Algorithm for Strongly Pseudomonotone EP
- (B1)
- and f is strongly pseudomontone on K;
- (B2)
- f meet the Lipschitz-type condition on with two positive constants and ;
- (B3)
- is sub-differentiable and convex on for all
Algorithm 2 (Two-step Subgradient Extragradient Algorithm for Strongly Pseudomonotone EP) |
|
5. Application to Variational Inequality Problems
- (i)
- Choose , and Compute
- (ii)
- Given , and for each and construct the half-space first as
- (iii)
- Evaluate
- (i)
- Choose , and a sequence satisfying (43). Compute
- (ii)
- Given , and create a half space for each such that
- (iii)
- Compute
6. Computational Experiment
6.1. Nash-Cournot Equilibrium Model of Electricity Markets
6.1.1. Algorithm 1 Behaviour for Different Values of :
6.1.2. Algorithm 1 Comparison with Existing Algorithms
- (i)
- (ii)
- Given , , for and construct a half space as
- (iii)
6.1.3. Algorithm 2 Behaviour by Using Different Step-Size Sequences
6.2. Example 2
6.2.1. Algorithm 1 Performance for Different Values of Extrapolation Factor :
6.2.2. Algorithm 1 Comparison with Existing Algorithm
6.3. Nash–Cournot Oligopolistic Equilibrium Model
6.3.1. Algorithm 2. Behaviour for Different Step-Size Sequences :
- (I)
- (II)
6.3.2. Algorithm 2. Comparison with Existing Algorithms
- (1)
- (2)
- It can also be acknowledged that the efficiency of the algorithm depends on the complexity of the problem and tolerance of the error term. More time and a significant number of iterations are required in the case of large-scale problems. In this situation, we can see that the certain value of the step-size enhances the performance of the algorithm and boosts the convergence rate.
- (3)
- (4)
- (i)
- No previous information of Lipschitz-constant is required for running algorithms on Matlab.
- (ii)
- In fact, the convergence rate of algorithms depends entirely on the convergence rate of step-size sequences
- (iii)
- The convergence rate of the iterative sequence often depends on the complexity of the problem as well as on the size of the problem.
- (iv)
- Due to the variable step-size sequence, a specific step-size value that is not appropriate for the current iteration of the method often causes inconsistency and a hump in the behavior of the iterative sequence.
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blum, E. From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63, 123–145. [Google Scholar]
- Fan, K. A Minimax Inequality and Applications, INEQUALITIES III; Shisha, O., Ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Biegler, L.T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; SIAM-Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010; Volume 10. [Google Scholar]
- Dafermos, S. Traffic Equilibrium and Variational Inequalities. Transp. Sci. 1980, 14, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Ferris, M.C.; Pang, J.S. Engineering and Economic Applications of Complementarity Problems. SIAM Rev. 1997, 39, 669–713. [Google Scholar] [CrossRef] [Green Version]
- Nagurney, A. Network Economics: A Variational Inequality Approach; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Patriksson, M. The Traffic Assignment Problem: Models and Methods; Courier Dover Publications: Mineola, NY, USA, 2015. [Google Scholar]
- Cournot, A.A. Recherches sur les Principes Mathématiques de la Théorie des Richesses; Wentworth Press Hachette: Paris, France, 1838. [Google Scholar]
- Arrow, K.J.; Debreu, G. Existence of an Equilibrium for a Competitive Economy. Econometrica 1954, 22, 265. [Google Scholar] [CrossRef]
- Nash, J.F. 5. Equilibrium Points in n-Person Games. In The Essential John Nash; Nasar, S., Ed.; Princeton University Press: Princeton, NJ, USA, 2002; pp. 49–50. [Google Scholar] [CrossRef] [Green Version]
- Nash, J. Non-Cooperative Games. Ann. Math. 1951, 54, 286. [Google Scholar] [CrossRef]
- Muu, L.D.; Oettli, W. Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. Theory, Methods Appl. 1992, 18, 1159–1166. [Google Scholar] [CrossRef]
- Moudafi, A. Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 1999, 15, 91–100. [Google Scholar]
- Mastroeni, G. On auxiliary principle for equilibrium problems. In Equilibrium Problems and Variational Models; Springer: Berlin, Germany, 2003; pp. 289–298. [Google Scholar]
- Martinet, B. Brève communication. Régularisation d’inéquations variationnelles par approximations successives. Rev. Française D’informatique Et De Rech. Opérationnelle. Série Rouge 1970, 4, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef] [Green Version]
- Konnov, I. Application of the Proximal Point Method to Nonmonotone Equilibrium Problems. J. Optim. Theory Appl. 2003, 119, 317–333. [Google Scholar] [CrossRef]
- Flåm, S.D.; Antipin, A.S. Equilibrium programming using proximal-like algorithms. Math. Program. 1996, 78, 29–41. [Google Scholar] [CrossRef]
- Quoc Tran, D.; Le Dung, M.N.V.H. Extragradient algorithms extended to equilibrium problems. Optimization 2008, 57, 749–776. [Google Scholar] [CrossRef]
- Quoc, T.D.; Anh, P.N.; Muu, L.D. Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 2011, 52, 139–159. [Google Scholar] [CrossRef]
- Lyashko, S.I.; Semenov, V.V. A New Two-Step Proximal Algorithm of Solving the Problem of Equilibrium Programming. In Optimization and Its Applications in Control and Data Sciences; Springer International Publishing: New York, NY, USA, 2016; pp. 315–325. [Google Scholar] [CrossRef]
- Anh, P.N.; Hai, T.N.; Tuan, P.M. On ergodic algorithms for equilibrium problems. J. Glob. Optim. 2015, 64, 179–195. [Google Scholar] [CrossRef]
- Hieu, D.V. New extragradient method for a class of equilibrium problems in Hilbert spaces. Appl. Anal. 2017, 97, 811–824. [Google Scholar] [CrossRef]
- ur Rehman, H.; Kumam, P.; Cho, Y.J.; Yordsorn, P. Weak convergence of explicit extragradient algorithms for solving equilibirum problems. J. Inequalities Appl. 2019, 2019. [Google Scholar] [CrossRef]
- Anh, P.N.; An, L.T.H. The subgradient extragradient method extended to equilibrium problems. Optimization 2012, 64, 225–248. [Google Scholar] [CrossRef]
- Ur Rehman, H.; Kumam, P.; Je Cho, Y.; Suleiman, Y.I.; Kumam, W. Modified Popov’s explicit iterative algorithms for solving pseudomonotone equilibrium problems. Optimization Methods and Software 2020, 1–32. [Google Scholar] [CrossRef]
- Vinh, N.T.; Muu, L.D. Inertial Extragradient Algorithms for Solving Equilibrium Problems. Acta Math. Vietnam. 2019, 44, 639–663. [Google Scholar] [CrossRef]
- ur Rehman, H.; Kumam, P.; Kumam, W.; Shutaywi, M.; Jirakitpuwapat, W. The Inertial Sub-Gradient Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems. Symmetry 2020, 12, 463. [Google Scholar] [CrossRef] [Green Version]
- Hieu, D.V. An inertial-like proximal algorithm for equilibrium problems. Math. Methods Oper. Res. 2018, 88, 399–415. [Google Scholar] [CrossRef]
- ur Rehman, H.; Kumam, P.; Abubakar, A.B.; Cho, Y.J. The extragradient algorithm with inertial effects extended to equilibrium problems. Comput. Appl. Math. 2020, 39. [Google Scholar] [CrossRef]
- Hieu, D.V.; Cho, Y.J.; bin Xiao, Y. Modified extragradient algorithms for solving equilibrium problems. Optimization 2018, 67, 2003–2029. [Google Scholar] [CrossRef]
- ur Rehman, H.; Kumam, P.; Argyros, I.K.; Alreshidi, N.A.; Kumam, W.; Jirakitpuwapat, W. A Self-Adaptive Extra-Gradient Methods for a Family of Pseudomonotone Equilibrium Programming with Application in Different Classes of Variational Inequality Problems. Symmetry 2020, 12, 523. [Google Scholar] [CrossRef] [Green Version]
- ur Rehman, H.; Kumam, P.; Argyros, I.K.; Deebani, W.; Kumam, W. Inertial Extra-Gradient Method for Solving a Family of Strongly Pseudomonotone Equilibrium Problems in Real Hilbert Spaces with Application in Variational Inequality Problem. Symmetry 2020, 12, 503. [Google Scholar] [CrossRef] [Green Version]
- Muu, L.D.; Quoc, T.D. Regularization Algorithms for Solving Monotone Ky Fan Inequalities with Application to a Nash-Cournot Equilibrium Model. J. Optim. Theory Appl. 2009, 142, 185–204. [Google Scholar] [CrossRef]
- Kassay, G.; Hai, T.N.; Vinh, N.T. Coupling popov’s algorithm with subgradient extragradient method for solving equilibrium problems. J. Nonlinear Convex Anal. 2018, 19, 959–986. [Google Scholar]
- Liu, Y.; Kong, H. The new extragradient method extended to equilibrium problems. Rev. De La Real Acad. De Cienc. Exactas, Físicas Y Naturales. Ser. A. Matemáticas 2019, 113, 2113–2126. [Google Scholar] [CrossRef]
- Goebel, K.; Reich, S. Uniform convexity. In Hyperbolic Geometry, and Nonexpansive; Marcel Dekker, Inc.: New York, NY, USA, 1984. [Google Scholar]
- Bianchi, M.; Schaible, S. Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 1996, 90, 31–43. [Google Scholar] [CrossRef]
- Tiel, J.V. Convex Analysis: An Introductory Text, 1st ed.; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Ofoedu, E. Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space. J. Math. Anal. Appl. 2006, 321, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Heinz, H.; Bauschke, P.L.C. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed.; CMS Books in Mathematics; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- Attouch, F.A.H. An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping. Set Valued Var. Anal. 2001, 9, 3–11. [Google Scholar] [CrossRef]
- Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Maiorano, A.; Song, Y.; Trovato, M. Dynamics of non-collusive oligopolistic electricity markets. In Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Conference Proceedings (Cat. No.00CH37077), Singapore, 23–27 January 2000. [Google Scholar] [CrossRef]
- Hieu, D.V. Convergence analysis of a new algorithm for strongly pseudomontone equilibrium problems. Numer. Algorithms 2017, 77, 983–1001. [Google Scholar] [CrossRef]
j | ||||||
---|---|---|---|---|---|---|
1 | 0.0400 | 2.00 | 0.00 | 2.0000 | 1.0000 | 25.0000 |
2 | 0.0350 | 1.75 | 0.00 | 1.7500 | 1.0000 | 28.5714 |
3 | 0.1250 | 1.00 | 0.00 | 1.0000 | 1.0000 | 8.0000 |
4 | 0.0116 | 3.25 | 0.00 | 3.2500 | 1.0000 | 86.2069 |
5 | 0.0500 | 3.00 | 0.00 | 3.0000 | 1.0000 | 20.0000 |
6 | 0.0500 | 3.00 | 0.00 | 3.0000 | 1.0000 | 20.0000 |
j | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | |
80 | 80 | 50 | 55 | 30 | 40 |
Algo.name | Iter. | Time | TOL | |||
---|---|---|---|---|---|---|
Algo1 | 0.22 | 0.02 | 4824 | 138.915365 | ||
Algo1 | 0.18 | 0.02 | 4949 | 166.620335 | ||
Algo1 | 0.14 | 0.02 | 5193 | 127.834772 | ||
Algo1 | 0.10 | 0.02 | 5432 | 136.310422 | ||
Algo1 | 0.05 | 0.02 | 5721 | 142.108161 | ||
Algo1 | 0.01 | 0.02 | 5945 | 144.356535 | ||
Algo1 | 0.001 | 0.02 | 6043 | 157.711757 |
Algo.name | Iter. | Time | TOL | |||
---|---|---|---|---|---|---|
EgA | – | 0.02 | 7180 | 264.156236 | ||
PEgA | – | 0.02 | 6055 | 210.681669 | ||
PSgEgA | – | 0.02 | 5515 | 175.840493 | ||
Algo1 | 0.12 | 0.02 | 4894 | 134.245610 | ||
Algo1 | 0.20 | 0.02 | 4333 | 115.599023 |
Algo.name | Iter. | Time | TOL | |||
---|---|---|---|---|---|---|
Algo2 | 0.12 | 1254 | 61.898186 | |||
Algo2 | 0.12 | 442 | 29.006584 | |||
Algo2 | 0.12 | 2311 | 70.849546 | |||
Algo2 | 0.12 | 662 | 44.766232 | |||
Algo2 | 0.12 | 434 | 31.504484 |
Iter. | Time | TOL | |||
---|---|---|---|---|---|
0.20 | 0.050 | 6.5877 | 70 | 0.008866 | |
0.15 | 0.050 | 6.6948 | 75 | 0.010382 | |
0.10 | 0.050 | 6.4466 | 80 | 0.008518 | |
0.05 | 0.050 | 7.5191 | 84 | 0.008378 | |
0.01 | 0.050 | 6.9392 | 88 | 0.008989 |
Algorithm | Iter. | Time | TOL | ||||||
---|---|---|---|---|---|---|---|---|---|
PSgEgA | — | 1 | 1 | — | 0.1 | 7.9278 | 110 | 0.001014 | |
Algo1 | 0.5 | 1 | 1 | 0.16 | 0.1 | 6.5112 | 92 | 0.006082 | |
PSgEgA | — | 0.5 | 0.5 | — | 0.1 | 6.9204 | 107 | 0.006580 | |
Algo1 | 1 | 0.5 | 0.5 | 0.16 | 0.1 | 7.1870 | 87 | 0.006919 | |
PSgEgA | — | 0.2 | 0.2 | — | 0.1 | 7.7873 | 102 | 0.007282 | |
Algo1 | 1 | 0.2 | 0.2 | 0.16 | 0.1 | 7.1827 | 66 | 0.000688 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, H.u.; Kumam, P.; Shutaywi, M.; Alreshidi , N.A.; Kumam, W. Inertial Optimization Based Two-Step Methods for Solving Equilibrium Problems with Applications in Variational Inequality Problems and Growth Control Equilibrium Models. Energies 2020, 13, 3292. https://doi.org/10.3390/en13123292
Rehman Hu, Kumam P, Shutaywi M, Alreshidi NA, Kumam W. Inertial Optimization Based Two-Step Methods for Solving Equilibrium Problems with Applications in Variational Inequality Problems and Growth Control Equilibrium Models. Energies. 2020; 13(12):3292. https://doi.org/10.3390/en13123292
Chicago/Turabian StyleRehman, Habib ur, Poom Kumam, Meshal Shutaywi, Nasser Aedh Alreshidi , and Wiyada Kumam. 2020. "Inertial Optimization Based Two-Step Methods for Solving Equilibrium Problems with Applications in Variational Inequality Problems and Growth Control Equilibrium Models" Energies 13, no. 12: 3292. https://doi.org/10.3390/en13123292
APA StyleRehman, H. u., Kumam, P., Shutaywi, M., Alreshidi , N. A., & Kumam, W. (2020). Inertial Optimization Based Two-Step Methods for Solving Equilibrium Problems with Applications in Variational Inequality Problems and Growth Control Equilibrium Models. Energies, 13(12), 3292. https://doi.org/10.3390/en13123292