Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model
<p>Flow chart of selecting the study sample.</p> "> Figure 2
<p>The selected input image was resized to 512 × 512 pixels (<b>a</b>). Using the Neuro-T software, version 3.0.0 architecture (Nerocle Inc., Seoul, Republic of Korea), a yellow-colored polygonal box was drawn manually along the outer margin of the cortex, which had the fracture confirmed on a recent MRI, including as many bone fragments as possible (<b>b</b>). After the deep learning process was trained on these features, the predicted fractured areas, for which predicted scores ranged from 50 to 100%, were shown on the image with a checked pattern in pixels (<b>c</b>). This case was evaluated as a true positive result.</p> "> Figure 3
<p>As a case of false positives, the trained deep learning model color-mapped areas suspected of having fractures, but in reality, these did not have any fractures (<b>a</b>). However, these false positive results have a tendency to be found in the high attenuated cortex showing marginal osteophytes of the vertebra or normal endplates. In this case of a false negative, the fractured vertebra segment confirmed on the MRI was colored and trained (<b>b</b>), but the deep learning model could not recall a fractured segment when there was no checkered pixel (<b>c</b>). It appeared only as a subtle and narrow condensation zone on the CT, making it challenging to suspect a fracture even on the actual raw CT image.</p> "> Figure 4
<p>AUROC curves of the model and the readers for diagnosis of vertebral fractures on the external test set. AUROC = area under the receiver operating characteristic curve.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Datasets
2.2. Image Selection
2.3. Deep Learning Model Development
2.4. Observer Study
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Stand-Alone AI Performance
3.3. Observer Study
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Prevention and management of osteoporosis. World Health Organ. Tech. Rep. Ser. 2003, 921, 1–164. [Google Scholar]
- Delmas, P.D. Treatment of postmenopausal osteoporosis. Lancet 2002, 359, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Link, T.M.; Guglielmi, G.; van Kuijk, C.; Adams, J.E. Radiologic assessment of osteoporotic vertebral fractuzres: Diagnostic and prognostic implications. Eur. Radiol. 2005, 15, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.; Gittler, G.; Pieler-Bruha, E. Misleading history of pain location in 51 patients with osteoporotic vertebral fractures. Eur. Spine J. 2006, 15, 1797–1800. [Google Scholar] [CrossRef]
- Delmas, P.D.; van de Langerijt, L.; Watts, N.B.; Eastell, R.; Genant, H.; Grauer, A.; Cahall, D.L. Underdiagnosis of Vertebral Fractures Is a Worldwide Problem: The IMPACT Study. J. Bone Miner. Res. 2005, 20, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, T.; Giannelli, G.; Rinaldi, M.F.; Rimondi, E.; Rinaldi, G.; Sverzellati, N.; Gavelli, G. Prevalence of thoracolumbar vertebral fractures on multidetector CT: Underreporting by radiologists. Eur. J. Radiol. 2009, 69, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.L.; Al-Busaidi, A.; Sparrow, P.J.; Adams, J.E.; Whitehouse, R.W. Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur. J. Radiol. 2009, 69, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Bauer, J.S.; Zeile, M.; Rummeny, E.J.; Link, T.M. Significance of sagittal reformations in routine thoracic and abdominal multislice CT studies for detecting osteoporotic fractures and other spine abnormalities. Eur. Radiol. 2008, 18, 1696–1702. [Google Scholar] [CrossRef] [PubMed]
- Obaid, H.; Husamaldin, Z.; Bhatt, R. Underdiagnosis of vertebral collapse on routine multidetector computed tomography scan of the abdomen. Acta Radiol. 2008, 49, 795–800. [Google Scholar] [CrossRef]
- Carberry, G.A.; Pooler, B.D.; Binkley, N.; Lauder, T.B.; Bruce, R.J.; Pickhardt, P.J.; Petritsch, B.; Kosmala, A.; Weng, A.M.; Krauss, B.; et al. Unreported Vertebral Body Compression Fractures at Abdominal Multidetector CT. Radiology 2013, 268, 120–126. [Google Scholar] [CrossRef]
- Baum, T.; Bauer, J.S.; Klinder, T.; Dobritz, M.; Rummeny, E.J.; Noël, P.B.; Lorenz, C. Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT. Eur. Radiol. 2014, 24, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Cheung, Y.Y.; Hassanpour, S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 2018, 98, 8–15. [Google Scholar] [CrossRef]
- Murata, K.; Endo, K.; Aihara, T.; Suzuki, H.; Sawaji, Y.; Matsuoka, Y.; Nishimura, H.; Takamatsu, T.; Konishi, T.; Maekawa, A.; et al. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Sci. Rep. 2020, 10, 20031. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.E.; Yao, J.; Summers, R.M.; Pickhardt, P.J.; Graffy, P.M.; Perez, A.A.; Lubner, M.G.; Elton, D.C.; Zea, R.; Lee, S.J.; et al. Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images. Radiology 2017, 284, 788–797. [Google Scholar] [CrossRef]
- Guermazi, A.; Tannoury, C.; Kompel, A.J.; Murakami, A.M.; Ducarouge, A.; Gillibert, A.; Li, X.; Tournier, A.; Lahoud, Y.; Jarraya, M.; et al. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology 2022, 302, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Hsu, B.W.-Y.; Yin, Y.-K.; Lin, F.-H.; Yang, T.-H.; Yang, R.-S.; Lee, C.-K.; Tseng, V.S. Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs. PLOS ONE 2021, 16, e0245992. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Zhang, E.; Chen, Y.; Wang, Q.; Liu, K.; Yu, H.J.; Yuan, H.; Lang, N.; Su, M.-Y. Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning. Eur. Radiol. 2021, 31, 9612–9619. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Lim, S.H.; Jeong, J.G.; Kim, Y.J.; Kim, K.G.; Jeon, J.Y. A deep learning algorithm for automated measurement of vertebral body compression from X-ray images. Sci. Rep. 2021, 11, 13732. [Google Scholar] [CrossRef]
- Dong, Q.; Luo, G.; Lane, N.E.; Lui, L.-Y.; Marshall, L.M.; Kado, D.M.; Cawthon, P.; Perry, J.; Johnston, S.K.; Haynor, D.; et al. Deep Learning Classification of Spinal Osteoporotic Compression Fractures on Radiographs using an Adaptation of the Genant Semiquantitative Criteria. Acad. Radiol. 2022, 29, 1819–1832. [Google Scholar] [CrossRef]
- Crandall, D. Acute versus chronic vertebral compression fractures treated with kyphoplasty: Early results*1. Spine J. 2004, 4, 418–424. [Google Scholar] [CrossRef]
- Hardy, C.; Hazelton, J.P.; Gefen, R. Added Value of Dedicated Spine CT to Detect Fracture in Patients with CT Chest, Abdomen, and Pelvis in the Trauma Setting. Curr. Probl. Diagn. Radiol. 2019, 48, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Binkley, N.; Lubner, M.G.; Bruce, R.J.; Ziemlewicz, T.J.; Pickhardt, P.J. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos. Int. 2016, 27, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
Parameter | Internal Test Hospital | External Test Hospital | ||
---|---|---|---|---|
Without Fracture | With Fracture | Without Fracture | With Fracture | |
No. of patients | 100 | 113 | 22 | 14 |
Age (years) * | 56.1 ± 14.6 | 61.2 ± 19.5 | 61.2 ± 18.0 | 73.9 ± 12.6 |
No. of Men (%) | 57/100 (57) | 60/113 (53.1) | 9/22 (40.9) | 8/14 (57.1) |
CT-MR scan interval (days) * | 13.9 ± 16.0 | 8.0 ± 11.4 | 9.8 ± 11.4 | 4.2 ± 3.9 |
No. of CT scan-ordered department (%) | ||||
| 22/100 (22) | 26/113 (23.0) | 0 | 0 |
| 28/100 (28) | 32/113 (28.3) | 0 | 0 |
| 0 | 5/113 (4.4) | 12/22 (54.5) | 11/14 (78.6) |
| 50/100 (50) | 50/113 (44.2) | 10/22 (45.5) | 3/14 (21.4) |
No. per fractured segment | Total 160 | Total 15 | ||
| 6/160 (3.8) | 0 | ||
| 32/160 (20) | 3/15 (20) | ||
| 42/160 (26.3) | 4/15 (26.7) | ||
| 36/160 (22.5) | 5/15 (33.3) | ||
| 20/160 (12.5) | 1/15 (6.7) | ||
| 18/160 (11.3) | 0 | ||
| 3/160 (1.9) | 1/15 (6.7) | ||
| 3/160 (1.9) ** | 1/15 (6.7) *** |
Total (n = 111) | AI | Reader 1 | Reader 2 | Reader 3 | ||||
---|---|---|---|---|---|---|---|---|
Without AI | With AI | Without AI | With AI | Without AI | With AI | |||
AUROC | 0.9889 (0.9762–0.9977) | 0.9912 (0.977–0.999) | 0.9872 (0.9637–1) | 0.968 (0.9437–0.9937) | 0.9897 (0.9777–0.996) | 0.9576 (0.9142–0.9936) | 0.9322 (0.8871–0.9768) | |
Sensitivity | 84.44 (70.54–93.51) | 95.56 (84.85–99.46) | 86.67 (73.21–94.95) | 93.33 (81.73–98.60) | 80 (65.4–90.42) | 86.67 (73.21–94.95) | ||
: p-value | 0.07 | 0.25 | 0.25 | |||||
Specificity | 100 (94.56–100) | 98.48 (97.84–99.96) | 100 (94.56–100) | 96.97 (89.48–99.63) | 96.97 (89.48–99.63) | 95.45 (87.29–99.05) | 98.48 (91.84–99.96) | |
: p-value | 1 | NA | 0.48 | |||||
Accuracy | 94.59 (88.61–97.99) | 92.79 (86.29–96.84) | 98.2 (93.64–99.78) | 92.79 (86.29–96.84) | 95.5 (89.80–98.52) | 89.19 (81.88–94.29) | 93.69 (87.44–97.43) | |
: p-value | 0.04 | 0.25 | 0.07 | |||||
PPV | 100 (90.97–100) | 97.44 (86.52–99.94) | 100 (91.78–100) | 95.12 (83.47–99.4) | 95.45 (84.53–99.44) | 92.31 (79.13–98.38) | 97.5 (86.84–99.94) | |
: p-value | 0.96 | 1 | 0.59 | |||||
NPV | 91.67 (82.74–96.88) | 90.28 (80.99–96.0) | 97.06 (89.78–99.64) | 91.43 (82.27–96.79) | 95.52 (87.47–99.07) | 87.5 (77.59–94.12) | 91.55 (82.51–96.84) | |
: p-value | 0.12 | 0.53 | 0.61 |
Readers | Reader 1 | Reader 2 | Reader 3 | |||
---|---|---|---|---|---|---|
−AI | +AI | −AI | +AI | −AI | +AI | |
AI | 0.72 | 0.90 | 0.27 | 0.98 | 0.10 | 0.03 |
Reader 1 − AI | - | 0.74 | 0.09 | 0.70 | 0.10 | 0.02 |
Reader 1 + AI | - | 0.87 | 0.07 | 0.02 | ||
Reader 2 − AI | - | 0.08 | 0.45 | 0.14 | ||
Reader 2 + AI | - | 0.03 | 0.01 | |||
Reader 3 − AI | - | 0.12 | ||||
Reader 3 + AI | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.R.; Yoon, Y.S.; Cha, J.G. Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model. Diagnostics 2024, 14, 781. https://doi.org/10.3390/diagnostics14070781
Kim YR, Yoon YS, Cha JG. Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model. Diagnostics. 2024; 14(7):781. https://doi.org/10.3390/diagnostics14070781
Chicago/Turabian StyleKim, Ye Rin, Yu Sung Yoon, and Jang Gyu Cha. 2024. "Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model" Diagnostics 14, no. 7: 781. https://doi.org/10.3390/diagnostics14070781
APA StyleKim, Y. R., Yoon, Y. S., & Cha, J. G. (2024). Opportunistic Screening for Acute Vertebral Fractures on a Routine Abdominal or Chest Computed Tomography Scans Using an Automated Deep Learning Model. Diagnostics, 14(7), 781. https://doi.org/10.3390/diagnostics14070781