Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis
<p>Imaging processing. Schematic representation of algorithms used to compute QSM using Regularization Enabled Sophisticated Harmonic Artifact Reduction for Phase data (RESHARP) and the Total Variation using Split Bregman (TVSB) on double-echo gradient echo (GRE) sequences, extract MS lesions using LeManPV from 3D FLAIR data and extract brain regions using Morphobox from 3D unenhanced T1-MP-RAGE data. Correlations between results and with the EDSS were then computed.</p> "> Figure 2
<p>Correlation between lesion load, DGM susceptibility and morphometry. (<b>A</b>) Interrelation between lesion load (abscissa) and DGM susceptibility (ordinate). (<b>B</b>) Interrelation between lesion load (abscissa) and DGM morphometry (ordinate). (<b>C</b>) Interrelation between DGM morphometry (abscissa) and susceptibility (ordinate). Only correlation coefficients with significant <span class="html-italic">p</span>-values are written down, with threshold value corrected for multiple comparison.</p> "> Figure 3
<p>Correlation between lesion load, NAWM susceptibility and WM morphometry. (<b>A</b>) Interrelation between lesion load (abscissa) and NAWM susceptibility (ordinate). (<b>B</b>) Interrelation between lesion load (abscissa) and WM morphometry (ordinate). (<b>C</b>) Interrelation between WM morphometry (abscissa) and NAWM susceptibility (ordinate). Only correlation coefficients with significant <span class="html-italic">p</span>-values are written down, with threshold value corrected for multiple comparison.</p> "> Figure 4
<p>Correlation between DGM and NAWM susceptibilities. Only correlation coefficients with significant <span class="html-italic">p</span>-values are written down, with threshold value corrected for multiple comparison.</p> "> Figure 5
<p>Correlation between EDSS and lesion load (first column) and between EDSS and NAWM susceptibility (second column). Only correlation coefficients with significant <span class="html-italic">p</span>-values are written down, with threshold value corrected for multiple comparison.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. MRI Acquisition
2.3. MRI Post-Processing
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Interrelation Between Lesion Load, DGM Susceptibility and DGM Morphometry
3.3. Interrelation Between Lesion Load, NAWM Susceptibility and WM Morphometry
3.4. Interrelation Between NAWM and DGM Susceptibility
3.5. Interrelation Between EDSS Clinical Score and MRI Metrics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vrenken, H.; Geurts, J.J.G.; Knol, D.L.; van Dijk, L.N.; Dattola, V.; Jasperse, B.; van Schijndel, R.A.; Polman, C.H.; Castelijns, J.A.; Barkhof, F.; et al. Whole-Brain T1 Mapping in Multiple Sclerosis: Global Changes of Normal-appearing Gray and White Matter. Radiology 2006, 240, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Wisnieff, C.; Ramanan, S.; Olesik, J.; Gauthier, S.; Wang, Y.; Pitt, D. Quantitative Susceptibility Mapping (Qsm) of White Matter Multiple Sclerosis Lesions: Interpreting Positive Susceptibility and the Presence of Iron. Magn. Reson. Med. 2015, 74, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Granziera, C.; Wuerfel, J.; Barkhof, F.; Calabrese, M.; De Stefano, N.; Enzinger, C.; Evangelou, N.; Filippi, M.; Geurts, J.J.; Reich, D.S.; et al. Quantitative Magnetic Resonance Imaging Towards Clinical Application in Multiple Sclerosis. Brain 2021, 144, 1296–1311. [Google Scholar] [CrossRef] [PubMed]
- Stüber, C.; Pitt, D.; Wang, Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int. J. Mol. Sci. 2016, 17, 100. [Google Scholar] [CrossRef]
- Langkammer, C.; Schweser, F.; Krebs, N.; Deistung, A.; Goessler, W.; Scheurer, E.; Sommer, K.; Reishofer, G.; Yen, K.; Fazekas, F.; et al. Quantitative Susceptibility Mapping (QSM) as a Means to Measure Brain Iron? A Post Mortem Validation Study. Neuroimage 2012, 62, 1593–1599. [Google Scholar] [CrossRef]
- Schweser, F.; Raffaini Duarte Martins, A.L.; Hagemeier, J.; Lin, F.; Hanspach, J.; Weinstock-Guttman, B.; Hametner, S.; Bergsland, N.; Dwyer, M.G.; Zivadinov, R. Mapping of Thalamic Magnetic Susceptibility in Multiple Sclerosis Indicates Decreasing Iron with Disease Duration: A Proposed Mechanistic Relationship between Inflammation and Oligodendrocyte Vitality. Neuroimage 2018, 167, 438–452. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Mu, K.; Pan, C.; Gauthier, S.A.; Zhu, W.; Wang, Y. Quantifying the Susceptibility Variation of Normal-Appearing White Matter in Multiple Sclerosis by Quantitative Susceptibility Mapping. Am. J. Roentgenol. 2017, 209, 889–894. [Google Scholar] [CrossRef]
- Langkammer, C.; Liu, T.; Khalil, M.; Enzinger, C.; Jehna, M.; Fuchs, S.; Fazekas, F.; Wang, Y.; Ropele, S. Quantitative Susceptibility Mapping in Multiple Sclerosis. Radiology 2013, 267, 551–559. [Google Scholar] [CrossRef]
- Hametner, S.; Wimmer, I.; Haider, L.; Pfeifenbring, S.; Brück, W.; Lassmann, H. Iron and Neurodegeneration in the Multiple Sclerosis Brain. Ann. Neurol. 2013, 74, 848–861. [Google Scholar] [CrossRef]
- Zivadinov, R.; Tavazzi, E.; Bergsland, N.; Hagemeier, J.; Lin, F.; Dwyer, M.G.; Carl, E.; Kolb, C.; Hojnacki, D.; Ramasamy, D.; et al. Brain Iron at Quantitative MRI Is Associated with Disability in Multiple Sclerosis. Radiology 2018, 289, 487–496. [Google Scholar] [CrossRef]
- Kipp, M.; Wagenknecht, N.; Beyer, C.; Samer, S.; Wuerfel, J.; Nikoubashman, O. Thalamus Pathology in Multiple Sclerosis: From Biology to Clinical Application. Cell. Mol. Life Sci. 2015, 72, 1127–1147. [Google Scholar] [CrossRef] [PubMed]
- Magon, S.; Tsagkas, C.; Gaetano, L.; Patel, R.; Naegelin, Y.; Amann, M.; Parmar, K.; Papadopoulou, A.; Wuerfel, J.; Stippich, C.; et al. Volume loss in the Deep Gray Matter and Thalamic Subnuclei: A Longitudinal Study on Disability Progression in Multiple Sclerosis. J. Neurol. 2020, 267, 1536–1546. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, C.J.; Cen, S.Y.; Khadka, S.; Liu, S.; Kornak, J.; Shi, Y.; Zheng, L.; Hauser, S.L.; Pelletier, D. Thalamic Atrophy in Multiple Sclerosis: A Magnetic Resonance IMAGING Marker of Neurodegeneration Throughout Disease. Ann. Neurol. 2018, 83, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Prados, F.; Brownlee, W.J.; Altmann, D.R.; Tur, C.; Cardoso, M.J.; De Angelis, F.; van de Pavert, S.H.; Cawley, N.; De Stefano, N.; et al. Deep Gray Matter Volume Loss Drives Disability Worsening in Multiple Sclerosis. Ann. Neurol. 2018, 83, 210–222. [Google Scholar] [CrossRef]
- Schoonheim, M.M.; Hulst, H.E.; Brandt, R.B.; Strik, M.; Wink, A.M.; Uitdehaag, B.M.J.; Barkhof, F.; Geurts, J.J.G. Thalamus Structure and Function Determine Severity of Cognitive Impairment in Multiple Sclerosis. Neurology 2015, 84, 776–783. [Google Scholar] [CrossRef]
- Rocca, M.A.; Mesaros, S.; Pagani, E.; Sormani, M.P.; Comi, G.; Filippi, M. Thalamic Damage and Long-term Progression of Disability in Multiple Sclerosis. Radiology 2010, 257, 463–469. [Google Scholar] [CrossRef]
- Henry, R.G.; Shieh, M.; Okuda, D.T.; Evangelista, A.; Gorno-Tempini, M.L.; Pelletier, D. Regional Grey Matter Atrophy in Clinically Isolated Syndromes at Presentation. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1236–1244. [Google Scholar] [CrossRef]
- Henry, R.G.; Shieh, M.; Amirbekian, B.; Chung, S.; Okuda, D.T.; Pelletier, D. Connecting White Matter Injury and Thalamic Atrophy in Clinically Isolated Syndromes. J. Neurol. Sci. 2009, 282, 61–66. [Google Scholar] [CrossRef]
- Schweser, F.; Hagemeier, J.; Dwyer, M.G.; Bergsland, N.; Hametner, S.; Weinstock-Guttman, B.; Zivadinov, R. Decreasing Brain Iron in Multiple Sclerosis: The Difference between Concentration and Content in Iron MRI. Hum. Brain Mapp. 2021, 42, 1463–1474. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L. Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Fartaria, M.J.; Bonnier, G.; Roche, A.; Kober, T.; Meuli, R.; Rotzinger, D.; Frackowiak, R.; Schluep, M.; Du Pasquier, R.; Thiran, J.P. Automated Detection of White Matter and Cortical Lesions in early Stages of Multiple Sclerosis. J. Magn. Reson. Imaging 2016, 43, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Fartaria, M.J.; Roche, A.; Meuli, R.; Granziera, C.; Kober, T.; Bach Cuadra, M. Segmentation of Cortical and Subcortical Multiple Sclerosis Lesions Based on Constrained Partial Volume Modeling. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017; pp. 142–149. [Google Scholar]
- Fartaria, M.J.; Todea, A.; Kober, T.; O’Brien, K.; Krueger, G.; Meuli, R.; Granziera, C.; Roche, A.; Bach Cuadra, M. Partial Volume-Aware Assessment of Multiple Sclerosis Lesions. Neuroimage Clin. 2018, 18, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Schmitter, D.; Roche, A.; Maréchal, B.; Ribes, D.; Abdulkadir, A.; Bach-Cuadra, M.; Daducci, A.; Granziera, C.; Klöppel, S.; Maeder, P. An Evaluation of Volume-Based Morphometry for Prediction of Mild Cognitive Impairment and Alzheimer’s Disease. NeuroImage Clin. 2015, 7, 7–17. [Google Scholar] [CrossRef]
- Deverdun, J.; Molino, F.; de Champfleur, N.M.; Le Bars, E. Validation of a Quantitative Susceptibility Mapping Acquisition and Reconstruction Pipeline Using a New Iron Sucrose based MR Susceptibility Phantom. J. Neuroradiol. 2017, 44, 269–272. [Google Scholar] [CrossRef]
- Carra-Dalliere, C.; Menjot de Champfleur, N.; Deverdun, J.; Ayrignac, X.; Nerrant, E.; Makinson, A.; Casanova, M.L.; Labauge, P. Use of Quantitative Susceptibility Mapping (QSM) in Progressive Multifocal Leukoencephalopathy. J. Neuroradiol. 2016, 43, 6–10. [Google Scholar] [CrossRef]
- Straub, S.; Schneider, T.M.; Emmerich, J.; Freitag, M.T.; Ziener, C.H.; Schlemmer, H.-P.; Ladd, M.E.; Laun, F.B. Suitable Reference Tissues for Quantitative Susceptibility Mapping of the Brain. Magn. Reson. Med. 2017, 78, 204–214. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a Tissue Magnetic Biomarker. Magn. Reson. Med. 2015, 73, 82–101. [Google Scholar] [CrossRef]
- Feng, X.; Deistung, A.; Reichenbach, J.R. Quantitative Susceptibility Mapping (QSM) and R2* in the Human Brain at 3T: Evaluation of Intra-Scanner Repeatability. Z. Med. Phys. 2018, 28, 36–48. [Google Scholar] [CrossRef]
- Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P. Elastix: A toolbox for Intensity-Based Medical Image Registration. IEEE Trans. Med. Imaging 2009, 29, 196–205. [Google Scholar] [CrossRef]
- Fisher, R.A. The Distribution of the Partial Correlation Coefficient. Metron 1924, 3, 329–332. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Voon, C.C.; Wiltgen, T.; Wiestler, B.; Schlaeger, S.; Mühlau, M. Quantitative Susceptibility Mapping in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Neuroimage Clin. 2024, 42, 103598. [Google Scholar] [CrossRef] [PubMed]
- Pietroboni, A.M.; Colombi, A.; Contarino, V.E.; Russo, F.M.L.; Conte, G.; Morabito, A.; Siggillino, S.; Carandini, T.; Fenoglio, C.; Arighi, A. Quantitative Susceptibility Mapping of the normal-Appearing WHITE Matter as a Potential New Marker of Disability progression in multiple sclerosis. Eur. Radiol. 2023, 33, 5368–5377. [Google Scholar] [CrossRef]
- Li, D.K.; Held, U.; Petkau, J.; Daumer, M.; Barkhof, F.; Fazekas, F.; Frank, J.A.; Kappos, L.; Miller, D.H.; Simon, J.H.; et al. MRI T2 Lesion Burden in Multiple Sclerosis: A Plateauing Relationship with Clinical Disability. Neurology 2006, 66, 1384–1389. [Google Scholar] [CrossRef]
- Filippi, M.; Rocca, M.A. Conventional MRI in Multiple Sclerosis. J. Neuroimaging 2007, 17 (Suppl. S1), 3S–9S. [Google Scholar] [CrossRef]
- Zhang, Y.; Gauthier, S.A.; Gupta, A.; Comunale, J.; Chia-Yi Chiang, G.; Zhou, D.; Chen, W.; Giambrone, A.E.; Zhu, W.; Wang, Y. Longitudinal Change in Magnetic Susceptibility of New Enhanced Multiple Sclerosis (MS) Lesions Measured on Serial Quantitative Susceptibility Mapping (QSM). J. Magn. Reson. Imaging 2016, 44, 426–432. [Google Scholar] [CrossRef]
- Kaunzner, U.W.; Kang, Y.; Zhang, S.; Morris, E.; Yao, Y.; Pandya, S.; Hurtado Rua, S.M.; Park, C.; Gillen, K.M.; Nguyen, T.D.; et al. Quantitative Susceptibility Mapping Identifies Inflammation in a Subset of Chronic Multiple Sclerosis Lesions. Brain J. Neurol. 2019, 142, 133–145. [Google Scholar] [CrossRef]
- Eskreis-Winkler, S.; Deh, K.; Gupta, A.; Liu, T.; Wisnieff, C.; Jin, M.; Gauthier, S.A.; Wang, Y.; Spincemaille, P. Multiple Sclerosis Lesion Geometry in Quantitative Susceptibility Mapping (QSM) and Phase Imaging. J. Magn. Reson. Imaging 2015, 42, 224–229. [Google Scholar] [CrossRef]
- Chen, W.; Gauthier, S.A.; Gupta, A.; Comunale, J.; Liu, T.; Wang, S.; Pei, M.; Pitt, D.; Wang, Y. Quantitative Susceptibility Mapping of Multiple Sclerosis Lesions at Various Ages. Radiology 2014, 271, 183–192. [Google Scholar] [CrossRef]
- Burgetova, A.; Dusek, P.; Vaneckova, M.; Horakova, D.; Langkammer, C.; Krasensky, J.; Sobisek, L.; Matras, P.; Masek, M.; Seidl, Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. Am. J. Neuroradiol. 2017, 38, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Chiang, G.C.; Hu, J.; Morris, E.; Wang, Y.; Gauthier, S.A. Quantitative Susceptibility Mapping of the Thalamus: Relationships with Thalamic Volume, Total Gray Matter Volume, and T2 Lesion Burden. Am. J. Neuroradiol. 2018, 39, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Rudko, D.A.; Solovey, I.; Gati, J.S.; Kremenchutzky, M.; Menon, R.S. Multiple Sclerosis: Improved Identification of Disease-relevant Changes in Gray and White Matter by Using Susceptibility-Based Mr Imaging. Radiology 2014, 272, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Lebel, R.M.; Eissa, A.; Seres, P.; Blevins, G.; Wilman, A.H. Quantitative High-Field Imaging of Sub-Cortical Gray Matter in Multiple Sclerosis. Mult. Scler. J. 2012, 18, 433–441. [Google Scholar] [CrossRef]
- Cobzas, D.; Sun, H.; Walsh, A.J.; Lebel, R.M.; Blevins, G.; Wilman, A.H. Subcortical Gray matter Segmentation and Voxel-Based Analysis Using Transverse Relaxation and Quantitative Susceptibility Mapping with Application to Multiple Sclerosis. J. Magn. Reson. Imaging 2015, 42, 1601–1610. [Google Scholar] [CrossRef]
- Khalil, M.; Langkammer, C.; Pichler, A.; Pinter, D.; Gattringer, T.; Bachmaier, G.; Ropele, S.; Fuchs, S.; Enzinger, C.; Fazekas, F. Dynamics of Brain Iron Levels in Multiple Sclerosis: A Longitudinal 3T MRI Study. Neurology 2015, 84, 2396–2402. [Google Scholar] [CrossRef]
- Pontillo, G.; Cocozza, S.; Lanzillo, R.; Russo, C.; Stasi, M.D.; Paolella, C.; Vola, E.A.; Criscuolo, C.; Borrelli, P.; Palma, G.; et al. Determinants of Deep Gray Matter Atrophy in Multiple Sclerosis: A Multimodal MRI Study. AJNR Am. J. Neuroradiol. 2019, 40, 99–106. [Google Scholar] [CrossRef]
- Hagemeier, J.; Zivadinov, R.; Dwyer, M.G.; Polak, P.; Bergsland, N.; Weinstock-Guttman, B.; Zalis, J.; Deistung, A.; Reichenbach, J.R.; Schweser, F. Changes of Deep Gray Matter Magnetic Susceptibility over 2 Years in Multiple Sclerosis and Healthy Control Brain. Neuroimage Clin. 2018, 18, 1007–1016. [Google Scholar] [CrossRef]
- Zivadinov, R.; Jakimovski, D.; Gandhi, S.; Ahmed, R.; Dwyer, M.G.; Horakova, D.; Weinstock-Guttman, B.; Benedict, R.R.H.; Vaneckova, M.; Barnett, M.; et al. Clinical Relevance of Brain Atrophy Assessment in Multiple Sclerosis. Implications for Its Use in a Clinical Routine. Expert Rev. Neurother. 2016, 16, 777–793. [Google Scholar] [CrossRef]
- Yu, F.F.; Chiang, F.L.; Stephens, N.; Huang, S.Y.; Bilgic, B.; Tantiwongkosi, B.; Romero, R. Characterization of Normal-Appearing White Matter in Multiple Sclerosis Using Quantitative Susceptibility Mapping in Conjunction with Diffusion Tensor Imaging. Neuroradiology 2019, 61, 71–79. [Google Scholar] [CrossRef]
- Pontillo, G.; Petracca, M.; Monti, S.; Quarantelli, M.; Lanzillo, R.; Costabile, T.; Carotenuto, A.; Tortora, F.; Elefante, A.; Morra, V.B.; et al. Clinical Correlates of R1 Relaxometry and Magnetic Susceptibility Changes in Multiple Sclerosis: A Multi-Parameter Quantitative MRI Study of Brain Iron and Myelin. Eur. Radiol. 2023, 33, 2185–2194. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Jeong, I.H.; Oh, S.-H.; Oh, C.-H.; Park, N.Y.; Kim, H.J.; Lee, J. Evaluation of Normal-Appearing White Matter in Multiple Sclerosis Using Direct Visualization of Short Transverse Relaxation Time Component (ViSTa) Myelin Water Imaging and Gradient Echo and Spin Echo (GRASE) Myelin Water Imaging. J. Magn. Reson. Imaging 2019, 49, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Paling, D.; Tozer, D.; Wheeler-Kingshott, C.; Kapoor, R.; Miller, D.H.; Golay, X. Reduced R2′ in Multiple Sclerosis Normal Appearing White Matter and Lesions May Reflect Decreased Myelin and Iron Content. J. Neurol. Neurosurg. Psychiatry 2012, 83, 785–792. [Google Scholar] [CrossRef]
- Wang, C.; Barnett, M.H.; Yiannikas, C.; Barton, J.; Parratt, J.; You, Y.; Graham, S.L.; Klistorner, A. Lesion Activity and Chronic Demyelination Are the Major Determinants of BRAIN Atrophy in MS. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e593. [Google Scholar] [CrossRef]
- Fisher, E.; Lee, J.-C.; Nakamura, K.; Rudick, R.A. Gray Matter Atrophy in Multiple Sclerosis: A Longitudinal Study. Ann. Neurol. 2008, 64, 255–265. [Google Scholar] [CrossRef]
- Hallgren, B.; Sourander, P. The Effect of Age on the Non-Haemin Iron in the Human Brain. J. Neurochem. 1958, 3, 41–51. [Google Scholar] [CrossRef]
- Piredda, G.F.; Hilbert, T.; Thiran, J.P.; Kober, T. Probing Myelin Content of the Human Brain with MRI: A Review. Magn. Reson. Med. 2021, 85, 627–652. [Google Scholar] [CrossRef]
- Bao, J.; Tu, H.; Li, Y.; Sun, J.; Hu, Z.; Zhang, F.; Li, J. Diffusion Tensor Imaging Revealed Microstructural Changes in Normal-Appearing White Matter Regions in Relapsing-Remitting Multiple Sclerosis. Front. Neurosci. 2022, 16, 837452. [Google Scholar] [CrossRef]
- Margoni, M.; Villani, U.; Silvestri, E.; Franciotta, S.; Anglani, M.G.; Causin, F.; Rinaldi, F.; Perini, P.; Bertoldo, A.; Gallo, P. Quantification of Normal-Appearing White Matter Damage in Early Relapse-Onset Multiple Sclerosis Through Neurite Orientation Dispersion and Density Imaging. Mult. Scler. Relat. Disord. 2022, 58, 103396. [Google Scholar] [CrossRef]
- Boaventura, M.; Sastre-Garriga, J.; Garcia-Vidal, A.; Vidal-Jordana, A.; Quartana, D.; Carvajal, R.; Auger, C.; Alberich, M.; Tintore, M.; Rovira, A.; et al. T1/T2-Weighted Ratio in Multiple Sclerosis: A Longitudinal Study with Clinical Associations. Neuroimage Clin. 2022, 34, 102967. [Google Scholar] [CrossRef]
- Heckova, E.; Dal-Bianco, A.; Strasser, B.; Hangel, G.J.; Lipka, A.; Motyka, S.; Hingerl, L.; Rommer, P.S.; Berger, T.; Hnilicova, P.; et al. Extensive Brain Pathologic Alterations Detected with 7.0-T MR Spectroscopic Imaging Associated with Disability in Multiple Sclerosis. Radiology 2022, 303, 141–150. [Google Scholar] [CrossRef]
Parameters | MP-RAGE Pre-Gd | 3D FLAIR 3D | Double-Echo GRE |
---|---|---|---|
Voxel size | 1 × 1 × 1.2 mm3 | 0.5 × 0.5 × 1 mm3 | 0.98 × 0.98 × 1.5 mm3 |
Acquisition plane | Sagittal | Sagittal | Transversal |
Flip angle | 9° | 120° | 15° |
TR/TI | 2300/900 ms | 5000/1800 ms | 46/- |
Echo Time | 2.9 ms | 391 ms | 20/40 ms |
Treatment | Patients |
---|---|
Tysabri® (natalizumab) | 17 |
Gilenya® (fingolimod) | 13 |
Tecfidera® (dimethyl fumarate) | 9 |
Rebif® (interferon beta-1a) | 4 |
MabThera (rituximab) | 2 |
Plegridy® (peginterferon beta-1a) | 1 |
Avonex® (interferon beta-1a) | 2 |
Copaxone® (glatiramer acetate) | 2 |
No treatment | 11 |
Susceptibility Value Median [IQR] | Z-Score Median [IQR] | |||
---|---|---|---|---|
Left | Right | Left | Right | |
Thalamus | 0.0014 [0.0027] | 0.007 [0.0081] | −0.1678 [1.8954] | −0.1454 [1.688] |
Caudate nucleus | 0.024 [0.0198] | 0.027 [0.020] | −0.0915 [1.2053] | 0.0878 [1.2287] |
Putamen | 0.0168 [0.0095] | 0.0148 [0.008] | −0.0235 [1.2487] | −0.1012 [1.7689] |
Pallidum | 0.0573 [0.0152] | 0.0607 [0.0157] | −0.1587 [1.5389] | −0.2118 [1.6012] |
Frontal WM | −0.0033 [0.0031] | −0.0042 [0.0026] | −0.3771 [1.7347] | −0.3712 [1.3869] |
Temporal WM | −0.0019 [0.0028] | −0.0037 [0.0041] | −0.4512 [1.5931] | −0.765 [1.7001] |
Parietal WM | −0.0047 [0.0022] | −0.0054 [0.0029] | −0.7124 [1.4574] | −0.4795 [1.2212] |
Occipital WM | −0.095 [0.0039] | −0.0083 [0.0052] | −0.1345 [1.0422] | 0.1548 [1.2986] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manasseh, G.; Hilbert, T.; Fartaria, M.J.; Deverdun, J.; Cuadra, M.B.; Maréchal, B.; Kober, T.; Dunet, V. Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis. Diagnostics 2024, 14, 2669. https://doi.org/10.3390/diagnostics14232669
Manasseh G, Hilbert T, Fartaria MJ, Deverdun J, Cuadra MB, Maréchal B, Kober T, Dunet V. Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis. Diagnostics. 2024; 14(23):2669. https://doi.org/10.3390/diagnostics14232669
Chicago/Turabian StyleManasseh, Gibran, Tom Hilbert, Mário João Fartaria, Jeremy Deverdun, Meritxell Bach Cuadra, Bénédicte Maréchal, Tobias Kober, and Vincent Dunet. 2024. "Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis" Diagnostics 14, no. 23: 2669. https://doi.org/10.3390/diagnostics14232669
APA StyleManasseh, G., Hilbert, T., Fartaria, M. J., Deverdun, J., Cuadra, M. B., Maréchal, B., Kober, T., & Dunet, V. (2024). Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis. Diagnostics, 14(23), 2669. https://doi.org/10.3390/diagnostics14232669