Predictive and Explainable Artificial Intelligence for Neuroimaging Applications
Abstract
:1. Introduction
1.1. Brain Disease
1.2. Neuroimaging and Artificial Intelligence
2. Methods
3. Results
3.1. Summary
3.2. Predictive Artificial Intelligence
3.3. Explainable Artificial Intelligence
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Over 1 in 3 People Affected by Neurological Conditions, the Leading Cause of Illness and Disability Worldwide. 14 March 2024 News Release. Available online: https://www.who.int/news/item/14-03-2024-over-1-in-3-people-affected-by-neurological-conditions--the-leading-cause-of-illness-and-disability-worldwide (accessed on 19 August 2024).
- Huang, Y.; Li, Y.; Pan, H.; Han, L. Global, regional, and national burden of neurological disorders in 204 countries and territories worldwide. J. Glob. Health 2023, 13, 04160. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [Google Scholar] [CrossRef]
- Johns Hopkins Medicine. Neurological Disorders. 2024. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/neurological-disorders (accessed on 19 August 2024).
- Mayor Clinic. Neurology. 2024. Available online: https://www.mayoclinic.org/departments-centers/neurology/sections/conditions-treated/orc-20117075 (accessed on 19 August 2024).
- Cleveland Clinic. Brain Diseases. 2024. Available online: https://my.clevelandclinic.org/health/diseases/22934-brain-diseases (accessed on 19 August 2024).
- Brammer, M. The role of neuroimaging in diagnosis and personalized medicine-current position and likely future directions. Dialogues Clin. Neurosci. 2009, 11, 389–396. [Google Scholar] [CrossRef]
- Han, J.; Micheline, K. Data Mining: Concepts and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2006. [Google Scholar]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What is machine learning, artificial neural networks and deep learning?-Examples of practical applications in medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, J.; Sun, L.; Cai, J.; Wang, S.; Zeng, L.; Sun, S. Application of machine learning to predict the occurrence of arrhythmia after acute myocardial infarction. BMC Med. Inform. Decis. Mak. 2021, 21, 301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, S.; Hu, T.; Xu, S.; Lu, H.; Xu, C.; Li, J.; Zhu, X. Establishment of a model for predicting preterm birth based on the machine learning algorithm. BMC Pregnancy Childbirth 2023, 23, 779. [Google Scholar] [CrossRef]
- Guerra, A.; Orton, M.R.; Wang, H.; Konidari, M.; Maes, K.; Papanikolaou, N.K.; Koh, D.M. Clinical application of machine learning models in patients with prostate cancer before prostatectomy. Cancer Imaging 2024, 24, 24. [Google Scholar] [CrossRef]
- Lee, K.-S.; Jang, J.-Y.; Yu, Y.-D.; Heo, J.S.; Han, H.-S.; Yoon, Y.-S.; Kang, C.M.; Hwang, H.K.; Kang, S. Usefulness of artificial intelligence for predicting recurrence following surgery for pancreatic cancer: Retrospective cohort study. Int. J. Surg. 2021, 93, 106050. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, K.W. Social determinants of association among cerebrovascular disease, hearing loss and cognitive impair-ment in a middle-aged or old population: Recurrent-neural-network analysis of the Korean Longitudinal Study of Aging (2014–2016). Geriatr. Gerontol. Int. 2019, 19, 711–716. [Google Scholar] [CrossRef]
- Shaha, T.R.; Begum, M.; Uddin, J.; Torres, V.Y.; Iturriaga, J.A.; Ashraf, I.; Samad, M.A. Feature group partitioning: An approach for depression severity prediction with class balancing using machine learning algorithms. BMC Med. Res. Methodol. 2024, 24, 123. [Google Scholar] [CrossRef]
- Yu, Y.D.; Lee, K.S.; Kim, J.; Ryu, J.H.; Lee, J.G.; Lee, K.W.; Kim, B.W.; Kim, D.S.; Korean Organ Transplantation Registry Study Group. Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study. Int. J. Surg. 2022, 105, 106838. [Google Scholar] [CrossRef]
- Ryu, K.-J.; Yi, K.W.; Kim, Y.J.; Shin, J.H.; Hur, J.Y.; Kim, T.; Seo, J.B.; Lee, K.-S.; Park, H. Machine learning approaches to identify factors associated with women’s vasomotor symptoms using general hospital data. J. Korean Med. Sci. 2021, 36, e122. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.-J.; Yi, K.W.; Kim, Y.J.; Shin, J.H.; Hur, J.Y.; Kim, T.; Seo, J.B.; Lee, K.S.; Park, H. Artificial intelligence approaches to the determinants of women’s vaginal dryness using general hospital data. J. Obstet. Gynaecol. 2022, 42, 1518–1523. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jeon, S.; Won, J.H.; Auh, Q.S.; Noh, Y.K. Automatic detection and visualization of temporomandibular joint effusion with deep neural network. Sci. Rep. 2024, 14, 18865. [Google Scholar] [CrossRef] [PubMed]
- Python package sklearn.ensemble. Random Forest Classifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 19 August 2024).
- Shi, D.; Li, Y.; Zhang, H.; Yao, X.; Wang, S.; Wang, G.; Ren, K. Machine learning of schizophrenia detection with structural and functional neuroimaging. Dis. Markers 2021, 2021, 9963824. [Google Scholar] [CrossRef] [PubMed]
- Mellema, C.J.; Nguyen, K.P.; Treacher, A. Montillo A Reproducible neuroimaging features for diagnosis of autism spectrum disorder with machine learning. Sci. Rep. 2022, 12, 3057. [Google Scholar] [CrossRef]
- Chaudhary, S.; Moon, S.; Lu, H. Fast efficient and accurate neuro-imaging denoising via supervised deep learning. Nat. Commun. 2022, 13, 5165. [Google Scholar] [CrossRef]
- Oppenheimer, C.W.; Bertocci, M.; Greenberg, T.; Chase, H.W.; Stiffler, R.; Aslam, H.A.; Lockovich, J.; Graur, S.; Bebko, G.; Phillips, M.L. Informing the study of suicidal thoughts and behaviors in distressed young adults: The use of a machine learning approach to identify neuroimaging psychiatric behavioral and demographic correlates. Psychiatry Res. Neuroimaging 2021, 317, 111386. [Google Scholar] [CrossRef]
- Zhou, E.; Wang, W.; Ma, S.; Xie, X.; Kang, L.; Xu, S.; Deng, Z.; Gong, Q.; Nie, Z.; Yao, L.; et al. Prediction of anxious depression using multimodal neuroimaging and machine learning. Neuroimage 2024, 285, 120499. [Google Scholar] [CrossRef]
- Borkar, K.; Chaturvedi, A.; Vinod, P.K.; Bapi, R.S. Ayu-Characterization of healthy aging from neuroimaging data with deep learning and rsfMRI. Front. Comput. Neurosci. 2022, 16, 940922. [Google Scholar] [CrossRef]
- Paul, R.H.; Cho, K.S.; Luckett, P.; Strain, J.F.; Belden, A.C.; Bolzenius, J.D.; Navid, J.; Garcia-Egan, P.M.; Cooley, S.A.; Wisch, J.K.; et al. Machine learning analysis reveals novel neuroimaging and clinical signatures of frailty in HIV. J. Acquir. Immune Defic. Syndr. 2020, 84, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Battalapalli, D.; Vidyadharan, S.; Prabhakar Rao, B.V.V.S.N.; Yogeeswari, P.; Kesavadas, C.; Rajagopalan, V. Fractal dimension: Analyzing its potential as a neuroimaging biomarker for brain tumor diagnosis using machine learning. Front. Physiol. 2023, 14, 1201617. [Google Scholar] [CrossRef] [PubMed]
- Cumplido-Mayoral, I.; García-Prat, M.; Operto, G.; Falcon, C.; Shekari, M.; Cacciaglia, R.; Milà-Alomà, M.; Lorenzini, L.; Ingala, S.; Meije Wink, A.; et al. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex. eLife 2023, 12, e81067. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, L.; Yu, F.; Lee, C.; Liu, N.; Ren, M.; Tu, J.; Zhou, H.; Shi, G.; Wang, X.; et al. Identifying the neural marker of chronic sciatica using multimodal neuroimaging and machine learning analyses. Front. Neurosci. 2022, 16, 1036487. [Google Scholar] [CrossRef]
- Luckett, P.H.; Olufawo, M.; Lamichhane, B.; Park, K.Y.; Dierker, D.; Verastegui, G.T.; Yang, P.; Kim, A.H.; Chheda, M.G.; Snyder, A.Z.; et al. Predicting survival in glioblastoma with multimodal neuroimaging and machine learning. J. Neurooncol. 2023, 164, 309–320. [Google Scholar] [CrossRef]
- Ieong, H.F.; Gao, F.; Yuan, Z. Machine learning: Assessing neurovascular signals in the prefrontal cortex with non-invasive bimodal electro-optical neuroimaging in opiate addiction. Sci. Rep. 2019, 9, 18262. [Google Scholar] [CrossRef]
- Abrol, A.; Fu, Z.; Salman, M.; Silva, R.; Du, Y.; Plis, S.; Calhoun, V. Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning. Nat. Commun. 2021, 12, 353. [Google Scholar] [CrossRef]
- Henschel, L.; Conjeti, S.; Estrada, S.; Diers, K.; Fischl, B.; Reuter, M. FastSurfer—A fast and accurate deep learning based neuroimaging pipeline. Neuroimage 2020, 219, 117012. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Zhang, Y.; Feng, M.H.; Wu, Y.C.; Fu, C.W.; Deng, K.; Lin, Q.Z.; Liu, B. Identification of discriminative neuroimaging markers for patients on hemodialysis with insomnia: A fractional amplitude of low frequency fluctuation-based machine learning analysis. BMC Psychiatry 2023, 23, 9. [Google Scholar] [CrossRef]
- Moguilner, S.; Whelan, R.; Adams, H.; Valcour, V.; Tagliazucchi, E.; Ibanez, A. Visual deep learning of unprocessed neuroimaging characterises dementia subtypes and generalises across non-stereotypic samples. EBioMedicine 2023, 90, 104540. [Google Scholar] [CrossRef]
- Kim, E.; Cho, H.H.; Cho, S.H.; Park, B.; Hong, J.; Shin, K.M.; Hwang, M.J.; You, S.K.; Lee, S.M. Accelerated synthetic MRI with deep learning-based reconstruction for pediatric neuroimaging. AJNR Am. J. Neuroradiol. 2022, 43, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Yassin, W.; Nakatani, H.; Zhu, Y.; Kojima, M.; Owada, K.; Kuwabara, H.; Gonoi, W.; Aoki, Y.; Takao, H.; Natsubori, T.; et al. Machine-learning classification using neuroimaging data in schizophrenia autism ultra-high risk and first-episode psychosis. Transl. Psychiatry 2020, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Khan, A.A.; Sikdar, S.; Chitnis, P.V. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning. Sci. Rep. 2020, 10, 8510. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, S.W.; Wu, D.; Zhang, Y.H.; Han, Y.K.; Zhao, K.; Qi, T.; Liu, Y.; Cui, L.B.; Wei, Y. Transcriptomic and neuroimaging data integration enhances machine learning classification of schizophrenia. Psychoradiology 2024, 4, kkae005. [Google Scholar] [CrossRef]
- Karakis, R.; Gurkahraman, K.; Mitsis, G.D.; Boudrias, M.H. Deep learning prediction of motor performance in stroke individuals using neuroimaging data. J. Biomed. Inform. 2023, 141, 104357. [Google Scholar] [CrossRef]
- Tian, D.; Zeng, Z.; Sun, X.; Tong, Q.; Li, H.; He, H.; Gao, J.H.; He, Y.; Xia, M. A deep learning-based multisite neuroimage harmonization framework established with a traveling-subject dataset. Neuroimage 2022, 257, 119297. [Google Scholar] [CrossRef]
- Jollans, L.; Boyle, R.; Artiges, E.; Banaschewski, T.; Desrivieres, S.; Grigis, A.; Martinot, J.L.; Paus, T.; Smolka, M.N.; Walter, H.; et al. Quantifying performance of machine learning methods for neuroimaging data. Neuroimage 2019, 199, 351–365. [Google Scholar] [CrossRef]
- Kohoutova, L.; Heo, J.; Cha, S.; Lee, S.; Moon, T.; Wager, T.D.; Woo, C.W. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nat. Protoc. 2020, 15, 1399–1435. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Mouches, P.; Hu, S.; Rajashekar, D.; MacMaster, F.P.; Smith, E.E.; Forkert, N.D.; Ismail, Z.; Alzheimer’s Disease Neuroimaging Initiative. Using machine learning to predict dementia from neuropsychiatric symptom and neuroimaging data. J. Alzheimers Dis. 2020, 75, 277–288. [Google Scholar] [CrossRef]
- Taipale, M.; Tiihonen, J.; Korhonen, J.; Popovic, D.; Vaurio, O.; Lähteenvuo, M.; Lieslehto, J. Effects of substance use and antisocial personality on neuroimaging-based machine learning prediction of schizophrenia. Schizophr. Bull. 2023, 49, 1568–1578. [Google Scholar] [CrossRef]
- Sunil, G.; Gowtham, S.; Bose, A.; Harish, S.; Srinivasa, G. Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia. BMC Neurosci. 2024, 25, 2. [Google Scholar] [CrossRef] [PubMed]
- Arabi, H.; Bortolin, K.; Ginovart, N.; Garibotto, V.; Zaidi, H. Deep learning-guided joint attenuation and scatter correction in multitracer neuroimaging studies. Hum. Brain Mapp. 2020, 41, 3667–3679. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.; Gong, Q.Y.; Pinaya, W.H.L.; Scarpazza, C.; Tognin, S.; Crespo-Facorro, B.; Tordesillas-Gutierrez, D.; Ortiz-Garcia, V.; Setien-Suero, E.; Scheepers, F.E.; et al. Using machine learning and structural neuroimaging to detect first episode psychosis: Reconsidering the evidence. Schizophr. Bull. 2020, 46, 17–26. [Google Scholar] [CrossRef]
- Erdaş, Ç.B.; Sümer, E. A fully automated approach involving neuroimaging and deep learning for Parkinson’s disease detection and severity prediction. PeerJ Comput. Sci. 2023, 9, e1485. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Why should I trust you? Explaining the predictions of any classifier. arXiv 2016, arXiv:1602.04938. [Google Scholar]
- Wang, Y.; Zou, S. Policy gradient method for robust reinforcement learning. arXiv 2022, arXiv:2205.07344. [Google Scholar]
- Gheisari, S.; Shariflou, S.; Phu, J.; Kennedy, P.J.; Agar, A.; Kalloniatis, M.; Golzan, S.M. A combined convolutional and recurrent neural network for enhanced glaucoma detection. Sci. Rep. 2021, 11, 1945. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Hambly, B.; Xu, R.; Yang, H. Recent advances in reinforcement learning in finance. arXiv 2022, arXiv:2112.04553. [Google Scholar]
- Yu, C.; Liu, J.; Nemati, S. Reinforcement learning in healthcare: A survey. arXiv 2020, arXiv:1908.08796. [Google Scholar] [CrossRef]
- Puiutta, E. Veith EMSP. Explainable reinforcement learning: A survey. arXiv 2020, arXiv:2005.06247. [Google Scholar]
- Enhancing the Quality and Transparency of Health Research Network. Reporting Guidelines. 2024. Available online: https://www.equator-network.org/reporting-guidelines/ten-simple-rules-for-neuroimaging-meta-analysis/ (accessed on 19 August 2024).
- Müller, V.I.; Cieslik, E.C.; Laird, A.R.; Fox, P.T.; Radua, J.; Mataix-Cols, D.; Tench, C.R.; Yarkoni, T.; Nichols, T.E.; Turkeltaub, P.E.; et al. Ten simple rules for neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 2018, 84, 151–161. [Google Scholar] [CrossRef] [PubMed]
Study | Sample Size | Method-Baseline | Method-Innovation | Dependent Variable | Type |
---|---|---|---|---|---|
21 | 109 | Global Signal Regression | Schizophrenia | Classification | |
22 | 915 | CNN-Dense | CNN-Dense SDA | ASD | Classification |
23 | 500 | Unet | Brain Image | Generation | |
24 | 78 | LASSO | Suicidal Thought | Regression | |
25 | 387 | RF | Anxiety in MDD | Classification | |
26 | 638 | CNN-VGG | Four Brain Age Groups | Classification | |
27 | 105 | Boosting | Frailty in HIV | Classification | |
28 | 42 | SVM | Glioma | Classification | |
29 | 22,661 | Boosting | Brain Age | Regression | |
30 | 70 | SVM | Chronic Sciatica | Classification | |
31 | 133 | ANN | Glioblastoma Survival | Classification | |
32 | 19 | LDA | Opiate Addiction | Correlation | |
33 | 10,000 | LDA LR SVM * | CNN-Alex | 10 Brain Age Groups | Classification |
34 | 160 | CNN-FastSurfer | Brain Condition | Classification | |
35 | 84 | SVM | Insomnia in Hemodialysis | Classification | |
36 | 3000 | CNN-Dense | Dementia | Classification | |
37 | 47 | CNN | Pediatric Brain Tissues | Generation | |
38 | 206 | DT LR RF * SVM | ASD and Schizophrenia | Classification | |
39 | 500 | Unet | Brain Vascular | Generation | |
40 | 103 | ANN Uni-Modal | ANN Multi-Modal | Schizophrenia | Classification |
41 | 154 | DT KN NB RF SVM * | CNN-Residual | Post-Stroke Motor | Classification |
42 | 81 | CNN-Residual | Brain Image | Generation | |
43 | 400 | EN RF * RR | Brain Condition | Regression | |
44 | 59 | SVM | CNN | Brain Condition | Classification |
45 | 341 | DT | Dementia | Classification | |
46 | 688 | SVM | Schizophrenia | Classification | |
47 | 172 | DT * KN LR SVM | Graph Neural Network | Schizophrenia | Classification |
48 | 180 | CNN | Brain Image | Generation | |
49 | 956 | CNN | Psychosis | Classification | |
50 | 1130 | CNN-Alex | Parkinson’s Disease | Classification |
Study | Performance-Baseline | Performance-Comparison | ||||||
---|---|---|---|---|---|---|---|---|
Acc | Sen | Spe | AUC ** | Acc | Sen | Spe | AUC ** | |
21 | 83 | 69 | 94 | 85 | ||||
22 | 86 | 93 | ||||||
23 | 70 | |||||||
24 | NA | |||||||
25 | 80 | |||||||
26 | 73 | |||||||
27 | 66 | 71 | ||||||
28 | 93 | 97 | 98 | 98 | ||||
29 | 4 | |||||||
30 | 90 | |||||||
31 | 91 | |||||||
32 | 83 | |||||||
33 | 51 | 58 | ||||||
34 | 96 | 96 | ||||||
35 | 82 | 82 | ||||||
36 | 95 | 96 | 95 | 95 | ||||
37 | 90 | |||||||
38 | 76 | 83 | ||||||
39 | 93 | |||||||
40 | 55 | 69 | 71 | 92 | ||||
41 | 91 | 91 | 92 | 92 | ||||
42 | NA | |||||||
43 | 1 | |||||||
44 | 92 | 94 | 91 | 97 | 96 | 96 | 95 | 98 |
45 | 84 | 86 | ||||||
46 | 60 | 84 | ||||||
47 | 78 | 83 | 72 | 79 | 80 | 84 | 76 | 80 |
48 | 97 | |||||||
49 | 70 | |||||||
50 | 96 | 95 | ||||||
Min | 58 | 66 | 76 | 70 | ||||
Max | 96 | 97 | 98 | 98 |
Study | Predictor Demographic | Predictor Health | Predictor Neuroimaging |
---|---|---|---|
21 | |||
22 | |||
23 | |||
24 | Age Education | Depression Distress | LAA |
25 | GMV ALFF RH FC | ||
26 | FC | ||
27 | Sex | Depression CD4 | Neuroimaging |
28 | FDM | ||
29 | Sex | Alzheimer’s Disease Stage | AAB APOE-ε4 PNL |
30 | FC ALFF SA Combination | ||
31 | Age Sex | CT FC | |
32 | Alpha Desynchronization | FC | |
33 | |||
34 | |||
35 | ALFF RMCG RC | ||
36 | |||
37 | |||
38 | CT SCV | ||
39 | |||
40 | RNA Sequencing | Neuroimaging | |
41 | Age Sex | Neuroimaging | |
42 | GMV | ||
43 | GMV | ||
44 | |||
45 | Mild Behavioral Impairment | LHV | |
46 | |||
47 | |||
48 | |||
49 | GMV CT | ||
50 |
Study | Sample Size | Training | Validation | Test | N-Fold CV * | Major Control Variable |
---|---|---|---|---|---|---|
21 | 1029 | 799 | 89 | 141 | Age Sex | |
22 | 915 | 488 | 244 | 183 | 3 | Sex |
23 | 500 | 500 | 500 | |||
24 | 78 | 70 | 8 | 10 | Emotion Physiology | |
25 | 387 | 348 | 39 | 10 | ||
26 | 638 | 408 | 102 | 128 | 5 | Age Sex |
27 | 105 | 84 | 21 | 5 | ||
28 | 42 | 23 | 6 | 13 | 5 | |
29 | 24,975 | 20,395 | 2266 | 2314 | 10 | Age |
30 | 16,100 | 15,870 | 230 | 70 | Age Sex Education Occupation | |
31 | 133 | 132 | 1 | 133 | ||
32 | 19 | 19 | Age Education IQ | |||
33 | 12,314 | 10,000 | 1157 | 1157 | Age Gender | |
34 | 160 | 140 | 20 | Age Gender | ||
35 | 84 | 83 | 1 | 84 | Age Sex Education | |
36 | 3000 | 2400 | 600 | 5 | ||
37 | 47 | 47 | 47 | |||
38 | 206 | 165 | 41 | 5 | Age Sex | |
39 | 500 | 500 | 500 | |||
40 | 103 | 83 | 20 | 5 | Age Sex | |
41 | 154 | 124 | 30 | 5 | ||
42 | 81 | 81 | 81 | |||
43 | 400 | 360 | 40 | 10 | ||
44 | 59 | 52 | 7 | 8 | ||
45 | 340 | 306 | 34 | 10 | Age Education | |
46 | 688 | 619 | 69 | 10 | Age Sex | |
47 | 172 | 155 | 17 | 10 | ||
48 | 180 | 128 | 32 | 20 | 5 | |
49 | 956 | 860 | 96 | 10 | ||
50 | 1130 | 1020 | 110 | 10 |
Method | |
ANN | Artificial Neural Network |
CNN | Convolutional Neural Network |
DT | Decision Tree |
EN | Elastic Net |
KN | K-Nearest Neighbor |
LASSO | Least Absolute Shrinkage and Selection Operator |
LDA | Linear Discriminate Analysis |
LR | Logistic Regression |
NB | Naïve Bayes |
RF | Random Forest |
RR | Ridge Regression |
SDA | Supervised Domain Adaptation |
SVM | Support Vector Machine |
VGG | Virtual Geometry Group |
Dependent Variable | |
ASC | Attenuation-Scatter Correction |
ASD | Autism Spectrum Disorder |
HIV | Human Immunodeficiency Virus |
MDD | Major Depressive Disorder |
Model Performance | |
Acc | Accuracy |
Sen | Sensitivity |
Spe | Specificity |
AUC | Area Under the Curve |
Predictor Neuroimaging | |
AAB | Abnormal Amyloid-β |
ALFF | Amplitude of Low-Frequency Fluctuation |
CT | Cortical Thickness |
FC | Functional Connectivity |
FDM | Fractal Dimension Measure |
GMV | Gray Matter Volume |
LAA | Left Amygdala Activity |
LHV | Left Hippocampal Volume |
PNL | Plasma Neurofilament Light |
RC | Right Cerebellum |
RH | Regional Homogeneity |
RMCG | Right Middle Occipital Gyrus |
SA | Surface Area |
SCV | Sub-Cortical Volume |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, K.-S. Predictive and Explainable Artificial Intelligence for Neuroimaging Applications. Diagnostics 2024, 14, 2394. https://doi.org/10.3390/diagnostics14212394
Lee S, Lee K-S. Predictive and Explainable Artificial Intelligence for Neuroimaging Applications. Diagnostics. 2024; 14(21):2394. https://doi.org/10.3390/diagnostics14212394
Chicago/Turabian StyleLee, Sekwang, and Kwang-Sig Lee. 2024. "Predictive and Explainable Artificial Intelligence for Neuroimaging Applications" Diagnostics 14, no. 21: 2394. https://doi.org/10.3390/diagnostics14212394