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Abstract: Background: The aim of this review is to highlight the new advance of predictive and
explainable artificial intelligence for neuroimaging applications. Methods: Data came from 30 original
studies in PubMed with the following search terms: “neuroimaging” (title) together with “machine
learning” (title) or ”deep learning” (title). The 30 original studies were eligible according to the
following criteria: the participants with the dependent variable of brain image or associated disease;
the interventions/comparisons of artificial intelligence; the outcomes of accuracy, the area under the
curve (AUC), and/or variable importance; the publication year of 2019 or later; and the publication
language of English. Results: The performance outcomes reported were within 58–96 for accuracy
(%), 66–97 for sensitivity (%), 76–98 for specificity (%), and 70–98 for the AUC (%). The support vector
machine and the convolutional neural network registered the best performance (AUC 98%) for the
classifications of low- vs. high-grade glioma and brain conditions, respectively. Likewise, the random
forest delivered the best performance (root mean square error 1) for the regression of brain conditions.
The following factors were discovered to be major predictors of brain image or associated disease: (de-
mographic) age, education, sex; (health-related) alpha desynchronization, Alzheimer’s disease stage,
CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging) abnormal
amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional connectivity, fractal
dimension measure, gray matter volume, left amygdala activity, left hippocampal volume, plasma
neurofilament light, right cerebellum, regional homogeneity, right middle occipital gyrus, surface
area, sub-cortical volume. Conclusion: Predictive and explainable artificial intelligence provide an
effective, non-invasive decision support system for neuroimaging applications.

Keywords: neuroimaging; predictive artificial intelligence; explainable artificial intelligence

1. Introduction
1.1. Brain Disease

Brain disease represents a significant contributor to global disease burden [1–3]. In
2021, it was estimated that over three billion people globally were affected by neurological
conditions [3]. Premature death and disability (disability-adjusted life years, DALYs) from
neurological conditions has grown by 18% since 1990. More than 80% of this burden comes
from low- and middle-income countries. Furthermore, there is considerable variation in ac-
cess to treatment, i.e., there are almost 70 times more neurological professionals per 100,000
people in high-income countries compared to low- and middle-income countries. Stroke,
neonatal encephalopathy, migraine, dementia, and diabetic neuropathy, as well as meningi-
tis, epilepsy, neurological complications from preterm birth, autism spectrum disorder, and
nervous system cancers, were the top 10 neurological conditions in 2021. The burden of
brain disease is greater in men compared to women in general. However, there exist certain
exceptions of female dominance, including migraine and dementia [3]. There are many
types of brain disease, e.g., autoimmune brain diseases, epilepsy, infections, mental illness
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(i.e., anxiety, bipolar disorder, depression, post-traumatic stress disorder, schizophrenia),
neurodegenerative brain diseases (Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis), neurodevelopmental disorders (attention deficit hyperactivity disorder,
autism spectrum disorder, dyslexia), stroke, traumatic brain injuries, and tumors [4–6].

Autoimmune brain diseases are characterized by the body’s immune system attacking
a part of the brain, which it identifies as an invader. Epilepsy is defined as a tendency to
experience seizures, which are characterized by electrical disturbances in the brain. These
seizures typically disrupt consciousness and manifest as convulsions, which are uncon-
trolled muscle movements. Infections occur when various types of pathogens invade the
brain or its protective coverings. Mental, behavioral, and emotional disorders have the po-
tential to impair an individual’s quality of life and their capacity to function effectively. The
principal categories are as follows: Anxiety, Bipolar disorder, Depression, Post-traumatic
stress disorder (PTSD), and Schizophrenia. The accumulation of abnormal proteins in
the brain is a common underlying cause of neurodegenerative disorders. These include
conditions such as Alzheimer’s disease, Parkinson’s disease, and ALS (amyotrophic lateral
sclerosis), among numerous others. Neurodevelopmental disorders impact the growth and
development of the brain, with care typically provided by pediatric neurologists. Medical
geneticists may ascertain the likelihood of an inherited disorder. In the event that a genetic
predisposition is identified, family counselling is provided. A considerable number of
neurodevelopmental disorders exist, including Attention deficit hyperactivity disorder
(ADHD), Autism spectrum disorder, and Dyslexia. A stroke is defined as the obstruction
or rupture of a cerebral blood vessel, which results in the interruption of cerebral blood
flow and subsequent injury to the brain parenchyma. Traumatic brain injuries encompass
a range of conditions, from mild concussions to more severe injuries such as gunshot
wounds. Additionally, brain tumors may result from the metastasis of malignant cells
from other regions of the body, including the lungs, breasts, and colon. Alternatively, they
may develop within the brain tissue itself or its coverings. Astrocytomas are a common
type of tumors that originate from the brain itself. A meningioma is a common tumor that
develops from the coverings of the brain [6].

1.2. Neuroimaging and Artificial Intelligence

The concepts of neuroimaging and artificial intelligence have recently attracted global
interest. A brain imaging method can be defined as any experimental technique that allows
for the study of the structure or function of the human (or animal) brain, preferably in vivo
in the context of the present study [7]. The optimal method should yield precise temporal
and spatial localization of cerebral function, structure, or alterations in these properties.
The optimal method should involve minimum invasion and maximum replication for
treatment monitoring and therapeutic development as well. Structural magnetic resonance
imaging (MRI) meets these optimal requirements for structural imaging. However, there is
no single optimal technique for functional imaging, even though electroencephalography
(EEG), positron emission tomography (PET), and functional magnetic resonance imaging
(fMRI) are very popular. EEG and PET have been available for 4 decades or more, whereas
functional magnetic resonance imaging (fMRI) is the newest widely used technique. Ar-
guable, PET is the most invasive with the administration of radioisotopes and EEG has
poor spatial mapping properties. Given these limitations, fMRI has become as the most
common functional brain-mapping approach [7].

On the other hand, artificial intelligence can be denoted as “the capability of a machine
to imitate intelligent human behavior” (the Merriam–Webster dictionary). As a division of
artificial intelligence, machine learning can be considered to be “extracting knowledge from
large amounts of data” [8]. Popular machine learning approaches are the decision tree, the
naïve Bayesian, the random forest, the support vector machine, and the neural network.
(See more detailed explanations for [8,9].) In particular, a random forest is a group of
decision trees that collectively makes a majority decision regarding the dependent variable,
a process known as “bootstrap aggregation.” For the purposes of this discussion, we will
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consider a random forest comprising 1000 decision trees. For the purposes of this discussion,
we shall assume that the original data set comprises 10,000 participants. Subsequently, the
training and testing of this random forest is conducted in two stages. Initially, new data
comprising 10,000 participants is generated through random sampling with replacement,
upon which a decision tree is constructed. In this process, some participants from the
original data set are excluded from the new data set, and these remaining participants
are referred to as the “out-of-bag” data set. This process is repeated 1000 times, resulting
in the creation of 1000 new data sets, 1000 decision trees, and 1000 out-of-bag data sets.
Secondly, the 1000 decision trees make predictions regarding the dependent variable for
each participant in the out-of-bag data. Then, the majority vote is taken as the final
prediction for that participant, and the out-of-bag error is derived as the proportion of
incorrect votes for all participants in the out-of-bag data sets. An artificial neural network
is a network of neurons (information units) based on a set of weights. Typically, it has
one input layer, one or more intermediate layers, and one output layer [9]. A deep neural
network is an artificial neural network having a large number of intermediate layers, with
the number of layers often being in the range of 5 to 1000 [9].

The current research paradigm has a limited scope in terms of the predictors considered
for the early diagnosis of disease. This is due to the use of logistic regression, which assumes
a rather unrealistic condition of ceteris paribus, or “all other variables remaining constant”.
In light of the aforementioned limitations, the literature on the early diagnosis of disease is
increasingly turning to artificial intelligence. This includes studies on arrhythmia [10], birth
outcome [11], cancer [12,13], comorbidity [14], depression [15], liver transplantation [16],
menopause [17,18], and temporomandibular disease [19]. It is not constrained by the
unrealistic assumption of “all the other variables staying constant.” Furthermore, the
concept of explainable artificial intelligence is currently experiencing a surge in popularity.
The term “explainable artificial intelligence” is defined as “artificial intelligence to identify
major predictors of the dependent variable”. At this point in time, three popular approaches
to explainable artificial intelligence have been identified: namely, random forest impurity
importance, random forest permutation importance, and machine learning permutation
importance [20]. The random forest impurity importance metric quantifies the reduction in
node impurity resulting from the creation of a branch on a specific predictor. The random
forest permutation importance metric quantifies the overall reduction in accuracy resulting
from the random permutation of data on a given predictor. An extension of random forest
permutation importance, machine learning accuracy importance calculates the decrease
in accuracy resulting from the permutation of data on the predictor [20]. However, more
study is needed on the review of artificial intelligence for neuroimaging applications. This
study reviews the recent progress of predictive and explainable artificial intelligence for
neuroimaging applications.

2. Methods

Figure 1 shows the flow diagram of this study as a modified version of Preferred
Reporting Items for Systematic Reviews and Meta-Analyses. The source of data was
30 original studies in PubMed. The search terms were “neuroimaging” (title) together
with “machine learning” (title) or “deep learning” (title). The eligibility criteria were the
participants with the dependent variable of brain image or associated disease, the inter-
ventions/comparisons of artificial intelligence, the outcomes of accuracy, the AUC and/or
variable importance, the publication year of 2019 or later, and the publication language of
English. Opinions, reports, and reviews were excluded. The following summary measures
were adopted: (1) sample size (participants), baseline vs. innovation artificial intelligence
methods (comparisons vs. interventions), dependent variable (participants), task type;
(2) baseline vs. innovation performance outcomes; (3) major demographic, health-related,
and neuroimaging predictors. Here, accuracy denotes the proportion of correct predictions
over all observations. The area under the curve (AUC) represents the area under the plot of
the true positive rate (sensitivity) against the false positive rate (1-specificity) at various
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threshold settings. The AUC is a major performance criterion in this study, given that it
accommodates sensitivity and specificity.
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3. Results
3.1. Summary

The summary of the review for the 30 original studies [21–50] is presented in Tables 1–4.
The “Study” column in the tables denotes the reference numbers of the 30 original stud-
ies. Also, abbreviations are listed in Table 5. The tables include (1) sample size, baseline
vs. innovation artificial intelligence methods, dependent variable and task type (Table 1);
(2) baseline vs. innovation performance outcomes (Table 2); (3) major demographic, health-
related, and neuroimaging predictors (Table 3); (4) cross validation and major control vari-
able (Table 4). The ranges of performance measures were reported to be 58–96 for accuracy
(%), 66–97 for sensitivity (%),76–98 for specificity (%), and 70–98 for the AUC (%). The sup-
port vector machine and the convolutional neural network registered the best performance
(AUC 98%) for the classifications of low- vs. high-grade glioma [28] and brain image prop-
erties [44], respectively. Similarly, the random forest delivered the best performance (root
mean square error 1) for the regression of brain image properties [43]. The following factors
were discovered to be major predictors of brain image or associated disease: (demographic)
age, education, sex; (health-related) alpha desynchronization, Alzheimer’s disease stage,
CD4, depression, distress, mild behavioral impairment, RNA sequencing; (neuroimaging)
abnormal amyloid-β, amplitude of low-frequency fluctuation, cortical thickness, functional
connectivity, fractal dimension measure, gray matter volume, left amygdala activity, left
hippocampal volume, plasma neuro-filament light, right cerebellum, regional homogeneity,
right middle occipital gyrus, surface area, sub-cortical volume. Finally, 22 original studies
included cross validation, and 14 studies matched control and experimental groups in age,
sex, and/or education (defined as “major control variables” in Table 4). The differences
between the control and experimental groups in terms of the major control variables were
statistically insignificant in the 14 studies. Predictive and explainable artificial intelligence
provide an effective, non-invasive decision support system for neuroimaging applications.
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However, artificial intelligence is a data-driven approach, and more research is needed for
more general conclusions given that the findings of this study above were based on the
30 original studies published in 2019 or later.

Table 1. Summary—Sample Size Method and Dependent Variable.

Study Sample Size Method-Baseline Method-Innovation Dependent Variable Type

21 109 Global Signal Regression Schizophrenia Classification
22 915 CNN-Dense CNN-Dense SDA ASD Classification
23 500 Unet Brain Image Generation
24 78 LASSO Suicidal Thought Regression
25 387 RF Anxiety in MDD Classification
26 638 CNN-VGG Four Brain Age Groups Classification
27 105 Boosting Frailty in HIV Classification
28 42 SVM Glioma Classification
29 22,661 Boosting Brain Age Regression
30 70 SVM Chronic Sciatica Classification
31 133 ANN Glioblastoma Survival Classification
32 19 LDA Opiate Addiction Correlation
33 10,000 LDA LR SVM * CNN-Alex 10 Brain Age Groups Classification
34 160 CNN-FastSurfer Brain Condition Classification
35 84 SVM Insomnia in

Hemodialysis Classification
36 3000 CNN-Dense Dementia Classification
37 47 CNN Pediatric Brain Tissues Generation
38 206 DT LR RF * SVM ASD and Schizophrenia Classification
39 500 Unet Brain Vascular Generation
40 103 ANN Uni-Modal ANN Multi-Modal Schizophrenia Classification
41 154 DT KN NB RF SVM * CNN-Residual Post-Stroke Motor Classification
42 81 CNN-Residual Brain Image Generation
43 400 EN RF * RR Brain Condition Regression
44 59 SVM CNN Brain Condition Classification
45 341 DT Dementia Classification
46 688 SVM Schizophrenia Classification
47 172 DT * KN LR SVM Graph Neural Network Schizophrenia Classification
48 180 CNN Brain Image Generation
49 956 CNN Psychosis Classification
50 1130 CNN-Alex Parkinson’s Disease Classification

Note: * Best Model.

Table 2. Summary—Model Performance.

Study Performance-Baseline Performance-Comparison

Acc Sen Spe AUC ** Acc Sen Spe AUC **

21 83 69 94 85

22 86 93

23 70

24 NA

25 80

26 73

27 66 71

28 93 97 98 98

29 4

30 90

31 91

32 83

33 51 58

34 96 96
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Table 2. Cont.

Study Performance-Baseline Performance-Comparison

Acc Sen Spe AUC ** Acc Sen Spe AUC **

35 82 82

36 95 96 95 95

37 90

38 76 83

39 93

40 55 69 71 92

41 91 91 92 92

42 NA

43 1

44 92 94 91 97 96 96 95 98

45 84 86

46 60 84

47 78 83 72 79 80 84 76 80

48 97

49 70

50 96 95

Min 58 66 76 70

Max 96 97 98 98

Note: ** Correlation (Correlation) R-Square (Regression) or Structural Similarity Index Measure (Generation).
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Table 4. Summary—Cross Validation and Major Control Variable.

Study Sample Size Training Validation Test N-Fold CV * Major Control Variable
21 1029 799 89 141 Age Sex
22 915 488 244 183 3 Sex
23 500 500 500
24 78 70 8 10 Emotion Physiology
25 387 348 39 10
26 638 408 102 128 5 Age Sex
27 105 84 21 5
28 42 23 6 13 5
29 24,975 20,395 2266 2314 10 Age
30 16,100 15,870 230 70 Age Sex Education Occupation
31 133 132 1 133
32 19 19 Age Education IQ
33 12,314 10,000 1157 1157 Age Gender
34 160 140 20 Age Gender
35 84 83 1 84 Age Sex Education
36 3000 2400 600 5
37 47 47 47
38 206 165 41 5 Age Sex
39 500 500 500
40 103 83 20 5 Age Sex
41 154 124 30 5
42 81 81 81
43 400 360 40 10
44 59 52 7 8
45 340 306 34 10 Age Education
46 688 619 69 10 Age Sex
47 172 155 17 10
48 180 128 32 20 5
49 956 860 96 10
50 1130 1020 110 10

Note: * N-Fold Cross Validation for Training-Validation Sets.
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Table 5. Cont.

Dependent Variable
ASC Attenuation-Scatter Correction
ASD Autism Spectrum Disorder
HIV Human Immunodeficiency Virus
MDD Major Depressive Disorder
Model Performance
Acc Accuracy
Sen Sensitivity
Spe Specificity
AUC Area Under the Curve
Predictor Neuroimaging
AAB Abnormal Amyloid-β
ALFF Amplitude of Low-Frequency Fluctuation
CT Cortical Thickness
FC Functional Connectivity
FDM Fractal Dimension Measure
GMV Gray Matter Volume
LAA Left Amygdala Activity
LHV Left Hippocampal Volume
PNL Plasma Neurofilament Light
RC Right Cerebellum
RH Regional Homogeneity
RMCG Right Middle Occipital Gyrus
SA Surface Area
SCV Sub-Cortical Volume

3.2. Predictive Artificial Intelligence

This section summarizes original studies, which highlight the strengths of predictive
artificial intelligence with the best performance metrics for neuroimaging applications [28,43,44].
As addressed above, the support vector machine registered the best performance (AUC 98%)
for the classifications of low- vs. high-grade glioma in one study [28]. MRI data on texture
and fractal dimension measures came from 28 glioma patients enrolled in a national medical
institute. The dependent variable was the grade of glioma with 0 (low) vs. 1 (high). The
independent variables were 25 texture and 15 fractal dimension indicators. The accuracy,
sensitivity, specificity, and AUC of the support vector machine were 93%, 97%, 98%, and 98%
for the general structure of the enhanced tumor, respectively. These best results were followed
by those of the boundary of the whole tumor, i.e., the accuracy, sensitivity, specificity, and
area under the curve of 83%, 100%, 60%, and 80%. These findings of multivariable machine
learning were consistent with their univariate counterparts. The fractal dimension measures of
high-grade glioma were significantly greater than those of low-grade glioma: 1.221 vs. 1.626 for
the general structure of the enhanced tumor (p < 0.0001); 0.923 vs. 0.940 for the boundary of
the whole tumor (p = 0.0105). This study suggests that the separate examination of the whole
tumor and its elements is expected to present important insights regarding predictive artificial
intelligence for neuroimaging applications.

Likewise, the convolutional neural network presented the best AUC of 98% for the
classifications of brain conditions [44]. The source of MRI data was 59 study participants.
The outcome variables are somatic pain and social rejection. The input variables were
brain networks such as visual, somatomotor, dorsal attention, salience network, limbic,
frontoparietal, and default. The convolutional neural network was a little better than the
support vector machine as predictive artificial intelligence, i.e., 96%, 96%, 955, and 98% vs.
92%, 94%, 91%, and 97% in terms of accuracy, sensitivity, specificity, and AUC. In a similar
context, the random forest delivered the best performance (root mean square error less than
1) for the regression of brain conditions [43]. Data consisted of 400 study participants. The
dependent variable was cognitive ability (measured by the Global Cognitive Assessment
Task), and the independent variable was the gray matter volume. The random forest
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outperformed the elastic net and ridge regression in terms of the root mean square error
less than 1. The findings above demonstrate that the best predictive artificial intelligence
models for neuroimaging applications vary depending on different outcome variables and
different input variables. Little study was done, and more analysis is needed regarding
which models serve as the best predictive artificial intelligence for varying brain conditions
with varying analytic tasks.

3.3. Explainable Artificial Intelligence

This section summarizes original studies, which request due attention to the strengths
of explainable artificial intelligence with multiple-domain data for brain disease applica-
tions [27,29,31,41]. The aim of a recent study was to develop explainable artificial intelli-
gence for the classification of frailty in Human Immunodeficiency Virus (HIV) patients [27].
The source of MRI data was 105 study participants enrolled in a university medical center.
The outcome variable was frailty in HIV patients. The input variables were demographic
(sex), health-related (depression, CD4), and neuroimaging predictors. The sensitivity and
F1 score of boosting were 66% and 71%, correspondingly. Based on boosting permutation
variable importance, the top five predictors were reduced cerebral blood flow in the right
pallidum region, reduced cerebral blood flow in the left occipital region, lower psychomotor
performance, reduced volume of the right pericalcarine region, and lower resting-state
functional connectivity between the frontal parietal and ventral attention networks. Like-
wise, another study attempted to highlight the strengths of boosting as explainable artificial
intelligence for the regression of brain age [29]. Data consisted of 22,661 study participants
enrolled in national projects. The dependent variable was brain age, and the independent
variables were demographic (sex), health-related (Alzheimer’s disease stage), and neu-
roimaging (Abnormal Amyloid-β, APOE-ε4, and plasma neurofilament light). The root
mean square error of boosting was 4.

In a similar vein, the purpose of a recent study centered on developing explainable
artificial intelligence for the classification of glioblastoma survival [31]. The source of MRI
data was 133 study participants enrolled in a university medical center. The outcome
variable was glioblastoma survival. The input variables were demographic (age, sex) and
neuroimaging (cortical thickness, functional connectivity). The accuracy of the artificial
neural network was 91%. According to artificial neural network permutation variable
importance, the top five predictors were functional connectivity for distance correlation 10,
Bankstss cortex, age, sex, and functional connectivity for distance correlation 11. The success
of these machine learning studies was extended to its deep learning counterpart, which
endeavored to demonstrate the strengths of the residual convolutional neural network as
explainable artificial intelligence for the classification of motor performance in stroke [41].
Data consisted of 41 study participants enrolled in previous studies. The dependent variable
was motor performance in stroke, and the independent variables were demographic (age,
sex) and neuroimaging (axial diffusivity, fractional anisotropy, mean diffusivity, radial
diffusivity, white matter, gray matter). The performance measures of the support vector
machine and the residual convolutional neural network were similar to each other, i.e., 91%
and 91% vs. 92% and 92% in terms of accuracy and AUC.

4. Discussion

The existing literature on predictive and explainable artificial intelligence for neu-
roimaging applications has some limitations. Firstly, a majority of the studies reviewed here
were characterized by single-centre data with relatively small sample sizes. The utilization
of multi-centre data will facilitate further advancements in this field of research. Indeed,
more analysis is needed regarding the effect of the sample size on model performance.
One study reviewed here [33] made a rare attempt in this direction. As the sample size
increased from 100 to 10,000, an accuracy gap between machine learning (support vector
machine) and deep learning (convolutional neural network-Alex) increased to 7% (51%
vs. 58%) for the prediction of 10 brain age groups in this study. But more examination is
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needed on this topic, given that both machine learning and deep learning registered low
performance and their performance difference was not very large in this study. Secondly,
the accuracies of some studies reviewed here (58%) may not yet meet the standards required
for use as diagnostic tests. In addition, only seven studies reviewed here used test sets,
and these test sets came from internal sources. Despite these limitations, these studies
were included in this review, given that the further advance of predictive and explainable
artificial intelligence for neuroimaging applications is not possible without trials and errors.

Thirdly, three common methods of explainable artificial intelligence (machine learn-
ing permutation importance, random forest permutation importance, and random forest
impurity importance) may yield different outcomes on some occasions. The random forest
impurity importance shows more variation from the categorization of variables. However,
the random forest has a special quality of including sequential information, and this special
quality is more apparent with the random forest impurity importance. In this context,
extensive comparison for the three methods of explainable artificial intelligence would be a
major achievement for this line of research. Fourthly, other types of explainable artificial
intelligence and trade-offs between predictive power and explainable power were beyond
the scope of this review, e.g., local interpretable model-agnostic explanations (LIME) [51].
Fifthly, 22 studies reviewed here employed cross validation, but only eight studies re-
ported performance measures over each subset [26], their standard deviations across all
subsets [36], or their confidence intervals across all subsets [41,44–48]. Especially, this was a
significant drawback for five out of nine studies with deep learning models with cross vali-
dation. In other words, there can be found certain risks of detection, attrition, and reporting
biases. This issue requests much more attention for the future studies on this topic.

Sixthly, hyper-parameter tuning was either absent or basic in the studies reviewed here.
One possible explanation is that neuroimaging investigation itself requires significant time
and energy besides hyper-parameter tuning. In spite of this reality, it is still a valid sugges-
tion that advanced hyper-parameter tuning is expected to bring significant improvement
in the performance of predictive and explainable artificial intelligence for neuroimaging
applications. One plausible approach of advanced hyper-parameter tuning is the policy
gradient approach [52] (within reinforcement learning to be addressed below). Here, the
policy gradient can be defined as “the change of action to maximize the reward”, e.g.,
the change of hyper-parameter selection to maximize the performance of predictive and
explainable artificial intelligence for neuroimaging applications. In other words, the policy
gradient approach can be denoted as “systematic hyper-parameter selection”, i.e., finding
the optimal values of hyper-parameters based on performance measures and major control
variables [52]. These new approaches would expand the boundary of knowledge by a great
extent. Seventhly, experts in the field of artificial intelligence focus on the performance of
predictive and explainable artificial intelligence as the best indicator of study quality. We
followed this convention.

Indeed, some suggestions for this line of research are presented here. Firstly, syn-
thesizing various forms of explainable artificial intelligence with various forms of data
in the field of brain disease would represent a significant advancement in the field. An
increasing amount of artificial intelligence research is synthesizing genetic, image, and
numeric methods for disease diagnosis, treatment, and management. This new approach
is called “wide and deep learning”, and it includes a great variety of multi-input multi-
output combinations. A recent study [53] serves as a good example, given that it presents a
glaucoma prediction system combing convolutional neural networks and their recurrent
neural network counterparts. Here, the former network draws key image characteristics
from multiple image inputs, and the latter part predicts glaucoma results from the course
of the key image characteristics over time. In a convolutional neural network, filters look
around input data and detect certain characteristics based on their convolution operations.
(This predicts the status of normal versus disease.) In a recurrent neural network, output in
the present is determined in a recurrent pattern by input in the present and memory in the
past (which is called “the hidden state in the past”) [8,9]. There is a paucity of literature
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on this topic, and further investigation is required to gain insight into the integration of
diverse forms of explainable artificial intelligence for diverse data types in the context of
brain disease applications.

Secondly, little examination has been done, and more investigation is needed on rein-
forcement learning. Reinforcement learning has three key components: the environment
bringing a series of rewards, an agent taking a series of actions to maximize the cumula-
tive reward, and the environment transitioning to the next period with given transition
probabilities [54]. Here, artificial intelligence (e.g., Alpha-Go) begins in a manner similar to
that of a human player, taking a series of actions and maximizing the cumulative reward
(chance of victory) from the limited information available in limited periods only. Then, it is
capable of surpassing the performance of the best human player ever, due to the immense
power of big data covering all human players to date [54]. The popularity of reinforce-
ment learning in finance and health can be attributed to its ability to achieve excellent
results without the need for unrealistic assumptions, while offering a superior performance
compared to conventional statistical models [55,56]. Nevertheless, there is a paucity of
literature on the subject, and further investigation is required in order to gain a deeper
understanding of explainable reinforcement learning. A recent review indicates that only
a few studies have addressed this issue. These studies have employed simplified models
with straightforward interpretations but have demonstrated inadequate performance and
have given insufficient consideration to the psychological and social factors underlying
optimization processes [57].

Thirdly, rigorous qualitative evaluation approaches need to be developed regarding
systematic reviews of predictive and explainable artificial Intelligence for neuroimaging
applications. The Enhancing the Quality and Transparency of Health Research Network
recommends neuroimaging meta-analysis to include the following information: research
question; eligibility and exclusion criteria; flow diagram; experimental characteristics such
as sample size (participants), baseline vs. innovation methods (comparisons vs. interven-
tions), dependent variable (participants), task type, baseline vs. innovation performance
outcomes, and participant characteristics [58,59]. This study followed this recommendation
with the following summary measures: research question (p. 003); eligibility and exclu-
sion criteria (pp. 003–004); flow diagram (Figure 1); experimental characteristics such as
(1) sample size, baseline vs. innovation artificial intelligence methods, dependent vari-
able, and task type (Table 1), (2) baseline vs. innovation performance outcomes (Table 2),
(3) major demographic, health-related, and neuroimaging predictors (Table 3), and (4) cross
validation and major control variable (Table 4). However, more systematic qualitative
evaluation methods can be designed, and this new guideline is expected to improve the
reliability of reviews for predictive and explainable artificial intelligence for neuroimaging
applications much more.

5. Conclusions

In summary, this study reviewed the recent progress of predictive and explainable
artificial intelligence for neuroimaging applications. The ranges of performance measures
were reported to be 58–96 for accuracy (%), 66–97 for sensitivity (%), 76–98 for specificity
(%), and 70–98 for the AUC (%). The support vector machine and the convolutional neural
network registered the best performance (AUC 98%) for the classifications of low- vs. high-
grade glioma and brain conditions, respectively. Similarly, the random forest delivered
the best performance (root mean square error 1) for the regression of brain conditions.
The following factors were discovered to be major predictors of brain image or associ-
ated disease: (demographic) age, education, sex; (health-related) alpha desynchronization,
Alzheimer’s disease stage, CD4, depression, distress, mild behavioral impairment, RNA
sequencing; (neuroimaging) abnormal amyloid-β, amplitude of low-frequency fluctua-
tion, cortical thickness, functional connectivity, fractal dimension measure, gray matter
volume, left amygdala activity, left hippocampal volume, plasma neuro-filament light, right
cerebellum, regional homogeneity, right middle occipital gyrus, surface area, sub-cortical
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volume. Combining various types of explainable artificial intelligence with various types
of information in the field of brain disease would bring significant progress in the field.
Little research has been done, and more study is needed on reinforcement learning. In spite
of these limitations, predictive and explainable artificial intelligence provide an effective,
non-invasive decision support system for neuroimaging applications.

Author Contributions: S.L. and K.-S.L. designed the study, collected, analyzed, and interpreted the
data, as well as wrote and reviewed the manuscript. S.L. and K.-S.L. approved the final version of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Korea Health Industry Development Institute grant (No.
HI22C1302 (Korea Health Technology R&D Project)), funded by the Ministry of Health and Welfare
of South Korea. The funders had no role in the design of the study, in the collection, analysis, and
interpretation of the data, or in the writing and review of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. World Health Organization. Over 1 in 3 People Affected by Neurological Conditions, the Leading Cause of Illness and Disability

Worldwide. 14 March 2024 News Release. Available online: https://www.who.int/news/item/14-03-2024-over-1-in-3-people-
affected-by-neurological-conditions--the-leading-cause-of-illness-and-disability-worldwide (accessed on 19 August 2024).

2. Huang, Y.; Li, Y.; Pan, H.; Han, L. Global, regional, and national burden of neurological disorders in 204 countries and territories
worldwide. J. Glob. Health 2023, 13, 04160. [CrossRef] [PubMed]

3. GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous
system, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 344–381. [CrossRef]

4. Johns Hopkins Medicine. Neurological Disorders. 2024. Available online: https://www.hopkinsmedicine.org/health/conditions-
and-diseases/neurological-disorders (accessed on 19 August 2024).

5. Mayor Clinic. Neurology. 2024. Available online: https://www.mayoclinic.org/departments-centers/neurology/sections/
conditions-treated/orc-20117075 (accessed on 19 August 2024).

6. Cleveland Clinic. Brain Diseases. 2024. Available online: https://my.clevelandclinic.org/health/diseases/22934-brain-diseases
(accessed on 19 August 2024).

7. Brammer, M. The role of neuroimaging in diagnosis and personalized medicine-current position and likely future directions.
Dialogues Clin. Neurosci. 2009, 11, 389–396. [CrossRef]

8. Han, J.; Micheline, K. Data Mining: Concepts and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2006.
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