A Novel and Fast Encryption System Based on Improved Josephus Scrambling and Chaotic Mapping
<p>(<b>a</b>–<b>c</b>) are the bifurcation diagrams of the tent map, piecewise linear map, and Chebyshev map, respectively; (<b>d</b>–<b>f</b>) are the corresponding Lyapunov exponent diagrams.</p> "> Figure 2
<p>An illustration of Josephus ring with a step size of 3.</p> "> Figure 3
<p>An illustration of IJRBP.</p> "> Figure 4
<p>Scrambling effects of different schemes: (<b>a</b>,<b>b</b>) source images; (<b>c</b>–<b>i</b>) the permuted images are acquired by a traditional Josephus ring with a step size of 3 [<a href="#B1-entropy-24-00384" class="html-bibr">1</a>,<a href="#B5-entropy-24-00384" class="html-bibr">5</a>,<a href="#B6-entropy-24-00384" class="html-bibr">6</a>,<a href="#B18-entropy-24-00384" class="html-bibr">18</a>,<a href="#B24-entropy-24-00384" class="html-bibr">24</a>,<a href="#B38-entropy-24-00384" class="html-bibr">38</a>]; (<b>j</b>,<b>k</b>) the permuted images are acquired by IJRBP.</p> "> Figure 5
<p>The proposed cryptosystem.</p> "> Figure 6
<p>Simulation outcomes: (<b>a</b>–<b>d</b>) source images; (<b>e</b>–<b>h</b>) histograms of the source images; (<b>i</b>–<b>l</b>) cipher images of (<b>a</b>–<b>d</b>); (<b>m</b>–<b>p</b>) histograms of (<b>i</b>–<b>l</b>); (<b>q</b>–<b>t</b>) decrypted images of (<b>i</b>–<b>l</b>).</p> "> Figure 7
<p>Correlation analysis. (<b>a</b>,<b>e</b>,<b>i</b>) are the correlation plots of the plain image of Lena; (<b>b</b>,<b>f</b>,<b>j</b>) are the correlation plots of the ciphered image of Lena; (<b>c</b>,<b>g</b>,<b>k</b>) are the correlation plots of the plain image of the baboon; (<b>d</b>,<b>h</b>,<b>l</b>) are the correlation plot of the ciphered image of the baboon.</p> "> Figure 8
<p>Simitation results of special images. (<b>a</b>) All white; (<b>b</b>) encrypted image of (<b>a</b>); (<b>c</b>) all black; (<b>d</b>) encrypted image of (<b>c</b>).</p> "> Figure 9
<p>The recovery results of images attacked by noise: (<b>a</b>–<b>d</b>) are encrypted images affected by salt-and-pepper noise at densities of 0.1, 0.2, 0.3, and 0.4; (<b>e</b>–<b>h</b>) are the corresponding decrypted images.</p> "> Figure 10
<p>Simulation results of data loss: (<b>a</b>–<b>d</b>) are the encrypted images of Lena with different degrees of data loss; (<b>e</b>–<b>h</b>) are the corresponding decrypted images.</p> "> Figure 11
<p>The execution speed bar chart of different encryption systems.</p> ">
Abstract
:1. Introduction
1.1. Research Background
1.2. The Weaknesses of Existing Works
- Some encryption schemes are insensitive to subtle differences of the original image and insufficient to resist chosen-plaintext attacks (CPAs). Table 1 shows the papers that have been cracked in recent years;
1.3. Contribution of Our Research
- The proposed IJRBP replaces the remove operation used in TJRP with the position exchange operation and employs random permutation steps instead of fixed steps, which avoids the drawbacks of TJRP to offer an excellent scrambling effect and a high permutation efficiency;
- A new encryption algorithm based on the IJRBP is developed. The new scheme strikes a balance between plaintext sensitivity and ciphertext sensitivity to obtain the ability to resist CPAs, as well as a high robustness for resisting noise attacks and data loss simultaneously;
- IJRBP can be used for scrambling grayscale images or color images of any size;
2. The Generation of a Pseudo-Random Sequence
2.1. The Involved Chaotic Map
2.2. Pseudo-Random Sequence Generation
3. Improved Josephus Ring-Based Permutation
Algorithm 1: Pseudo-code of IJRBP |
Input: The plaintext image P with size of , a random sequence with length |
Output: output result permuted plaintext matrix S. |
|
4. The Proposed Encryption System
4.1. Diffusion Stage
4.2. Decryption Algorithm
5. Simulation Results and Security Analysis
5.1. Security Key Space
5.2. Histogram Analysis
5.3. Correlation Analysis
5.4. Secret Key and Plaintext Sensitivity Analysis
5.4.1. Secret Key Sensitivity Analysis
5.4.2. Plaintext Sensitivity Analysis
5.5. Resistance to Chosen Plaintext Attack Analysis
5.6. Information Entropy Analysis
5.7. Noise Attack and Data Loss Analysis
5.8. Encrypted Time Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-Guillermo, M. Image encryption using q-deformed logistic map. Inf. Sci. 2021, 552, 352–364. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.; Sardana, P. A survey of image encryption algorithms. 3D Res. 2017, 8, 37. [Google Scholar] [CrossRef]
- Fridrich, J. Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 1998, 8, 1259–1284. [Google Scholar] [CrossRef]
- Hua, Z.; Yi, S.; Zhou, Y. Medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 2018, 144, 134–144. [Google Scholar] [CrossRef]
- Cao, W.; Mao, Y.; Zhou, Y. Designing a 2D infinite collapse map for image encryption. Signal Process. 2020, 171, 107457. [Google Scholar] [CrossRef]
- Huang, L.; Cai, S.; Xiao, M.; Xiong, X. A simple chaotic map-based image encryption system using both plaintext related permutation and diffusion. Entropy 2018, 20, 535. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Huang, L.; He, Y.; Xiong, X.; Cai, S.; Zhang, H. On a symmetric image encryption algorithm based on the peculiarity of plaintext DNA coding. Symmetry 2020, 12, 1393. [Google Scholar] [CrossRef]
- Abbasi, A.A.; Mazinani, M.; Hosseini, R. Evolutionary-based image encryption using biomolecules and non-coupled map lattice. Opt. Laser Technol. 2021, 140, 106974. [Google Scholar] [CrossRef]
- Agarwal, N.; Singh, P.K. Robust and Secure Watermarking for Propagation of Digital Multimedia by Paillier Homomorphic Cryptosystem With Arnold Transformation. Int. J. E-Health Med. Commun. 2021, 12, 17–31. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, M.; Qin, J.; Yang, H.; Gao, Z. A Secure Rotation Invariant LBP Feature Computation in Cloud Environment. CMC-Comput. Mater. Contin. 2021, 68, 2979–2993. [Google Scholar] [CrossRef]
- Njitacke, Z.T.; Sone, M.E.; Fozin, T.F.; Tsafack, N.; Leutcho, G.D.; Tchapga, C.T. Control of multistability with selection of chaotic attractor: Application to image encryption. Eur. Phys. J. Spec. Top. 2021, 230, 1839–1854. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Zhang, Y. A chaotic image encryption algorithm based on random dynamic mixing. Opt. Laser Technol. 2021, 138, 106837. [Google Scholar] [CrossRef]
- Yildirim, M. DNA encoding for RGB image encryption with memristor based neuron model and chaos phenomenon. Microelectron. J. 2020, 104, 104878. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zhu, X.; Luo, C. A novel chaotic algorithm for image encryption utilizing one-time pad based on pixel level and DNA level. Opt. Lasers Eng. 2020, 125, 105851. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, H.; Zhao, Y.L.; Zhu, Z.L. Image encryption based on three-dimensional bit matrix permutation. Signal Process. 2016, 118, 36–50. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, C. Plaintext-related image encryption algorithm based on block structure and five-dimensional chaotic map. IEEE Access 2019, 7, 147106–147118. [Google Scholar] [CrossRef]
- Pak, C.; Huang, L. A new color image encryption using combination of the 1D chaotic map. Signal Process. 2017, 138, 129–137. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, X. A novel plaintext-related image encryption scheme based on chaotic system and pixel permutation. IEEE Access 2020, 8, 22082–22093. [Google Scholar] [CrossRef]
- Li, X.; Mou, J.; Xiong, L.; Wang, Z.; Xu, J. Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption. Opt. Laser Technol. 2021, 140, 107074. [Google Scholar] [CrossRef]
- Zou, C.; Wang, X.; Li, H. Image encryption algorithm with matrix semi-tensor product. Nonlinear Dyn. 2021, 105, 859–876. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L. Application of chaotic Josephus scrambling and RNA computing in image encryption. Multimed. Tools Appl. 2021, 80, 23337–23358. [Google Scholar] [CrossRef]
- Huang, W.; Jiang, D.; An, Y.; Liu, L.; Wang, X. A novel double-image encryption algorithm based on Rossler hyperchaotic system and compressive sensing. IEEE Access 2021, 9, 41704–41716. [Google Scholar] [CrossRef]
- Hasheminejad, A.; Rostami, M. A novel bit level multiphase algorithm for image encryption based on PWLCM chaotic map. Optik 2019, 184, 205–213. [Google Scholar] [CrossRef]
- Pak, C.; An, K.; Jang, P.; Kim, J.; Kim, S. A novel bit-level color image encryption using improved 1D chaotic map. Multimed. Tools Appl. 2019, 78, 12027–12042. [Google Scholar] [CrossRef]
- Xu, C.; Sun, J.; Wang, C. A novel image encryption algorithm based on bit-plane matrix rotation and hyper chaotic systems. Multimed. Tools Appl. 2020, 79, 5573–5593. [Google Scholar] [CrossRef]
- Zhen, P.; Zhao, G.; Min, L.; Jin, X. Chaos-based image encryption scheme combining DNA coding and entropy. Multimed. Tools Appl. 2016, 75, 6303–6319. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, C.; Wang, J.; Hu, Y. A color image encryption using dynamic DNA and 4-D memristive hyper-chaos. IEEE Access 2019, 7, 78367–78378. [Google Scholar] [CrossRef]
- Sambas, A.; Vaidyanathan, S.; Tlelo-Cuautle, E.; Abd-El-Atty, B.; Abd El-Latif, A.A.; Guillén-Fernández, O.; Hidayat, Y.; Gundara, G. A 3-D multi-stable system with a peanut-shaped equilibrium curve: Circuit design, FPGA realization, and an application to image encryption. IEEE Access 2020, 8, 137116–137132. [Google Scholar] [CrossRef]
- Abd EL-Latif, A.A.; Abd-El-Atty, B.; Abou-Nassar, E.M.; Venegas-Andraca, S.E. Controlled alternate quantum walks based privacy preserving healthcare images in internet of things. Opt. Laser Technol. 2020, 124, 105942. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Hao, J.L.; Wang, X.Y. An efficient image encryption scheme based on S-boxes and fractional-order differential logistic map. IEEE Access 2020, 8, 54175–54188. [Google Scholar] [CrossRef]
- Elmanfaloty, R.A.; Alnajim, A.M.; Abou-Bakr, E. A Finite Precision Implementation of an Image Encryption Scheme Based on DNA Encoding and Binarized Chaotic Cores. IEEE Access 2021, 9, 136905–136916. [Google Scholar] [CrossRef]
- Yang, G.; Jin, H.; Bai, N. Image encryption using the chaotic Josephus matrix. Math. Probl. Eng. 2014, 2014, 632060. [Google Scholar] [CrossRef]
- Li, L.; Abd-El-Atty, B.; Abd El-Latif, A.A.; Ghoneim, A. Quantum color image encryption based on multiple discrete chaotic systems. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3–6 September 2017; pp. 555–559. [Google Scholar]
- Abd EL-Latif, A.A.; Abd-El-Atty, B.; Venegas-Andraca, S.E. Controlled alternate quantum walk-based pseudo-random number generator and its application to quantum color image encryption. Phys. A Stat. Mech. Appl. 2020, 547, 123869. [Google Scholar] [CrossRef]
- Tutueva, A.V.; Nepomuceno, E.G.; Karimov, A.I.; Andreev, V.S.; Butusov, D.N. Adaptive chaotic maps and their application to pseudo-random numbers generation. Chaos Solitons Fractals 2020, 133, 109615. [Google Scholar] [CrossRef]
- Nepomuceno, E.G.; Nardo, L.G.; Arias-Garcia, J.; Butusov, D.N.; Tutueva, A. Image encryption based on the pseudo-orbits from 1D chaotic map. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 061101. [Google Scholar] [CrossRef]
- Nardo, L.G.; Nepomuceno, E.G.; Arias-Garcia, J.; Butusov, D.N. Image encryption using finite-precision error. Chaos Solitons Fractals 2019, 123, 69–78. [Google Scholar] [CrossRef]
- Cai, S.; Huang, L.; Chen, X.; Xiong, X. A symmetric plaintext-related color image encryption system based on bit permutation. Entropy 2018, 20, 282. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xiao, D.; Chen, X.; Huang, H. Cryptanalysis and enhancements of image encryption using combination of the 1D chaotic map. Signal Process. 2018, 144, 444–452. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, C.; Ye, R. Cryptanalysis and improvement of medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 2020, 167, 107286. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wu, J.L. Cryptanalysis and improvement of a chaotic map-based image encryption system using both plaintext related permutation and diffusion. Entropy 2020, 22, 589. [Google Scholar] [CrossRef]
- Wu, J.; Liao, X.; Yang, B. Cryptanalysis and enhancements of image encryption based on three-dimensional bit matrix permutation. Signal Process. 2018, 142, 292–300. [Google Scholar] [CrossRef]
- Su, X.; Li, W.; Hu, H. Cryptanalysis of a chaos-based image encryption scheme combining DNA coding and entropy. Multimed. Tools Appl. 2017, 76, 14021–14033. [Google Scholar] [CrossRef]
- Zhang, Y. The fast image encryption algorithm based on lifting scheme and chaos. Inf. Sci. 2020, 520, 177–194. [Google Scholar] [CrossRef]
- Chai, X.; Gan, Z.; Yuan, K.; Chen, Y.; Liu, X. A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Comput. Appl. 2019, 31, 219–237. [Google Scholar] [CrossRef]
- Luo, Y.; Cao, L.; Qiu, S.; Lin, H.; Harkin, J.; Liu, J. A chaotic map-control-based and the plain image-related cryptosystem. Nonlinear Dyn. 2016, 83, 2293–2310. [Google Scholar] [CrossRef]
- Tutueva, A.; Pesterev, D.; Karimov, A.; Butusov, D.; Ostrovskii, V. Adaptive Chirikov map for pseudo-random number generation in chaos-based stream encryption. In Proceedings of the 2019 25th Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 5–8 November 2019; pp. 333–338. [Google Scholar]
- Stoyanov, B.; Ivanova, T. CHAOSA: Chaotic map based random number generator on Arduino platform. In AIP Conference Proceedings; AIP Publishing LLC: Sozopol, Bulgaria, 2019; Volume 2172, p. 090001. [Google Scholar]
Schemes | Category | Cryptanalyzed by | Attacks Employed |
---|---|---|---|
Pak et al. (2017) [17] | NPR | Wang et al. (2018) [39] | CPA |
Hua et al. (2018) [4] | NPR | Chen et al. (2020) [40] | CPA |
Huang et al. (2018) [6] | PR | Hu et al. (2020) [41] | CPA |
Zhang et al. (2016) [15] | NPR | Wu et al. (2018) [42] | CPA |
Zhen et al. (2016) [26] | PR | Su et al. (2017) [43] | CPA |
Schemes | Technique | Image | Speed (s) | Comments |
---|---|---|---|---|
Josephus ring with step = 3 | Josephus ring | Gray | 591.2136 | Poor permutation effect and low efficiency |
[1] | Circular shift | Gray | 0.0105 | High efficiency but average permutation effect |
[5] | Sorting | Gray | 75.2105 | Better permutation effect but low efficiency |
[24] | Sorting | Gray | 6215.2372 | Better permutation effect but unacceptable inefficiency |
[18] | Improved Josephus ring | Gray | 121.4508 | Better permutation effect than Josephus ring but low efficiency |
[6] | 2D cat map | Color | 2.8945 | Poor permutation effect and low efficiency |
[38] | Sorting | Color | 2.4200 | Poor permutation effect and low efficiency |
proposed | IJRBP | Gray | 0.1243 | Excellent confusion effect and high time efficiency |
proposed | IJRBP | Color | 0.2223 | Excellent confusion effect and high time efficiency |
Gray Image () | Proposed | Ref. [44] | Ref. [7] | Ref. [28] | Ref. [33] |
---|---|---|---|---|---|
Lena | 9.2222 | 9.5301 | 9.5244 | 9.2142 | 9.2196 |
Airfield | 8.4518 | 8.4455 | 8.4325 | 8.4246 | 8.4496 |
Boat | 9.2938 | 9.2975 | 9.2841 | 9.3047 | 9.2922 |
Ruler | 4.7589 | 4.7686 | 4.7482 | 4.7580 | 4.7727 |
Average | 7.9316 | 8.0104 | 7.9973 | 7.9253 | 7.9335 |
Schemes | Proposed | Ref. [44] | Ref. [45] | Ref. [46] | Ref. [28] | Ref. [47] | Ref. [48] |
---|---|---|---|---|---|---|---|
Key space size |
Gray Image () | Proposed | Ref. [44] | Ref. [7] | Ref. [28] | Ref. [33] |
---|---|---|---|---|---|
Lena | 984.13 | 931.05 | 1145.87 | 967.85 | 1025.5 |
Airfield | 1088.9 | 1145.07 | 1136.73 | 1077.8 | 940.73 |
Boat | 1011.4 | 1007.90 | 1630.34 | 942.87 | 998.27 |
Ruler | 885.38 | 995.73 | 6529.51 | 20,064 | 997.84 |
Average | 992.45 | 1019.76 | 2610.61 | 5763.13 | 990.58 |
Image | Original Image | Cipher Image | ||||
---|---|---|---|---|---|---|
Horizontal | Vertical | Diagonal | Horizontal | Vertical | Diagonal | |
Lena | 0.972 | 0.9853 | 0.9684 | −0.0005 | 0.0000 | −0.0034 |
Baboon | 0.8666 | 0.7593 | 0.7269 | 0.0001 | −0.0007 | −0.0028 |
Barbara | 0.8595 | 0.959 | 0.8426 | −0.0018 | −0.0007 | 0.0023 |
Cameraman | 0.9338 | 0.9597 | 0.9074 | −0.0023 | 0.0019 | −0.0027 |
Direction | Proposed | Ref. [45] | Ref. [7] | Ref. [15] | Ref. [46] | Ref. [28] | Ref. [33] |
---|---|---|---|---|---|---|---|
Horizontal | −0.0005 | −0.0139 | 0.0025 | −0.0042 | 0.0064 | 0.0015 | −0.004 |
D | 0.0000 | 6.7947 × 10 | −0.0026 | −0.0036 | 0.0029 | −0.0034 | −0.0052 |
V | −0.0034 | 0.0177 | −0.0019 | 0.0005 | 0.0078 | 0.0051 | −0.0017 |
Average | 0.0013 | 0.0107 | 0.0023 | 0.0027 | 0.0057 | 0.0033 | 0.0024 |
Direction | Proposed | Ref. [45] | Ref. [7] | Ref. [15] | Ref. [46] | Ref. [28] | Ref. [33] |
---|---|---|---|---|---|---|---|
Horizontal | 0.0001 | −0.0106 | 0.0019 | 0.0021 | 0.0018 | −0.0041 | 0.0002 |
D | −0.0007 | 0.0180 | 0.0036 | 0.0023 | 0.0056 | −0.0043 | −0.0026 |
V | −0.0028 | 0.0036 | 0.0014 | 0.0012 | −0.0016 | 0.0003 | 0.0029 |
Average | 0.0012 | 0.0072 | 0.0023 | 0.0018 | 0.0030 | 0.0029 | 0.0019 |
Image | Index | Theoretical Values | ||||
---|---|---|---|---|---|---|
Lena | NPCR | 99.6098 | 99.6087 | 99.6087 | 99.6096 | 99.6094 |
UACI | 33.4580 | 33.4658 | 33.4632 | 33.4642 | 33.4635 | |
Baboon | NPCR | 99.6055 | 99.6088 | 99.6075 | 99.6096 | 99.6094 |
UACI | 33.4342 | 33.4658 | 33.4691 | 33.4667 | 33.4635 | |
Boat | NPCR | 99.6067 | 99.6081 | 99.6092 | 99.6084 | 99.6094 |
UACI | 33.4395 | 33.4699 | 33.4644 | 33.4649 | 33.4635 | |
Barbara | NPCR | 99.6088 | 99.6085 | 99.6096 | 99.6095 | 99.6094 |
UACI | 33.4613 | 33.4692 | 33.4659 | 33.4662 | 33.4635 |
Image | Type | Size | NPCR (99.6094) | UACI (33.4635) |
---|---|---|---|---|
Lena | gray | 99.6095 | 33.4647 | |
Dollar | gray | 99.6099 | 33.4633 | |
Boat | gray | 99.6089 | 33.4673 | |
Plane | gray | 99.6095 | 33.4658 | |
Barbara | gray | 99.6088 | 33.4637 | |
Baboon | gray | 99.6093 | 33.4633 | |
Lena | gray | 99.6093 | 33.4647 | |
Cameraman | gray | 99.6071 | 33.4766 | |
Lena in Ref. [45] | gray | 99.58 | 33.43 | |
Baboon in Ref. [45] | gray | 99.63 | 33.41 | |
Cameraman in Ref. [45] | gray | 99.61 | 33.46 | |
Lena in Ref. [7] | gray | 99.6178 | 33.4412 | |
Baboon in Ref. [7] | gray | 99.6004 | 33.4522 | |
Cameraman in Ref. [7] | gray | 99.5987 | 33.4316 | |
Lena in Ref. [15] | gray | 99.6155 | 33.4988 | |
Lena in Ref. [46] | gray | 99.5994 | 33.4647 | |
Baboon in Ref. [46] | gray | 99.6351 | 33.4857 | |
Lena in Ref. [28] | gray | 0.0003 | 0.0015 | |
Baboon in Ref. [28] | gray | 0.0003 | 0.0015 | |
Lena in Ref. [33] | gray | 0.0003 | 0.0015 | |
Baboon in Ref. [33] | gray | 0.0003 | 0.0015 |
Index | Theoretical Values | ||||
---|---|---|---|---|---|
NPCR | 99.6090 | 99.6108 | 99.6093 | 99.6099 | 99.6094 |
UACI | 33.4607 | 33.4636 | 33.4663 | 33.4677 | 33.4635 |
Image | Type | Size | Plain Image | Cipher Image |
---|---|---|---|---|
Lena | gray | 7.4474 | 7.9993 | |
Baboon | gray | 7.1391 | 7.9993 | |
Barbara | gray | 7.4664 | 7.9993 | |
Lena in Ref. [45] | gray | 7.4456 | 7.9993 | |
Baboon in Ref. [45] | gray | 7.3579 | 7.9994 | |
Lena in Ref. [7] | gray | 7.4455 | 7.9993 | |
Baboon in Ref. [7] | gray | 7.3585 | 7.9993 | |
Lena in Ref. [15] | gray | – | 7.9992 | |
Baboon in Ref. [15] | gray | – | 7.9992 | |
Lena in Ref. [46] | gray | – | 7.9993 | |
Baboon in Ref. [46] | gray | – | 7.9992 | |
Lena in Ref. [28] | gray | 7.4474 | 7.9993 | |
Baboon in Ref. [28] | gray | 7.1391 | 7.9993 | |
Lena in Ref. [33] | gray | 7.4474 | 7.9994 | |
Baboon in Ref. [33] | gray | 7.1391 | 7.9994 |
Noise Attacks or Data Loss | PSNR |
---|---|
Salt-and-pepper noise (0.1) | 19.2388 |
Salt-and-pepper noise (0.2) | 16.2361 |
Salt-and-pepper noise (0.3) | 14.4661 |
Salt-and-pepper noise (0.4) | 13.2087 |
Data loss (60:250,60:250) | 17.8117 |
Data loss (1:100,1:512) | 16.2678 |
Data loss (1:512,250:450) | 13.2774 |
Data loss (300:512,1:512) | 13.0381 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan , Z.; Li, J.; Huang, L.; Xiong, X.; Liu, Y.; Cai, S. A Novel and Fast Encryption System Based on Improved Josephus Scrambling and Chaotic Mapping. Entropy 2022, 24, 384. https://doi.org/10.3390/e24030384
Guan Z, Li J, Huang L, Xiong X, Liu Y, Cai S. A Novel and Fast Encryption System Based on Improved Josephus Scrambling and Chaotic Mapping. Entropy. 2022; 24(3):384. https://doi.org/10.3390/e24030384
Chicago/Turabian StyleGuan , Zhaoxiong, Junxian Li, Linqing Huang, Xiaoming Xiong, Yuan Liu, and Shuting Cai. 2022. "A Novel and Fast Encryption System Based on Improved Josephus Scrambling and Chaotic Mapping" Entropy 24, no. 3: 384. https://doi.org/10.3390/e24030384
APA StyleGuan , Z., Li, J., Huang, L., Xiong, X., Liu, Y., & Cai, S. (2022). A Novel and Fast Encryption System Based on Improved Josephus Scrambling and Chaotic Mapping. Entropy, 24(3), 384. https://doi.org/10.3390/e24030384