Abstract
We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Our main results apply to local (in position space) RG maps acting on systems of bounded spins (compact single-spin space). Regarding regularity, we show that the RG map, defined on a suitable space of interactions (=formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce, and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d⩾3, these pathologies occur in a full neighborhood {β>β 0, ¦h¦<ε(β)} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d⩾2, the pathologies occur at low temperatures for arbitrary magnetic field strength. Pathologies may also occur in the critical region for Ising models in dimension d⩾4. We discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems. In addition, we discuss critically the concept of Gibbs measure, which is at the heart of present-day classical statistical mechanics. We provide a careful, and, we hope, pedagogical, overview of the theory of Gibbsian measures as well as (the less familiar) non-Gibbsian measures, emphasizing the distinction between these two objects and the possible occurrence of the latter in different physical situations. We give a rather complete catalogue of the known examples of such occurrences. The main message of this paper is that, despite a well-established tradition, Gibbsiannessshould not be taken for granted.
Similar content being viewed by others
References
M. Aizenman, Translation invariance and instability of phase coexistence in the two dimensional Ising system,Commun. Math. Phys. 73:83–94 (1980).
M. Aizenman, Geometric analysis ofϕ 44 fields and Ising models. Parts I and II,Commun. Math. Phys. 86:1–48 (1982).
M. Aizenman, The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory,Commun. Math. Phys. 97:91–110 (1985).
M. Aizenman, J. Bricmont, and J. L. Lebowitz, Percolation of the minority spins in high-dimensional Ising models,J. Stat. Phys. 49:859–865 (1987).
M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich, and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces,Commun. Math. Phys. 92:19–69 (1983).
M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Discontinuity of the magnetization in one-dimensional 1/¦x−y¦2 Ising and Potts models,J. Stat. Phys. 50:1–40 (1988).
M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models,J. Stat. Phys. 44:393–454 (1986).
M. Aizenman and R. Graham, On the renormalized coupling constant and the susceptibility inϕ 44 field theory and the Ising model in four dimensions,Nucl. Phys. B 225[FS9]:261–288 (1983).
M. Aizenman and E. H. Lieb, The third law of thermodynamics and the degeneracy of the ground state for lattice systems,J. Stat. Phys. 24:279–297 (1981).
M. P. Almeida and B. Gidas, A variational method for estimating the parameters of MRF from complete or incomplete data,Ann. Appl. Probab. 3:103–136 (1993).
D. J. Amit and L. Peliti, On dangerous irrelevant operators,Ann. Phys. 140:207–231 (1982).
P. W. Anderson and G. Yuval, Some numerical results on the Kondo problem and the inverse-square one-dimensional Ising model,J. Phys. C 4:607–620 (1971).
P. W. Anderson, G. Yuval, and D. R. Hamann, Exact results in the Kondo problem. II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical models,Phys. Rev. B 1:4464–4473 (1970).
C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich, Polymers and gϕ4 theory in four dimensions,Nucl. Phys. B 215[FS7]:209–248 (1983).
M. Asorey, J. G. Esteve, R. Fernández, and J. Salas, Rigorous analysis of renormalization group pathologies in the 4-state clock model,Nucl. Phys. B 392:593–618 (1993).
M. B. Averintsev, Gibbs description of random fields whose conditional probabilities may vanish,Probl. Inform. Transmission 11:326–334 (1975).
R. R. Bahadur,Some Limit Theorems in Statistics (SIAM, Philadelphia, Pennsylvania, 1971).
G. A. Baker and S. Krinsky, Renormalization group structure of translation invariant ferromagnets,J. Math. Phys. 18:590–607 (1977).
T. Balaban, Ultraviolet stability in field theory. Theφ 43 model, inScaling and Self-Similarity in Physics, J. Fröhlich, ed. (Birkhäuser, Basel, 1983).
T. Balaban, Large field renormalization. II. Localization, exponentiation and bounds for theR operation,Commun. Math. Phys. 122:355–392 (1989).
R. Balian,From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (Springer-Verlag, Berlin, 1991).
A. G. Basuev, Complete phase diagrams with respect to external fields at low temperatures for models with nearest-neighbor interaction in the case of a finite or countable number of ground states,Theor. Math. Phys. 58:171–182 (1984).
A. G. Basuev, Hamiltonian of the phase separation border and phase transitions of the first kind. I,Theor. Math. Phys. 64:716–734 (1985).
A. G. Basuev, Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases,Theor. Math. Phys. 72:861–871 (1987).
G. A. Battle and L. Rosen, The FKG inequality for the Yukawa2 quantum field theory,J. Stat. Phys. 22:123–192 (1980).
H. Bauer,Probability Theory and Elements of Measure Theory (Holt, Rinehart and Winston, New York, 1972).
R. T. Baumel, On spontaneously broken symmetry in the P(φ)2 model quantum field theory, Ph.D. thesis, Princeton University (June 1979).
T. L. Bell and K. G. Wilson, Finite-lattice approximations to renormalization groups,Phys. Rev. B 11:3431–3444 (1975).
G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolò, E. Olivieri, E. Presutti, and E. Scacciatelli, Ultraviolet stability in Euclidean scalar field theories,Commun. Math. Phys. 71:95–130 (1980).
P. Billingsley,Convergence of Probability Measures (Wiley, New York, 1968).
P. Billingsley,Probability and Measure (Wiley, New York, 1979).
M. J. Bissett, A perturbation-theoretic derivation of Wilson's ‘incomplete integration’ theory,J. Phys. C 6:3061–3070 (1973).
P. M. Bleher and P. Major, Critical phenomena and universal exponents in statistical physics. On Dyson's hierarchical model,Ann. Prob. 15:431–477 (1987).
H. W. J. Blöte and R. H. Swendsen, First-order phase transitions and the three-state Potts model,Phys. Rev. Lett. 43:799–802 (1979).
E. Bolthausen, Markov process large deviations in the τ-topology,Stoch. Proc. Appl. 25:95–108 (1987).
C. Borgs and J. Z. Imbrie, A unified approach to phase diagrams in field theory and statistical mechanics,Commun. Math. Phys. 123:305–328 (1989).
C. Borgs and R. Kotecký, A rigorous theory of finite-size scaling at first-order phase transitions,J. Stat. Phys. 61:79–119 (1990).
H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures, inFunctional Integration and its Applications, A. M. Arthurs, ed. (Clarendon Press, Oxford, 1975).
H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,J. Funct. Anal. 22:366–389 (1976).
H. J. Brascamp, E. H. Lieb, and J. L. Lebowitz, The statistical mechanics of anharmonic lattices,Bull. Int. Statist. Inst. 46 (Book 1):393–404 (1975).
O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics II (Springer-Verlag, Berlin, 1981).
J. Bricmont, J.-R. Fontaine, and L. J. Landau, On the uniqueness of the equilibrium state for plane rotators,Commun. Math. Phys. 56:281–290 (1977).
J. Bricmont, J.-R. Fontaine, J. L. Lebowitz, and T. Spencer, Lattice systems with a continuous symmetry I. Perturbation theory for unbounded spins,Commun. Math. Phys. 78:281–302 (1980).
J. Bricmont and A. Kupiainen, Lower critical dimension for the random field Ising model,Phys. Rev. Lett. 59:1829–1832 (1987).
J. Bricmont and A. Kupiainen, Phase transition in the 3d random field Ising model,Commun. Math. Phys. 116:539–572 (1988).
J. Bricmont, K. Kuroda, and J. L. Lebowitz, The structure of Gibbs states and phase coexistence for non-symmetric continuum Widom-Rowlinson models,Z. Wahrsch. verw. Geb. 67:121–138 (1984).
J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory,Commun. Math. Phys. 101:501–538 (1985).
J. Bricmont and J. Slawny, First order phase transitions and perturbation theory, inStatistical Mechanics and Field Theory: Mathematical Aspects (Proceedings, Groningen 1985, Lecture Notes in Physics #257, T. C. Dorlas, N. M. Hugenholtz, and M. Winnink, eds. (Springer-Verlag, Berlin, 1986).
J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states,J. Stat. Phys. 54:89–161 (1989).
D. A. Browne and P. Kleban, Equilibrium statistical mechanics for kinetic phase transitions,Phys. Rev. A 40:1615–1626 (1989).
A. D. Bruce and A. Aharony, Coupled order parameters, symmetry-breaking irrelevant scaling fields, and tetracritical points,Phys. Rev. B 11:478–499 (1975).
W. Bryc, On the large deviation principle for stationary weakly dependent random fields,Ann. Prob. 20:1004–1030 (1992).
D. Brydges and T. Spencer, Self-avoiding walks in 5 or more dimensions,Commun. Math. Phys. 97:125–148 (1985).
D. Brydges and H.-T. Yau, Gradϕ perturbations of massless Gaussian fields,Commun. Math. Phys. 129:351–392 (1990).
T. W. Burkhardt, Random-field singularities in position-space renormalization-group transformations,Phys. Rev. Lett. 43:1629–1631 (1979).
T. W. Burkhardt and J. M. J. van Leeuwen, Progress and problems in real-space renormalization, inReal-Space Renormalization, T. W. Burkhardt and J. M. J. van Leeuwen, eds. (Springer-Verlag, Berlin, 1982).
C. Cammarota, The large block spin interaction,Nuovo Cim. B 96:1–16 (1986).
J. L. Cardy, One-dimensional models with 1/r 2 interactions,J. Phys. A 14:1407–1415 (1981).
E. A. Carlen and A. Soffer, Entropy production by block spin summation and central limit theorems,Commun. Math. Phys. 140:339–371 (1992).
M. Cassandro and E. Olivieri, Renormalization group and analyticity in one dimension: A proof of Dobrushin's theorem,Commun. Math. Phys. 80:255–269 (1981).
M. Cassandro, E. Olivieri, A. Pellegrinotti, and E. Presutti, Existence and uniqueness of DLR measures for unbounded spin systems,Z. Wahrsch. verw. Geb. 41:313–334 (1978).
N. N. Čencov,Statistical Decision Rules and Optimal Inference (American Mathematical Society, Providence, Rhode Island, 1982).
S. Chowla and M. Cowles, Remarks on equations related to Fermat's last theorem, inNumber Theory Related to Fermat's Last Theorem, N. Koblitz, ed. (Birkhäuser, Basel, 1982).
D. V. Chudnovsky and G. V. Chudnovsky, Transcendental methods and theta-functions, inProceedings of Symposia in Pure Mathematics, Vol. 49, Part 2 (American Mathematical Society, Providence, Rhode Island, 1989), pp. 167–232.
F. S. Cohen and D. B. Cooper, Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian random fields,IEEE Trans. Pattern Anal. Machine Intell. 9:195–219 (1987).
J. E. Cohen, Y. Iwasa, G. Rautu, M. B. Ruskai, E. Seneta, and G. Zbaganu, Relative entropy under mappings by stochastic matrices,Lin. Alg. Appl. 179:211–235 (1993).
F. Comets, Grandes déviations pour des champs de Gibbs sur ℤd,C. R. Acad. Sci. Paris I 303:511–513 (1986).
I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, Berlin, 1982).
I. Csiszár, Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten,Magyar Tud. Akad. Mat. Kutató Int. Közl. 8:85–108 (1963) [see alsoMath. Rev. 29, #1671 (1965)].
I. Csiszár,I-divergence geometry of probability distributions and minimization problems,Ann. Prob. 3:146–158 (1975).
I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem,Ann. Prob. 12:768–793 (1984).
H. A. M. Daniëls and A. C. D. van Enter, Differentiability properties of the pressure in lattice systems,Commun. Math. Phys. 71:65–76 (1980).
J. de Coninck and C. M. Newman, The magnetization-energy scaling limit in high dimension,J. Stat. Phys. 59:1451–1467 (1990).
K. Decker, A. Hasenfratz, and P. Hasenfratz, Singular renormalization group transformations and first order phase transitions (II). Monte Carlo renormalization group results,Nucl. Phys. B 295[FS21]:21–35 (1988).
C. Dellacherie and P.-A. Meyer,Probabilities and Potential (North-Holland, Amsterdam, 1978).
P. Dénes, Über die Diophantische Gleichungx l +y l =cz l,Acta Math. 88:241–251 (1952).
J.-D. Deuschel and D. W. Stroock,Large Deviations (Academic Press, San Diego, 1989).
L. E. Dickson,History of the Theory of Numbers, Vol. II (Chelsea, New York, 1971).
E. L. Dinaburg and A. E. Mazel, Low-temperature phase transitions in ANNNI model, inProceedings 8th International Congress on Mathematical Physics, M. Mebkhout and R. Sénéor, eds. (World Scientific, Singapore, 1987).
E. L. Dinaburg and A. E. Mazel, Analysis of low-temperature phase diagram of the microemulsion model,Commun. Math. Phys. 125:25–42 (1989).
E. L. Dinaburg, A. E. Mazel, and Ya. G. Sinai, ANNNI model and contour models with interactions, inMathematical Physics Reviews, Soviet Science Reviews Section C, Vol. 6, S. P. Novikov, ed. (Gordon and Breach, New York, 1986).
E. L. Dinaburg and Ya. G. Sinai, An analysis of ANNNI model by Peierl's [sic] contour method,Commun. Math. Phys. 98:119–144 (1985).
P. G. L. Dirichlet, Mémoire sur l'impossibilité de quelques équations indéterminées du cinquième degré,J. Reine Angew. Math. (Crelle's J.) 3:354–376 (1828).
R. L. Dobrushin, Existence of a phase transition in the two-dimensional and three-dimensional Ising models,Sov. Phys. Doklady 10:111–113 (1965).
R. L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity,Theor. Prob. Appl. 13:197–224 (1968).
R. L. Dobrushin, The problem of uniqueness of a Gibbs random field and the problem of phase transitions,Funct. Anal. Appl. 2:302–312 (1968).
R. L. Dobrushin, Gibbs states describing coexistence of phases for a three-dimensional Ising model,Theor. Prob. Appl. 17:582–600 (1972).
R. L. Dobrushin, Gaussian random fields—Gibbsian point of view, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 119–152.
R. L. Dobrushin, J. Kolafa, and S. B. Shlosman, Phase diagram of the two-dimensional Ising antiferromagnet (computer-assisted proof),Commun. Math. Phys. 102:89–103 (1985).
R. L. Dobrushin and M. R. Martirosyan, Nonfinite perturbations of Gibbs fields,Theor. Math. Phys. 74:10–20 (1988).
R. L. Dobrushin and M. R. Martirosyan, Possibility of high-temperature phase transitions due to the many-particle nature of the potential,Theor. Math. Phys. 75:443–448 (1988).
R. L. Dobrushin and E. A. Pecherski, Uniqueness condition for finitely dependent random fields, inRandom Fields. Esztergom (Hungary) 1979, Vol. I (North-Holland, Amsterdam, 1981).
R. L. Dobrushin and E. A. Pecherski, A criterion for the uniqueness of Gibbsian fields in the non-compact case, inProbability Theory and Mathematical Statistics, Lecture Notes in Mathematics #1021, (Springer-Verlag, Berlin, 1983), pp. 97–110.
R. L. Dobrushin and S. B. Shlosman, Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetries, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 199–210.
R. L. Dobrushin and S. B. Shlosman, Completely analytic random fields, inStatistical Mechanics and Dynamical Systems, J. Fritz, A. Jaffe and D. Szàsz, eds. (Birkhäuser, Basel, 1985).
R. L. Dobrushin and S. B. Shlosman, Constructive criterion for the uniqueness of a Gibbs field, inStatistical Mechanics and Dynamical Systems, J. Fritz, A. Jaffe and D. Szàsz, eds. (Birkhäuser, Basel, 1985).
R. L. Dobrushin and S. B. Shlosman, The problem of translation invariance of Gibbs states at low temperatures, inMathematical Physics Reviews, Soviet Science Reviews Section C, Vol. 5, S. P. Novikov, ed. (Gordon and Breach, New York, 1985).
R. L. Dobrushin and S. B. Shlosman, Completely analytical interactions: Constructive description,J. Stat. Phys. 46:983–1014 (1987).
R. L. Dobrushin and M. Zahradnik, Phase diagrams for continuous spin systems, inMathematical Problems of Statistical Physics and Dynamics, R. L. Dobrushin, ed. (Reidel, Dordrecht, 1985).
Y. Domar, On the Diophantine equation ¦Ax n −By n¦=1,Math. Scand. 2:29–32 (1954).
M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I,Commun. Pure Appl. Math. 28:1–47 (1975).
M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, II,Commun. Pure Appl. Math. 28:279–301 (1975).
M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, III,Commun. Pure Appl. Math. 28:389–461 (1976).
M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, IV,Commun. Pure Appl. Math. 36:183–212 (1983).
T. C. Dorlas and A. C. D. van Enter, Non-Gibbsian limit for large-block majority-spin transformations,J. Stat. Phys. 55:171–181 (1989).
N. Dunford and J. T. Schwartz,Linear Operators (Interscience, New York, 1958).
F. Dunlop, Correlation inequalities for multicomponent rotators,Commun. Math. Phys. 49:247–256 (1976).
F. Dunlop and C. M. Newman, Multicomponent field theories and classical rotators,Commun. Math. Phys. 44:223–235 (1975).
E. B. Dynkin, Sufficient statistics and extreme points,Ann. Prob. 6:705–730 (1978).
R. E. Edwards,Fourier Series: A Modern Introduction, Vol. I (Holt, Rinehart and Winston, New York, 1967).
R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm,Phys. Rev. D 38:2009–2012 (1988).
R. S. Ellis,Entropy, Large Deviations and Statistical Mechanics (Springer-Verlag, Berlin, 1985).
J. H. Evertse,Upper Bounds for the Numbers of Solutions of Diophantine Equations (Mathematisch Centrum, Amsterdam, 1983).
G. Felder and J. Fröhlich, Intersection properties of simple random walks: A renormalization group approach,Commun. Math. Phys. 97:111–124 (1985).
B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. III. Correlation functions,Ann. Phys. 58:281–300 (1970).
B. U. Felderhof and M. E. Fisher, Phase transitions in one-dimensional cluster-interaction fluids. II. Simple logarithmic model,Ann. Phys. 58:268–280 (1970).
R. Fernández, J. Fröhlich, and A. D. Sokal,Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory (Springer-Verlag, Berlin, 1992).
M. E. Fisher, On discontinuity of the pressure,Commun. Math. Phys. 26:6–14 (1972).
M. E. Fisher, Crossover effects and operator expansions, inRenormalization Group in Critical Phenomena and Quantum Field Theory: Proceedings of a Conference, J. D. Gunton and M. S. Green, eds. (Temple University, Philadelphia, Pennsylvania, 1974), pp. 65–68.
M. E. Fisher, Scaling, universality and renormalization group theory, inCritical Phenomena (Stellenbosch 1982), Lecture Notes in Physics # 186, F. J. W. Hahne, ed. (Springer-Verlag, Berlin, 1983), pp. 1–139.
M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems,Phys. Rev. B 26:2507–2513 (1982).
M. E. Fisher and B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. IA. Thermodynamics,Ann. Phys. 58:176–216 (1970).
M. E. Fisher and B. U. Felderhof, Phase transitions in one-dimensional cluster-interaction fluids. IB. Critical behavior,Ann. Phys. 58:217–267 (1970).
M. E. Fisher and S. Sarbach, Nonuniversality of tricritical behavior,Phys. Rev. Lett. 41:1127–1130 (1978).
H. Föllmer, On entropy and information gain in random fields,Z. Wahrsch. verw. Geb. 26:207–217 (1973).
H. Föllmer, Random fields and diffusion processes, inÉcole d'été de Probabilités de Saint-Flour XV-XVII, Lecture Notes in Mathematics #1362, P. Hennequin, ed. (Springer-Verlag, Berlin, 1988).
H. Föllmer and S. Orey, Large deviations for the empirical field of a Gibbs measure,Ann. Prob. 16:961–977 (1988).
C. M. Fortuin, On the random cluster model. III. The simple random cluster model,Physica 59:545–570 (1972).
C. M. Fortuin, J. Ginibre, and P. W. Kasteleyn, Correlation inequalities on some partially ordered sets,Commun. Math. Phys. 22:89–103 (1971).
C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models,Physica 57:536–564 (1972).
Z. Friedman and J. Felsteiner, Kadanoff block transformation by the Monte-Carlo technique,Phys. Rev. B 15:5317–5319 (1977).
A. Frigessi and M. Piccioni, Parameter estimation for two-dimensional Ising fields corrupted by noise,Stoch. Proc. Appl. 34:297–311 (1990).
J. Fröhlich, On the triviality ofλϕ 44 theories and the approach to the critical point in d ≧ 4 dimensions,Nucl. Phys. B 200[FS4]:281–296 (1982).
J. Fröhlich, Mathematical aspects of the physics of disordered systems, inCritical Phenomena, Random Systems, Gauge Theories [Les Houches 1984], K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), Part II, pp. 725–893.
J. Fröhlich, R. B. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions,J. Stat. Phys. 22:297–347 (1980).
J. Fröhlich and C. E. Pfister, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems,Commun. Math. Phys. 81:277–298 (1981).
J. Fröhlich and T. Spencer, The Kosterlitz-Thouless phase transition in the two-dimensional plane rotator and Coulomb gas,Phys. Rev. Lett. 46:1006–1009 (1981).
J. Fröhlich and T. Spencer, The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas,Commun. Math. Phys. 81:527–602 (1981).
J. Fröhlich and T. Spencer, Phase diagrams and critical properties of (classical) Coulomb systems, inRigorous Atomic and Molecular Physics, G. Velo and A. S. Wightman, eds. (Plenum Press, New York, 1981), pp. 327–370.
J. Fröhlich and T. Spencer, The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy,Commun. Math. Phys. 84:87–101 (1982).
J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy,Commun. Math. Phys. 88:151–184 (1983).
G. Gallavotti and S. Miracle-Sole, Statistical mechanics of lattice systems,Commun. Math. Phys. 5:317–324 (1967).
G. Gallavotti and S. Miracle-Sole, Correlation functions of lattice systems,Commun. Math. Phys. 7:274–288 (1968).
G. Gallavotti and S. Miracle-Sole, Equilibrium states of the Ising model in the two-phase region,Phys. Rev. B 5:2555–2559 (1972).
J. M. Gandhi, On Fermat's last theorem,Am. Math. Monthly 71:998–1006 (1964).
P. Gänssler, Compactness and sequential compactness in spaces of measures,Z. Wahrsch. verw. Geb. 17:124–146 (1971).
P. L. Garrido, A. Labarta, and J. Marro, Stationary nonequilibrium states in the Ising model with locally competing temperatures,J. Stat. Phys. 49:551–568 (1987).
K. Gawedzki, Rigorous renormalization group at work,Physica 140A:78–84 (1986).
K. Gawedzki, R. Kotecký, and A. Kupiainen, Coarse graining approach to first order phase transitions,J. Stat. Phys. 47:701–724 (1987).
K. Gawedzki and A. Kupiainen, A rigorous block spin approach to massless lattice theories,Commun. Math. Phys. 77:31–64 (1980).
K. Gawedzki and A. Kupiainen, Block spin renormalization group for dipole gas andΔφ)4,Ann. Phys. 147:198–243 (1983).
K. Gawedzki and A. Kupiainen, Gross-Neveu model through convergent perturbation expansions,Commun. Math. Phys. 102:1–30 (1985).
K. Gawedzki and A. Kupiainen, Massless latticeφ 44 theory: Rigorous control of a renormalizable asymptotically free model,Commun. Math. Phys. 99:197–252 (1985).
K. Gawedzki and A. Kupiainen, Asymptotic freedom beyond perturbation theory, inCritical Phenomena, Random Systems, Gauge Theories [Les Houches 1984], K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), Part I, pp. 185–293.
D. Geman, Random fields and inverse problems in imaging, inEcole d'Eté de Probabilités de Saint-Flour XVIII-1988, Lecture Notes in Mathematics #1427, (Springer-Verlag, Berlin, 1990), pp. 116–193.
S. Geman, Hidden Markov models for image analysis, Lecture at Istituto per le Applicazioni del Calcolo, Rome (July 1990).
S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,IEEE Trans. Pattern Anal. Machine Intell. 6:721–741 (1984).
H.-O. Georgii, Large deviations and maximum entropy principle for interacting random fields on ℤd,Ann. Prob., to appear.
H.-O. Georgii, Two remarks on extremal equilibrium states,Commun. Math. Phys. 32:107–118 (1973).
H.-O. Georgii,Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).
B. Gidas, A renormalization group approach to image processing problems,IEEE Trans. Pattern Anal. Mach. Intell. 11:164–180 (1989).
J. Glimm and A. Jaffe, Positivity of theϕ 43 Hamiltonian,Fortschr. Physik 21:327–376 (1973).
J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View (Springer-Verlag, Berlin, 1981).
S. Goldstein, A note on specifications,Z. Wahrsch. verw. Geb. 46:45–51 (1978).
S. Goldstein, R. Kuik, J. L. Lebowitz, and C. Maes, From PCA's to equilibrium systems and back,Commun. Math. Phys. 125:71–79 (1989).
A. González-Arroyo, M. Okawa, and Y. Shimizu, Monte Carlo renormalization-group study of the four-dimensional Z2 gauge theory,Phys. Rev. Lett. 60:487–490 (1988).
A. González-Arroyo and J. Salas, Computing the couplings of Ising systems from Schwinger-Dyson equations,Phys. Lett. B 214:418–424 (1988).
A. González-Arroyo and J. Salas, Renormalization group flow of the two-dimensional Ising model atT< T c ,Phys. Lett. B 261:415–423 (1991).
M. Göpfert and G. Mack, Proof of confinement of static quarks in 3-dimensionalU(1) lattice gauge theory for all values of the coupling constant,Commun. Math. Phys. 82:545–606 (1982).
F. P. Greenleaf,Invariant Means on Topological Groups (Van Nostrand-Reinhold, New York, 1969).
R. B. Griffiths, Peierls' proof of spontaneous magnetization of a two-dimensional Ising ferromagnet,Phys. Rev. A136:437–439 (1964).
R. B. Griffiths, Rigorous results and theorems, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).
R. B. Griffiths, Phase diagrams and higher-order critical points,Phys. Rev. B 12:345–355 (1975).
R. B. Griffiths, Mathematical properties of renormalization-group transformations,Physica 106A:59–69 (1981).
R. B. Griffiths and P. A. Pearce, Position-space renormalization-group transformations: Some proofs and some problems,Phys. Rev. Lett. 41:917–920 (1978).
R. B. Griffiths and P. A. Pearce, Mathematical properties of position-space renormalization-group transformations,J. Stat. Phys. 20:499–545 (1979).
R. B. Griffiths and D. Ruelle, Strict convexity (“continuity”) of the pressure in lattice systems,Commun. Math. Phys. 23:169–175 (1971).
C. Grillenberger and U. Krengel, On the spatial constant of superadditive set functions in ℝd, inErgodic Theory and Related Topics, H. Michel, ed. (Akademie-Verlag, Berlin, 1982).
P. Groeneboom, J. Oosterhoff, and F. H. Ruymgaart, Large deviation theorems for empirical probability measures,Ann. Prob. 7:553–586 (1979).
L. Gross, Absence of second-order phase transitions in the Dobrushin uniqueness region,J. Stat. Phys. 25:57–72 (1981).
L. Gross, Thermodynamics, statistical mechanics, and random fields, inEcole d'Eté de Probabilités de Saint-Flour X-1980, Lecture Notes in Mathematics #929, (Springer-Verlag, Berlin, 1982).
C. Gruber and A. Sütő, Phase diagrams of lattice systems of residual entropy,J. Stat. Phys. 42:113–142 (1988).
P. Hall and C. C. Heyde,Martingale Limit Theory and its Application (Academic Press, New York, 1980).
T. Hara, A rigorous control of logarithmic corrections in four-dimensionalϕ 4 spin systems. I. Trajectory of effective Hamiltonians,J. Stat. Phys. 47:57–98 (1987).
T. Hara, Mean-field critical behaviour for correlation length for percolation in high dimensions,Prob. Theory Related Fields 86:337–385 (1990).
T. Hara and G. Slade, Mean-field critical behaviour for percolation in high dimensions,Commun. Math. Phys. 128:333–391 (1990).
T. Hara and G. Slade, On the upper critical dimension of lattice trees and lattice animals,J. Stat. Phys. 59:1469–1510 (1990).
T. Hara and G. Slade, Critical behaviour of self-avoiding walk in five or more dimensions,Bull. Am. Math. Soc. 25:417–423 (1991).
T. Hara and G. Slade, The lace expansion for self-avoiding walk in five or more dimensions,Rev. Math. Phys. 4:235–327 (1992).
T. Hara and G. Slade, Self-avoiding walk in five or more dimensions. I. The critical behaviour,Commun. Math. Phys. 147:101–136 (1992).
T. Hara and H. Tasaki, A rigorous control of logarithmic corrections in four-dimensionalϕ 4 spin systems. II. Critical behavior of susceptibility and correlation length,J. Stat. Phys. 47:99–121 (1987).
A. Hasenfratz and P. Hasenfratz, Singular renormalization group transformations and first order phase transitions (I),Nucl. Phys. B 295[FS21]:1–20 (1988).
A. Hasenfratz, P. Hasenfratz, U. Heller, and F. Karsch, Improved Monte Carlo renormalization group methods,Phys. Lett. B 140:76–82 (1984).
T. Heath,A History of Greek Mathematics (Clarendon Press, Oxford, 1921), Vol. I, pp. 91–93, 380.
Y. Higuchi, On the absence of non-translationally invariant Gibbs states for the two-dimensional Ising system, inRandom Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory (Esztergom 1979), J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981).
Y. Higuchi and R. Lang, On the convergence of the Kadanoff transformation towards trivial fixed points,Z. Wahrsch. verw. Geb. 58:109–123 (1981).
P. Holický, R. Kotecký, and M. Zahradník, Rigid interfaces for lattice models at low temperatures,J. Stat. Phys. 50:755–812 (1988).
W. Holsztynski and J. Slawny, Peierls condition and the number of ground states,Commun. Math. Phys. 61:177–190 (1978).
P. J. Huber, The behavior of maximum likelihood estimates under nonstandard conditions, inProceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, L. M. Le Cam and J. Neyman, eds. (University of California Press, Berkeley, 1967), Vol. I, pp. 221–233.
O. Hudák, On the character of peculiarities in the position-space renormalization-group transformations,Phys. Lett. A 73:273–274 (1979).
N. M. Hugenholtz,C *-algebras and statistical mechanics, inProceedings of Symposia in Pure Mathematics, Volume 38, Part 2 (American Mathematical Society, Providence, Rhode Island, 1982), pp. 407–465.
N. M. Hugenholtz, On the inverse problem in statistical mechanics,Commun. Math. Phys. 85:27–38 (1982).
D. Iagolnitzer and B. Souillard, Random fields and limit theorems, inRandom Fields (Esztergom, 1979), J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981), Vol. II, pp. 573–591.
I. A. Ibragimov and Yu. V. Linnik,Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971).
J. Z. Imbrie, Phase diagrams and cluster expansions for low temperatureP(φ)2 models. I. The phase diagram,Commun. Math. Phys. 82:261–304 (1981).
J. Z. Imbrie, Phase diagrams and cluster expansions for low temperatureP(φ)2 models. II. The Schwinger function,Commun. Math. Phys. 82:305–343 (1981).
S. N. Isakov, Nonanalytic features of the first order phase transition in the Ising model,Commun. Math. Phys. 95:427–443 (1984).
R. B. Israel, High-temperature analyticity in classical lattice systems,Commun. Math. Phys. 50:245–257 (1976).
R. B. Israel,Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1979).
R. B. Israel, Banach algebras and Kadanoff transformations, inRandom Fields (Esztergom, 1979), J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1981), Vol. II, pp. 593–608.
R. B. Israel, Generic triviality of phase diagrams in spaces of long-range interactions,Commun. Math. Phys. 106:459–466 (1986).
R. B. Israel and R. R. Phelps, Some convexity questions arising in statistical mechanics,Math. Scand. 54:133–156 (1984).
L. P. Kadanoff and A. Houghton, Numerical evaluations of the critical properties of the two-dimensional Ising model,Phys. Rev. B 11:377–386 (1975).
J.-P. Kahane,Séries de Fourier Absolument Convergentes (Springer-Verlag, Berlin, 1970).
I. A. Kashapov, Justification of the renormalization-group method,Theor. Math. Phys. 42:184–186 (1980).
A. Katz,Principles of Statistical Mechanics (Freeman, San Francisco, 1967).
T. Kennedy, Some rigorous results on majority rule renormalization group transformations near the critical point,J. Stat. Phys. 72:15–37 (1993).
T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long-range order,Physica 138A:320–358 (1986).
J. C. Kieffer, A counterexample to Perez's generalization of the Shannon-McMillan theorem,Ann. Prob. 1:362–364 (1973); Correction,Ann. Prob. 4:153–154 (1976).
W. Klein, D. J. Wallace, and R. K. P. Zia, Essential singularities at first-order phase transitions,Phys. Rev. Lett. 37:639–642 (1976).
H. Koch and P. Wittwer, A non-Gaussian renormalization group fixed point for hierarchical scalar lattice field theories,Commun. Math. Phys. 106:495–532 (1986).
H. Koch and P. Wittwer, On the renormalization group transformation for scalar hierarchical models,Commun. Math. Phys. 138:537–568 (1991).
J. M. Kosterlitz, The critical properties of the two-dimensionalxy model,J. Phys. C 7:1046–1060 (1974).
F. Koukiou, D. Petritis, and M. Zahradnik, Extension of the Pirogov-Sinai theory to a class of quasiperiodic interactions,Commun. Math. Phys. 118:365–383 (1988).
O. K. Kozlov, Gibbs description of a system of random variables,Probl. Inform. Transmission 10:258–265 (1974).
U. Krengel,Ergodic Theorems (de Gruyter, Berlin, 1985).
K. Krickeberg,Probability Theory (Addison-Wesley, Reading, Massachusetts, 1965).
S. Kullback,Information Theory and Statistics (Wiley, New York, 1959).
S. Kullback and R. A. Leibler, On information and sufficiency,Ann. Math. Stat. 22:79–86 (1951).
H. Künsch, Thermodynamics and statistical analysis of Gaussian random fields,Z. Wahrsch. verw. Geb. 58:407–421 (1981).
H. Künsch, Decay of correlations under Dobrushin's uniqueness condition and its applications,Commun. Math. Phys. 84:207–222 (1982).
H. Künsch, Non-reversible stationary measures for infinite interacting particle systems,Z. Wahrsch. verw. Geb. 66:407–424 (1984).
O. E. Lanford III, Entropy and equilibrium states in classical statistical mechanics, inStatistical Mechanics and Mathematical Problems (Battelle Seattle Rencontres 1971), Lecture Notes in Physics #20 (Springer-Verlag, Berlin, 1973), pp. 1–113.
O. E. Lanford III and D. W. Robinson, Statistical mechanics of quantum spin systems. III,Commun. Math. Phys. 9:327–338 (1968).
O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics,Commun. Math. Phys. 13:194–215 (1969).
C. B. Lang, Renormalization study of compactU(1) lattice gauge theory,Nucl. Phys. B 280[FS18]:255–275 (1987).
S. Lang,Introduction to Diophantine Approximations (Addison-Wesley, Reading, 1966).
I. D. Lawrie, Tricritical scaling and renormalisation ofφ ∂ operators in scalar systems near four dimensions,J. Phys. A 12:919–940 (1979).
V. A. Lebesgue, Sur l'équation indéterminéex 5 +y 5 =az 5,J. Math. Pures Appl. 8:49–70 (1843).
J. L. Lebowitz, Coexistence of phases in Ising ferromagnets,J. Stat. Phys. 16:463–476 (1977).
J. L. Lebowitz, Number of phases in one component ferromagnets, inMathematical Problems in Theoretical Physics, Lecture Notes in Physics #80, G. Dell'Antonio, S. Doplicher, and G. Jona-Lasinio, eds. (Springer-Verlag, Berlin, 1978).
J. L. Lebowitz, Microscopic origin of hydrodynamic equations: Derivation and consequences,Physica 140A:232–239 (1986).
J. L. Lebowitz and C. Maes, The effect of an external field on an interface, entropic repulsion,J. Stat. Phys. 46:39–49 (1987).
J. L. Lebowitz, C. Maes, and E. R. Speer, Statistical mechanics of probabilistic cellular automata,J. Stat. Phys. 59:117–170 (1990).
J. L. Lebowitz and O. Penrose, Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition,J. Math. Phys. 7:98–113 (1966).
J. L. Lebowitz and O. Penrose, Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuous systems,Commun. Math. Phys. 11:99–124 (1968).
J. L. Lebowitz and O. Penrose, Divergent susceptibility of isotropic ferromagnets,Phys. Rev. Lett. 35:549–551 (1975).
J. L. Lebowitz, M. K. Phani, and D. F. Styer, Phase diagram of Cu-Au-type alloys,J. Stat. Phys. 38:413–431 (1985).
J. L. Lebowitz and E. Presutti, Statistical mechanics of unbounded spin systems,Commun. Math. Phys. 50:195–218 (1976).
J. L. Lebowitz and R. H. Schonmann, Pseudo-free energies and large deviations for non-Gibbsian FKG measures,Prob. Theory Related Fields 77:49–64 (1988).
D. H. Lehmer [Review of ref. 76],Math. Rev. 16:903 (1955).
B. G. Leroux, Maximum-likelihood estimation for hidden Markov models,Stoch. Proc. Appl. 40:127–143 (1992).
A. L. Lewis, Lattice renormalization group and thermodynamic limit,Phys. Rev. B 16:1249–1252 (1977).
E. H. Lieb and A. D. Sokal, A general Lee-Yang theorem for one-component and multicomponent ferromagnets,Commun. Math. Phys. 80:153–179 (1981).
T. M. Liggett,Interacting Particle Systems (Springer-Verlag, Berlin, 1985).
J. Lindenstrauss, G. Olsen, and Y. Sternfeld, The Poulsen simplex,Ann. Inst. Fourier (Grenoble)28:91–114 (1978).
J. Lörinczi and M. Winnink, Some remarks on almost Gibbs states, inProceedings of the NATO Advanced Studies Institute Workshop on Cellular Automata and Cooperative Systems [Les Houches 1992], N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993).
S. K. Ma,Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, 1976).
C. Maes and F. Redig, Anisotropic perturbations of the simple symmetric exclusion process: Long range correlations,J. Phys. I (Paris)1:669–684 (1991).
C. Maes and K. van de Velde, Defining relative energies for the projected Ising measure,Helv. Phys. Acta 65:1055–1068 (1992).
C. Maes and K. van de Velde, The interaction potential of the stationary measure of a high-noise spinflip process,J. Math. Phys. 34:3030–3038 (1993).
F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization-group transformations for the Ising model,J. Stat. Phys. 72:1169–1177 (1993).
F. Martinelli and E. Scoppola, A simple stochastic cluster dynamics: Rigorous results,J. Phys. A 24:3135–3157 (1991).
D. G. Martirosyan, Uniqueness of Gibbs states in lattice models with one ground state,Theor. Math. Phys. 63:511–518 (1985).
A. E. Mazel and Yu. M. Suhov, Random surfaces with two-sided constraints: An application of the theory of dominant ground states,J. Stat. Phys. 64:111–134 (1991).
A. Messager, S. Miracle-Solé, and C.-E. Pfister, Correlation inequalities and uniqueness of the equilibrium state for the plane rotator ferromagnetic model,Commun. Math. Phys. 58:19–30 (1978).
J. Miekisz, The global minimum of energy is not always a sum of local minima—A note on frustration,J. Stat. Phys. 71:425–434 (1993).
J. Miekisz, Classical lattice gas model with a unique nondegenerate but unstable periodic ground state configuration,Commun. Math. Phys. 111:533–538 (1987).
M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method. II,Acta Arith. 53:251–287 (1989).
L. J. Mordell,Diophantine Equations (Academic Press, New York, 1969).
J. Moulin-Ollagnier, Théorème ergodique presque sous-additif et convergence en moyenne de l'information,Ann. Inst. Henri Poincaré B 19:257–266 (1983).
J. Moulin-Ollagnier and D. Pinchon, Mesures de Gibbs invariantes et mesures d'équilibre,Z. Wahrsch. verw. Geb. 55:11–23 (1981).
J. Moulin-Ollagnier and D. Pinchon, Filtre moyennant et valeurs moyennes de capacités invariantes,Bull. Soc. Math. Fr. 110:259–277 (1982).
J. Moussouris, Gibbs and Markov random systems with constraints,J. Stat. Phys. 10:11–33 (1974).
C. Mugler,Platon et la Recherche Mathématique de son Époque (P. H. Heitz, Strasbourg-Zürich, 1948), pp. 226–236.
D. R. Nelson, Coexistence-curve singularities in isotropic ferromagnets,Phys. Rev. B 13:2222–2230 (1976).
J. Neveu,Bases Mathématiques du Calcul des Probabilités, 2nd éd. (Masson, Paris, 1980) [English translation of first edition:Mathematical Foundations of the Calculus of Probability (Holden-Day, San Francisco, 1965)].
C. M. Newman, Normal fluctuations and the FKG inequalities,Commun. Math. Phys. 74:119–128 (1980).
C. M. Newman, A general central limit theorem for FKG systems,Commun. Math. Phys. 91:75–80 (1983).
C. M. Newman, Private communication (1984).
Th. Niemeijer and J. M. J. van Leeuwen, Wilson theory for spin systems on a triangular lattice,Phys. Rev. Lett. 31:1411–1414 (1973).
Th. Niemeijer and J. M. J. van Leeuwen, Renormalization theory for Ising-like spin systems, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).
Th. Niemeyer and J. M. J. van Leeuwen, Wilson theory for 2-dimensional Ising spin systems,Physica 71:17–40 (1974).
B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, First- and second-order phase transitions in Potts models: Renormalization-group solution,Phys. Rev. Lett. 43:737–740 (1979).
B. Nienhuis and M. Nauenberg, First-order phase transitions in renormalization-group theory,Phys. Rev. Lett. 35:477–479 (1975).
G. L. O'Brien, Scaling transformations for {0, 1}-valued sequences,Z. Wahrsch. verw. Geb. 53:35–49 (1980).
S. Olla, Large deviations for almost Markovian processes,Prob. Theory Related Fields 76:395–409 (1987).
S. Olla, Large deviations for Gibbs random fields,Prob. Theory Related Fields 77:343–357 (1988).
G. H. Olsen, On simplices and the Poulsen simplex, inFunctional Analysis: Surveys and Recent Results II [Proceedings of the Conference on Functional Analysis, Paderborn, Germany, 1979] (North-Holland, Amsterdam, 1980), pp. 31–52.
J. C. Oxtoby,Measure and Category (Springer-Verlag, Berlin, 1971).
Y. M. Park, Cluster expansion for classical and quantum lattice systems,J. Stat. Phys. 27:553–576 (1982).
Y. M. Park, Extension of Pirogov-Sinai theory of phase transitions to infinite range interactions. I. Cluster expansion,Commun. Math. Phys. 114:187–218 (1988).
Y. M. Park, Extension of Pirogov-Sinai theory of phase transitions to infinite range interactions. II. Phase diagram,Commun. Math. Phys. 114:219–241 (1988).
K. R. Parthasarathy,Probability Measures on Metric Spaces (Academic Press, New York, 1967).
E. A. Pecherski, The Peierls condition (GPS condition) is not always satisfied,Selecta Math. Sov. 3:87–91 (1983/1984).
R. Peierls, Ising's model of ferromagnetism,Proc. Camb. Phil. Soc. 32:477–481 (1936).
P. Pfeuty and G. Toulouse,Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York, 1977).
R. R. Phelps,Lectures on Choquet's Theorem (Van Nostrand, Princeton, New Jersey, 1966).
R. R. Phelps, Generic Fréchet differentiability of the pressure in certain lattice systems,Commun. Math. Phys. 91:557–562 (1983).
S. A. Pirogov, Coexistence of phases in a multicomponent lattice liquid with complex thermodynamic parameters,Theor. Math. Phys. 66:218–221 (1986).
S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems,Theor. Math. Phys. 25:1185–1192 (1976).
S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems. Continuation,Theor. Math. Phys. 26:39–49 (1976).
C. Prakash, High-temperature differentiability of lattice Gibbs states by Dobrushin uniqueness techniques,J. Stat. Phys. 31:169–228 (1983).
C. Preston,Random Fields (Springer-Verlag, Berlin, 1976).
C. Preston, Construction of specifications, inQuantum Fields, Algebras, Processes, Lecture Notes in Mathematics #534, L. Streit, ed. (Springer-Verlag, Berlin, 1980).
Proclus,Commentaire sur la République [Translation and notes by A. J. Festugière] (Librairie Philosophique J. Vrin, Paris, 1970), Vol. II, pp. 133–135.
L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition,Proc. IEEE 77:257–286 (1989).
C. Radin, Low temperature and the origin of crystalline symmetry,Int. J. Mod. Phys. B 1:1157–1191 (1987).
C. Radin, Disordered ground states of classical lattice models,Rev. Math. Phys. 3:125–135 (1991).
C. Rebbi and R. H. Swendsen, Monte Carlo renormalization-group studies ofq-state Potts models in two dimensions,Phys. Rev. B 21:4094–4107 (1980).
M. Reed and B. Simon,Methods of Modern Mathematical Physics I: Functional Analysis (Academic Press, New York, 1972).
L. E. Reichl,A Modern Course in Statistical Physics (University of Texas Press, Austin, Texas, 1980).
P. Ribenboim,The Book of Prime Number Records, 2nd ed. (Springer-Verlag, Berlin, 1989).
H. L. Royden,Real Analysis, 2nd ed. (Macmillan, New York, 1968).
W. Rudin,Functional Analysis (McGraw-Hill, New York, 1973).
D. Ruelle, Some remarks on the ground state of infinite systems in statistical mechanics,Commun. Math. Phys. 11:339–345 (1969).
D. Ruelle,Statistical Mechanics: Rigorous Results (Benjamin, Reading, Massachusetts, 1969).
D. Ruelle,Thermodynamic Formalism (Addison-Wesley, Reading, Massachusetts, 1978).
J. Salas, Private communication (1991).
S. Sarbach and M. E. Fisher, Tricritical scaling in the spherical model limit,J. Appl. Phys. 49:1350–1352 (1978).
S. Sarbach and M. E. Fisher, Tricriticality and the failure of scaling in the manycomponent limit,Phys. Rev. B 18:2350–2363 (1978).
S. Sarbach and M. E. Fisher, Tricritical coexistence in three dimensions: The multicomponent limit,Phys. Rev. B 20:2797–2817 (1979).
H. H. Schaefer,Topological Vector Spaces (Springer-Verlag, Berlin, 1980).
A. G. Schlijper, Tiling problems and undecidability in the cluster variation method,J. Stat. Phys. 50:689–714 (1988).
W. Schmidt,Diophantine Approximation, Lecture Notes in Mathematics #785 (Springer-Verlag, Berlin, 1980).
R. H. Schonmann, Second order large deviation estimates for ferromagnetic systems in the phase coexistence region,Commun. Math. Phys. 112:409–422 (1987).
R. H. Schonmann, Projections of Gibbs measures may be non-Gibbsian,Commun. Math. Phys. 124:1–7 (1989).
R. Schrader, Ground states in classical lattice systems with hard core,Commun. Math. Phys. 16:247–264 (1970).
L. Schwartz,Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures (Tata Institute of Fundamental Research and Oxford University Press, Oxford, 1973).
S. H. Shenker and J. Tobochnik, Monte Carlo renormalization-group analysis of the classical Heisenberg model in two dimensions,Phys. Rev. B 22:4462–4472 (1980).
S. B. Shlosman, Uniqueness and half-space nonuniqueness of Gibbs states in Czech models,Theor. Math. Phys. 66:284–293 (1986).
S. B. Shlosman, Gaussian behavior of the critical Ising model in dimensiond>4,Sov. Phys. Doklady 33:905–906 (1988).
S. B. Shlosman, Relations among the cumulants of random fields with attraction,Theor. Prob. Appl. 33:645–655 (1989).
S. D. Silvey,Statistical Inference (Chapman and Hall, London, 1975).
B. Simon and A. D. Sokal, Rigorous entropy-energy arguments,J. Stat. Phys. 25:679–694 (1981); Addendum,J. Stat. Phys. 29:155 (1982).
Ya. G. Sinai, Self-similar probability distributions,Theor. Prob. Appl. 21:64–80 (1976).
Ya. G. Sinai,Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 1982).
J. Slawny, Low-temperature properties of classical lattice systems: Phase transitions and phase diagrams, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1985).
A. D. Sokal, Existence of compatible families of proper regular conditional probabilities,Z. Wahrsch. verw. Geb. 56:537–548 (1981).
A. D. Sokal, Unpublished (1982).
A. D. Sokal, More surprises in the general theory of lattice systems,Commun. Math. Phys. 86:327–336 (1982).
A. D. Sokal, Subadditive set functions on a discrete amenable group, Unpublished manuscript (1984).
A. Stella, Singularities in renormalization group transformations,Physica 108A:211–220 (1981).
K. Subbarao, Renormalization group for Ising spins on a finite lattice,Phys. Rev. B 11:1165–1168 (1975).
W. G. Sullivan, Potentials for almost Markovian random fields,Commun. Math. Phys. 33:61–74 (1973).
R. H. Swendsen, Monte Carlo renormalization, inReal-Space Renormalization, T. W. Burkhardt and J. M. J. van Leeuwen, eds. (Springer-Verlag, New York, 1982), pp. 57–86.
R. H. Swendsen, Monte-Carlo renormalization group, inPhase Transitions (Cargèse 1980), M. Lévy, J.-C. LeGuillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982), pp. 395–422.
R. H. Swendsen, Monte Carlo calculation of renormalized coupling parameters. I.d=2 Ising model,Phys. Rev. B 30:3866–3874 (1984).
R. H. Swendsen and J.-S. Wang, Non-universal critical dynamics in Monte Carlo simulations,Phys. Rev. Lett. 58:86–88 (1987).
G. S. Sylvester, Inequalities for continuous spin Ising ferromagnets,J. Stat. Phys. 15:327–341 (1976).
I. Syozi, Transformation of Ising models, inPhase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, New York, 1972).
P. Tannery, Review of H. Konen, Geschichte der Gleichungt 2−Du 2=1,Bull. Sci. Math. 27:47–51 (1903).
Théon de Smyrne,Exposition des Connaissances Mathématiques Utiles pour la Lecture de Platon, [translated by J. Dupuis] (Hachette, Paris, 1892), pp. 71–75.
C. J. Thompson,Mathematical Statistical Mechanics (Princeton University Press, Princeton, New Jersey, 1979).
C. J. Thompson,Classical Equilibrium Statistical Mechanics (Clarendon Press, Oxford, 1988).
A. L. Toom, Stable and attractive trajectories in multicomponent systems, inMulticomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai, eds. (Marcel Dekker, New York, 1980), pp. 549–575.
H. van Beijeren, Interface sharpness in the Ising system,Commun. Math. Phys. 40:1–6 (1975).
A. C. D. van Enter, A note on the stability of phase diagrams in lattice systems,Commun. Math. Phys. 79:25–32 (1981).
A. C. D. van Enter, Instability of phase diagrams for a class of “irrelevant” perturbations,Phys. Rev. B 26:1336–1339 (1982).
A. C. D. van Enter and R. Fernández, A remark on different norms and analyticity for many-particle interactions,J. Stat. Phys. 56:965–972 (1989).
A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations,Nucl. Phys. B (Proc. Suppl.) 20:48–52 (1991).
A. C. D. van Enter, R. Fernández, and A. D. Sokal, Renormalization transformations in the vicinity of first-order phase transitions: What can and cannot go wrong,Phys. Rev. Lett. 66:3253–3256 (1991).
A. C. D. van Enter, R. Fernández, and A. D. Sokal, Non-Gibbsian states, inProceedings of the 1992 Prague Workshop on Phase Transitions, R. Kotecký, ed. (World Scientific, Singapore, 1993).
A. C. D. van Enter, R. Fernández, and A. D. Sokal, Non-Gibbsian states for renormalization-group transformations and beyond, inProceedings of the NATO Advanced Studies Institute Workshop on Cellular Automata and Cooperative Systems [Les Houches 1992, N. Boccara, E. Goles, S. Martinez, and P. Picco, eds. (Kluwer, Dordrecht, 1993).
A. C. D. van Enter and J. Miekisz, Breaking of periodicity at positive temperatures,Commun. Math. Phys. 134:647–651 (1990).
J. M. J. van Leeuwen, Singularities in the critical surface and universality for Ising-like spin systems,Phys. Rev. Lett. 34:1056–1058 (1975).
V. S. Varadarajan, Measures on topological spaces [in Russian],Mat. Sbornik N.S. 55(97):35–100 (1961) [English translation],Am. Math. Soc. Transl. Ser. 2 48:161–228 (1965)].
S. R. S. Varadhan, Private communication (1984).
S. R. S. Varadhan,Large Deviations and Applications (SIAM, Philadelphia, Pennsylvania, 1984).
J. Voigt, Stochastic operators, information and entropy,Commun. Math. Phys. 81:31–38 (1981).
J.-S. Wang and J. L. Lebowitz, Phase transitions and universality in nonequilibrium steady states of stochastic Ising models,J. Stat. Phys. 51:893–906 (1988).
F. J. Wegner and E. K. Riedel, Logarithmic corrections to the molecular-field behavior of critical and tricritical systems,Phys. Rev. B 7:248–256 (1973).
A. S. Wightman, Convexity and the notion of equilibrium state in thermodynamics and statistical mechanics. Introduction to R. B. Israel,Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1979).
K. G. Wilson, The renormalization group: Critical phenomena and the Kondo problem,Rev. Mod. Phys. 47:773–840 (1975).
K. G. Wilson and J. Kogut, The renormalization group and the ε-expansion,Phys. Rep. 12C:75–200 (1974).
M. Zahradník, An alternate version of Pirogov-Sinai theory,Commun. Math. Phys. 93:559–581 (1984).
M. Zahradník, Low temperature continuous spin Gibbs states on a lattice and the interfaces between them—A Pirogov-Sinai type approach, inStatistical Mechanics and Field Theory: Mathematical Aspects (Proceedings, Groningen 1985), Lecture Notes in Physics #257, T. C. Dorlas, N. M. Hugenholtz, and M. Winnink, eds. (Springer-Verlag, Berlin, 1986).
M. Zahradník, Analyticity of low-temperature phase diagrams of lattice spin models,J. Stat. Phys. 47:725–755 (1987).
M. Zahradník, Phase diagrams of lattice spin models. Cours de Troisième Cycle de la Physique en Suisse Romande, Lausanne (May 1987).
M. Zahradník, Low temperature phase diagrams of lattice models with random impurities, Preprint (1988).
M. Zahradník, Private communication (1990).
F. Igloi and C. Vanderzande, Renormalisation group study of the (2 + 1) dimensional Potts model,Physica A135:347–358 (1986).
K. A. Ribet, Wiles proves Taniyama's conjecture: Fermat's last theorem follows,Notices Amer. Math. Soc. 40:575–576 (1993).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
van Enter, A.C.D., Fernández, R. & Sokal, A.D. Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J Stat Phys 72, 879–1167 (1993). https://doi.org/10.1007/BF01048183
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01048183
Key words
- Renormalization group
- position-space renormalization
- real-space renormalization
- decimation transformation
- majority-rule transformation
- Kadanoff transformation
- block-spin transformation
- relative entropy
- large deviations
- Griffiths-Pearce pathologies
- Gibbs measure
- non-Gibbsian measure
- quasilocality
- Pirogov-Sinai theory
- Fermat's last theorem