Abstract
The ‘heavy ball with friction’ dynamical system x + γx + ∇f(x)=0 is a nonlinear oscillator with damping (γ>0). It has been recently proved that when H is a real Hilbert space and f: H→R is a differentiable convex function whose minimal value is achieved, then each solution trajectory t→x(t) of this system weakly converges towards a solution of ∇f(x)=0. We prove a similar result in the discrete setting for a general maximal monotone operator A by considering the following iterative method: x k+1−x k−α k (x k−x k−1)+λ k A(x k+1)∋0, giving conditions on the parameters λ k and α k in order to ensure weak convergence toward a solution of 0∈A(x) and extending classical convergence results concerning the standard proximal method.
Similar content being viewed by others
References
Antipin, A. S.: Minimization of convex functions on convex sets by means of differential equations, Differential Equations 30(9) (1994), 1365–1375.
Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces, SIAM J. Control Optim. 38(4) (2000), 1102–1119.
Attouch, H. and Alvarez, F.: The heavy ball with friction dynamical system for convex constrained minimization problems, In: Lecture Notes in Econom. Math. Systems 481, Springer, Berlin, 2000, pp. 25–35.
Attouch, H., Goudou, X. and Redont, P.: The heavy ball with friction method. I. The continuous dynamical system, Comm. Contemp. Math. 2(1) (2000), 1–34.
Brezis, H.: Opérateurs maximaux monotones, Math. Stud. 5, North-Holland, Amsterdam, 1973.
Brezis, H.: Asymptotic Behaviour of Some Evolution Systems: Nonlinear Evolution Equations, Academic Press, New York, 1978.
Bruck, R. E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Funct. Anal. 18 (1975), 15–26.
Güler, O.: On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), 403–419.
Jules, F. and Mainge, P. E.: Numerical approach to stationary solution of a second order dissipative dynamical system, Preprint 99/01, Département de Mathématiques et Informatique, U. des Antilles et de la Guyane, 1999.
Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives, Rev. Française d'Informatique et Recherche Operationnelle 4 (1970), 154–159.
Martinet, B.: Algorithmes pour la résolution de problèmes d'optimisation et de minimax, PhD Thesis, U. Grenoble, 1972.
Minty, G.: Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346.
Moreau, J. J.: Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93 (1965), 273–299.
Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
Polyak, B. T.: Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz. 4 (1964), 1–17.
Rockafellar, R. T.: Monotone operators and the proximal point algorithm, SIAM J. Control Optim. (1976), 877–898.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Alvarez, F., Attouch, H. An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping. Set-Valued Analysis 9, 3–11 (2001). https://doi.org/10.1023/A:1011253113155
Issue Date:
DOI: https://doi.org/10.1023/A:1011253113155