Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra I: Matricial Data
<p>Qualitative picture of the signal detection issue in a nearly continuous spectrum.</p> "> Figure 2
<p>Qualitative illustration of the RG flow. The UV scale is described by the classical action <math display="inline"><semantics> <mi mathvariant="script">S</mi> </semantics></math>, while the IR scale is described by an effective object <math display="inline"><semantics> <mi mathvariant="sans-serif">Γ</mi> </semantics></math>, where microscopic effects are hidden in the different parameters involved in its definition.</p> "> Figure 3
<p>Qualitative illustration of the meaning of the effective averaged action <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Γ</mi> <mi>k</mi> </msub> </semantics></math>, as the effective action of the UV degrees of freedom which have been integrated-out.</p> "> Figure 4
<p>Qualitative illustration of the RG flow behavior. Some different UV initial conditions lead to the same (universal) IR physics, up to negligible differences with regard to the experimental precision.</p> "> Figure 5
<p>A step of the RG flow. On the left, integration of momenta between <math display="inline"><semantics> <mrow> <mi>s</mi> <mi mathvariant="sans-serif">Λ</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="sans-serif">Λ</mi> </semantics></math>. On the right, dilatation of the remaining momenta with a factor <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <mi>s</mi> </mrow> </semantics></math>.</p> "> Figure 6
<p>Numerical flow associated to the MP law (data without signal) and for the quartic truncation. The main directions of the flow are highlighted by the black arrows (which are oriented from UV to IR). We observe the existence of a region reminiscent of the standard Wilson–Fisher fixed point.</p> "> Figure 7
<p>The canonical dimension for MP distribution with <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> (on the right), <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (in the middle) and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (on the left). The purple curve corresponds to the MP distribution.</p> "> Figure 8
<p>RG trajectories starting from <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <msub> <mi mathvariant="sans-serif">Λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>u</mi> <mn>2</mn> </msub> </semantics></math> (blue curves), <math display="inline"><semantics> <msub> <mi>u</mi> <mn>4</mn> </msub> </semantics></math> (red curves), and <math display="inline"><semantics> <msub> <mi>u</mi> <mn>6</mn> </msub> </semantics></math> (green curves).</p> "> Figure 9
<p>A typical DNMP distribution for <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>1500</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>2000</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Numerical flow associated to a DNMP distribution in the learnable region.</p> "> Figure 11
<p>Three points of view of the compact region <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> (illustrated with purple dots) in the vicinity of the Gaussian fixed point (illustrated with a black dot). In this region RG trajectories end in the symmetric phase, and thus are compatible with a symmetry restoration scenario for initial conditions corresponding to an explicit symmetry breaking. The top plots are associated to the case of pure noise and the bottom plots are, respectively, associated to the case with signal.</p> "> Figure 12
<p>Illustration of the evolution of the potential associated to an example of initial conditions of the coupling <math display="inline"><semantics> <msub> <mi>u</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>u</mi> <mn>4</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>u</mi> <mn>6</mn> </msub> </semantics></math> where the RG trajectories end in the symmetric phase in the case of pure noise (on the left) and stay in the non-symmetric phase when we add a signal (on the right).</p> "> Figure 13
<p>Illustration of the evolution of the <math display="inline"><semantics> <msub> <mi>u</mi> <mn>2</mn> </msub> </semantics></math> for eigenvalues between <math display="inline"><semantics> <mrow> <mn>2.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>3.4</mn> </mrow> </semantics></math> in the case of pure noise (NMP distribution). We can see that the values of <math display="inline"><semantics> <msub> <mover accent="true"> <mi>u</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> </semantics></math> for these examples are of the same magnitude as <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>2000</mn> </mrow> </semantics></math>. This highlights the existence of some RG trajectories associated to physically relevant states in the deep infrared.</p> "> Figure 14
<p>Illustration of the evolution of <math display="inline"><semantics> <mi>κ</mi> </semantics></math>, obtained with the LPA representation, for eigenvalues between <math display="inline"><semantics> <mrow> <mn>2.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>3.4</mn> </mrow> </semantics></math> in the case of data without signal. For some RG trajectories (on the left), <math display="inline"><semantics> <mi>κ</mi> </semantics></math> decreases to zero, which correspond to a restoration of the symmetry. For other RG trajectories (on the right), <math display="inline"><semantics> <mi>κ</mi> </semantics></math> stays almost constant in the range of eigenvalues that we consider, and does not lead to a restoration of the symmetry.</p> "> Figure 15
<p>Illustration of the evolution of the potential associated to an example of initial conditions of the coupling <math display="inline"><semantics> <msub> <mi>u</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>u</mi> <mn>4</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>u</mi> <mn>6</mn> </msub> </semantics></math>. We see that the RG trajectories, obtained with the LPA representation, end in the symmetric phase in the case of pure noise (on the left) and stay in the non symmetric phase when we add a signal (on the right).</p> "> Figure 16
<p>Illustration of the evolution of <math display="inline"><semantics> <mi>η</mi> </semantics></math>, obtained by the LPA’ representation, for eigenvalues between <math display="inline"><semantics> <mrow> <mn>2.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>3.4</mn> </mrow> </semantics></math> in the case of data without signal. We see that for these RG trajectories, the anomalous dimension <math display="inline"><semantics> <mi>η</mi> </semantics></math> remains small. This highlights that there is no significant change when we use the LPA’ representation instead of the LPA one.</p> ">
Abstract
:1. Introduction
2. The RG in Field Theory
2.1. A Field Theoretical Embedding for Data Analysis
2.2. The Model
2.3. Wetterich–Morris Framework
- , meaning that for , , all the fluctuations are integrated out;
- , meaning that in the deep UV, all fluctuations are frozen with a very large mass;
- for , meaning that high energy modes with respect to the scale are essentially unaffected by the regulator. In contrast, low energy modes must have a large mass which decouples them from long-distance physics.
3. RG, from Theory to Numerical Investigations
3.1. Solving the Exact RG Equation into the Symmetric Phase
3.1.1. Generalities
3.1.2. Flow Equations, Scaling and Dimension
3.1.3. Analytical Noisy Data, MP Distribution
3.1.4. A First Look on Numerical Investigations
3.2. Venturing into the Non-Symmetric Phase
3.2.1. LPA and LPA
3.2.2. Numerical Investigations
4. Concluding Remarks and Open Issues
- In order to keep control on the size of the signal and numerical approximations, we constructed datasets as perturbations around the MP law. We showed that the field theory approximation works well up to some scale . From this scale, the relevant sector, spanned by relevant couplings, diverges (its dimension becomes arbitrarily large, and couplings have arbitrary large dimension), and we expect that standard approximation fails up to this scale.
- Above the scale , and focusing on the local interactions, the relevant sector has dimension 2, spanned by and interactions, in agreement with a naive power counting based on the critical dimension of the MP law;
- For MP distribution, we showed the existence of a compact region in the vicinity of the Gaussian fixed point, whose RG trajectories end in the symmetric region, and thus are compatible with symmetry restoration scenario;
- Disturbing the MP spectrum with a strong enough signal reduces the size of this compact region, continuously deforming the effective potential from a symmetric toward a broken shape. In that picture, the role played by the signal strength is reminiscent of the role played by the inverse temperature in the physics of phase transition;
- Finally, considering intersection between and the physical conditions imposed to the IR 2-point function, we provided evidence in favor of the existence of an intrinsic detection threshold in the LPA approximation. This region is fully investigated in the companion paper [24].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the Anomalous Dimension
References
- Feynman, R.P. Statistical Mechanics; Advanced Book Classics; Westview Press: Nashville, TN, USA, 1998. [Google Scholar]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Jaynes, E.T. Gibbs vs. Boltzmann Entropies. Am. J. Phys. 1965, 33, 391. [Google Scholar] [CrossRef]
- Wilson, K.G. Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 1971, 4, 3174. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.G. Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior. Phys. Rev. B 1971, 4, 3184. [Google Scholar] [CrossRef] [Green Version]
- Hu, B. Introduction to Real Space Renormalization Group Methods in Critical and Chaotic Phenomena. Phys. Rep. 1982, 91, 233. [Google Scholar] [CrossRef]
- Kadanoff, L.P. Lectures on the Application of Renormalization Group Techniques to Quarks and Strings. Rev. Mod. Phys. 1977, 49, 267. [Google Scholar] [CrossRef] [Green Version]
- Kadanoff, L.P. Variational Principles and Approximate Renormalization Group Calculations. Phys. Rev. Lett. 1975, 34, 1005. [Google Scholar] [CrossRef] [Green Version]
- Zinn-Justin, J. From Random Walks to Random Matrices; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Yeo, J.H.; Moore, M.A. Renormalization group analysis of the M-p-spin glass model with p = 3 and M = 3. Phys. Rev. B 2012, 85, 100405. [Google Scholar] [CrossRef] [Green Version]
- Castellana, M.; Parisi, G. Renormalization group computation of the critical exponents of hierarchical spin glasses. Phys. Rev. E 2010, 82, 040105. [Google Scholar] [CrossRef] [Green Version]
- Pezzella, U.; Coniglio, A. Spin glasses and frustrated percolation: A renormalization group approach. Physics A 1997, 237, 353. [Google Scholar] [CrossRef]
- Dotsenko, V.S. Towards A Renormalization Group Theory of Spin Glasses. IC/87/154. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:19033970 (accessed on 8 August 2021).
- Collet, P.; Eckmann, J.P.; Glaser, V.J.; Martin, A. A spin glass with random couplings. J. Statist. Phys. 1984, 36, 89. [Google Scholar] [CrossRef] [Green Version]
- Kadanoff, L.P. Static Phenomena Near Critical Points: Theory and Experiment. Rev. Mod. Phys. 1967, 39, 395. [Google Scholar] [CrossRef]
- Kenneth, G.W. The renormalization group and critical phenomena. Rev. Mod. Phys. 1982, 55, 3. [Google Scholar]
- Sokal, A.D.; van Enter, A.C.D.; Fernandez, R. Regularity properties and pathologies of position space renormalization group transformations: Scope and limitations of Gibbsian theory. J. Statist. Phys. 1994, 72, 879. [Google Scholar] [CrossRef] [Green Version]
- Bradde, S.; Bialek, W. PCA meets RG. J. Stat. Phys. 2017, 167, 462–475. [Google Scholar] [CrossRef]
- Meshulam, L.; Gauthier, J.L.; Brody, C.D.; Tank, D.W.; Bialek, W. Coarse–graining and hints of scaling in a population of 1000+ neurons. arXiv 2018, arXiv:1812.11904. [Google Scholar]
- Meshulam, L.; Gauthier, J.L.; Brody, C.D.; Tank, D.W.; Bialek, W. Coarse Graining, Fixed Points, and Scaling in a Large Population of Neurons. Phys. Rev. Lett. 2019, 123, 1079–7114. [Google Scholar] [CrossRef] [Green Version]
- Lahoche, V.; Samary, D.O.; Tamaazousti, M. Generalized scale behavior and renormalization group for principal component analysis. arXiv 2002, arXiv:2002.10574. [Google Scholar]
- Lahoche, V.; Samary, D.O.; Tamaazousti, M. Signal detection in nearly continuous spectra and symmetry breaking. arXiv 2011, arXiv:2011.05447. [Google Scholar]
- Lahoche, V.; Samary, D.O.; Tamaazousti, M. Field theoretical approach for signal detection in nearly continuous positive spectra II: Tensorial data. Entropy 2021, 23, 795. [Google Scholar] [CrossRef]
- Shlens, J. A tutorial on principal components analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- Campeti, P.; Poletti, D.; Baccigalupi, C. Principal component analysis of the primordial tensor power spectrum. J. Cosmol. Astropart. Phys. 1909, 9, 055. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441, 498–520. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdisciplinary Reviews. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Yue, G.; Jennifer, D. Sparse Probabilistic Principal Component Analysis. In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, Clearwater Beach, FL, USA, 16–19 April 2009. [Google Scholar]
- Seddik, M.E.A.; Tamaazousti, M.; Couillet, R. A kernel random matrix-based approach for sparse PCA. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Delamotte, B. An Introduction to the nonperturbative renormalization group. Lect. Notes Phys. 2012, 852, 49. [Google Scholar] [CrossRef] [Green Version]
- Bény, C. Inferring relevant features: From QFT to PCA. Int. J. Quant. Inf. 2018, 16, 1840012. [Google Scholar] [CrossRef] [Green Version]
- Foreman, S.; Giedt, J.; Meurice, Y.; Unmuth-Yockey, J. RG inspired Machine Learning for lattice field theory. EPJ Web Conf. 2018, 175, 11025. [Google Scholar] [CrossRef]
- Bény, C. Coarse-grained distinguishability of field interactions. Quantum 2018, 2, 67. [Google Scholar] [CrossRef]
- Bény, C.; Osborne, T.J. Information-geometric approach to the renormalization group. Phys. Rev. A 2015, 92, 022330. [Google Scholar] [CrossRef] [Green Version]
- Ay, N.; Jost, J.; Le, H.V.; Schwachhofer, L. Information Geometry (Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics 64); Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Amari, S.I. Information Geometry and Its Applications; Springer: Berlin/Heidelberg, Germany, 2016; Volume 194. [Google Scholar]
- Amari, S.I.; Nagaoka, H. Methods of Information Geometry; American Mathematical Society: Providence, RI, USA, 2000; Volume 191. [Google Scholar]
- Pessoa, P.; Caticha, A. Exact Renormalization Groups As a Form of Entropic Dynamics. Entropy 2017, 20, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkacik, G.; Marre, O.; Amodei, D.; Schneidman, E.; Bialek, W.; Berry, M.J., II. Searching for collective behavior in a large network of sensory neurons. PLoS Comput. Biol. 2014, 10, e1003408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsili, M. Dissecting financial markets: Sectors and states. Quant. Financ. 2002, 2, 297–302. [Google Scholar] [CrossRef]
- Marčenko, V.A.; Pastur, L.A. Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sb. 1967, 1, 457. [Google Scholar] [CrossRef]
- Baik, J.; Arous, G.B.; Peche, S. Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 2005, 33, 1643–1697. [Google Scholar] [CrossRef]
- Perry, A.; Wein, A.S.; Bandeira, A.S.; Moitra, A. Optimality and sub-optimality of PCA I: Spiked random matrix models. Ann. Stat. 2018, 46, 2416–2451. [Google Scholar] [CrossRef] [Green Version]
- Woloshyn, R.M. Learning phase transitions: Comparing PCA and SVM. arXiv 2019, arXiv:1905.08220. [Google Scholar]
- Wang, D. Spiked Models in Wishart Ensemble. Ph.D. Thesis, Brandeis University, Waltham, MA, USA, 2008. [Google Scholar]
- Dyson, F.J. Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 1962, 3, 140. [Google Scholar] [CrossRef]
- Alekseev, O.; Mineev-Weinstein, M. Statistical mechanics of stochastic growth phenomena. Phys. Rev. E 2017, 96, 010103. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, N.; Canet, L.; Eichhorn, A.; Metzner, W.; Pawlowski, J.M.; Tissier, M.; Wschebor, N. The nonperturbative functional renormalization group and its applications. arXiv 2006, arXiv:2006.04853. [Google Scholar]
- Blaizot, J.P.; Mendez-Galain, R.; Wschebor, N. Non perturbative renormalisation group and momentum dependence of n-point functions (I). Phys. Rev. E 2006, 74, 051116. [Google Scholar] [CrossRef] [Green Version]
- Blaizot, J.P.; Mendez-Galain, R.; Wschebor, N. Non perturbative renormalization group and momentum dependence of n-point functions. II. Phys. Rev. E 2006, 74, 051117. [Google Scholar] [CrossRef] [Green Version]
- Hu, B. The Classical Ising Model: A Quantum Renormalization Group Approach. Phys. Lett. A 1979, 71, 83–86. [Google Scholar] [CrossRef]
- Sherrington, D.; Kirkpatrick, S. Solvable Model of a Spin-Glass. Phys. Rev. Lett. 1975, 35, 1792. [Google Scholar] [CrossRef]
- Bouchaud, J.P.; Cugliandolo, L.F.; Kurchan, J.; Mezard, M. Out of equilibrium dynamics in spin-glasses and other glassy systems. arXiv 1997, arXiv:cond-mat/9702070. [Google Scholar]
- Bouchaud, J.P.; Cugliandolo, L.; Kurchan, J.; Mezard, M. Mode coupling approximations, glass theory and disordered systems. Phys. A 1996, 226, 243. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, D. The Sherrington-Kirkpatrick model: An overview. J. Stat. Phys. 2012, 149, 362–383. [Google Scholar] [CrossRef] [Green Version]
- Wetterich, C. The Average action for scalar fields near phase transitions. Z. Phys. C 1993, 57, 451. [Google Scholar] [CrossRef]
- Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90. [Google Scholar] [CrossRef] [Green Version]
- Lahoche, V.; Samary, D.O. Ward identity violation for melonic T4-truncation. Nucl. Phys. B 2019, 940, 190. [Google Scholar] [CrossRef]
- Lahoche, V.; Samary, D.O. Nonperturbative renormalization group beyond the melonic sector: The effective vertex expansion method for group fields theories. Phys. Rev. D 2018, 98, 126010. [Google Scholar] [CrossRef] [Green Version]
- Lahoche, V.; Samary, D.O. Revisited functional renormalization group approach for random matrices in the large-N limit. Phys. Rev. D 2020, 101, 106015. [Google Scholar] [CrossRef]
- Lahoche, V.; Samary, D.O. Reliability of the local truncations for the random tensor models renormalization group flow. Phys. Rev. D 2020, 102, 056002. [Google Scholar] [CrossRef]
- Pawlowski, J.M.; Scherer, M.M.; Schmidt, R.; Wetzel, S.J. Physics and the choice of regulators in functional renormalisation group flows. Ann. Phys. 2015, 384, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Lahoche, V.; Samary, D.O. Pedagogical comments about nonperturbative Ward-constrained melonic renormalization group flow. Phys. Rev. D 2020, 101, 024001. [Google Scholar] [CrossRef] [Green Version]
- Lahoche, V.; Samary, D.O. Ward-constrained melonic renormalization group flow for the rank-four ϕ6 tensorial group field theory. Phys. Rev. D 2019, 100, 086009. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Optimization of the exact renormalization group. Phys. Lett. B 2000, 486, 92. [Google Scholar] [CrossRef] [Green Version]
- Litim, D.F. Derivative expansion and renormalization group flows. J. High Energy Phys. 2001, 0111, 059. [Google Scholar] [CrossRef] [Green Version]
- Canet, L.; Delamotte, B.; Mouhanna, D.; Vidal, J. Optimization of the derivative expansion in the nonperturbative renormalization group. Phys. Rev. D 2003, 67, 065004. [Google Scholar] [CrossRef] [Green Version]
- Bagnuls, C.; Bervillier, C. Classical to critical crossovers from field theory. Phys. Rev. E 2002, 65, 066132. [Google Scholar] [CrossRef] [Green Version]
- Balog, I.; Chaté, H.; Delamotte, B.; Marohnic, M.; Wschebor, N. Convergence of Nonperturbative Approximations to the Renormalization Group. Phys. Rev. Lett. 2019, 123, 240604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defenu, N.; Mati, P.; Marian, I.G.; Nandori, I.; Trombettoni, A. Truncation Effects in the Functional Renormalization Group Study of Spontaneous Symmetry Breaking. J. High Energy Phys. 2015, 1505, 141. [Google Scholar] [CrossRef] [Green Version]
- Montanari, A.; Richard, E. A statistical model for tensor PCA. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahoche, V.; Ousmane Samary, D.; Tamaazousti, M. Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra I: Matricial Data. Entropy 2021, 23, 1132. https://doi.org/10.3390/e23091132
Lahoche V, Ousmane Samary D, Tamaazousti M. Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra I: Matricial Data. Entropy. 2021; 23(9):1132. https://doi.org/10.3390/e23091132
Chicago/Turabian StyleLahoche, Vincent, Dine Ousmane Samary, and Mohamed Tamaazousti. 2021. "Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra I: Matricial Data" Entropy 23, no. 9: 1132. https://doi.org/10.3390/e23091132
APA StyleLahoche, V., Ousmane Samary, D., & Tamaazousti, M. (2021). Field Theoretical Approach for Signal Detection in Nearly Continuous Positive Spectra I: Matricial Data. Entropy, 23(9), 1132. https://doi.org/10.3390/e23091132