Introduction: To evaluate the clinical usefulness of demographic data, fetal imaging findings and urinary analytes were used for predicting poor postnatal renal function in children with congenital megacystis.
Materials and methods: A systematic review was conducted in MEDLINE’s electronic database from
[...] Read more.
Introduction: To evaluate the clinical usefulness of demographic data, fetal imaging findings and urinary analytes were used for predicting poor postnatal renal function in children with congenital megacystis.
Materials and methods: A systematic review was conducted in MEDLINE’s electronic database from inception to December 2023 using various combinations of keywords such as “luto” [All Fields] OR “lower urinary tract obstruction” [All Fields] OR “urethral valves” [All Fields] OR “megacystis” [All Fields] OR “urethral atresia” [All Fields] OR “megalourethra” [All Fields] AND “prenatal ultrasound” [All Fields] OR “maternal ultrasound” [All Fields] OR “ob-stetric ultrasound” [All Fields] OR “anhydramnios” [All Fields] OR “oligohydramnios” [All Fields] OR “renal echogenicity” [All Fields] OR “biomarkers” [All Fields] OR “fetal urine” [All Fields] OR “amniotic fluid” [All Fields] OR “beta2 microglobulin” [All Fields] OR “osmolarity” [All Fields] OR “proteome” [All Fields] AND “outcomes” [All Fields] OR “prognosis” [All Fields] OR “staging” [All Fields] OR “prognostic factors” [All Fields] OR “predictors” [All Fields] OR “renal function” [All Fields] OR “kidney function” [All Fields] OR “renal failure” [All Fields]. Two reviewers independently selected the articles in which the accuracy of prenatal imaging findings and fetal urinary analytes were evaluated to predict postnatal renal function.
Results: Out of the 727 articles analyzed, 20 met the selection criteria, including 1049 fetuses. Regarding fetal imaging findings, the predictive value of the amniotic fluid was investigated by 15 articles, the renal appearance by 11, bladder findings by 4, and ureteral dilatation by 2. The postnatal renal function showed a statistically significant relationship with the occurrence of oligo- or anhydramnion in four studies, with an abnormal echogenic/cystic renal cortical appearance in three studies. Single articles proved the statistical prognostic value of the amniotic fluid index, the renal parenchymal area, the apparent diffusion coefficient (ADC) measured on fetal diffusion-weighted MRI, and the lower urinary tract obstruction (LUTO) stage (based on bladder volume at referral and gestational age at the appearance of oligo- or anhydramnios). Regarding the predictive value of fetal urinary analytes, sodium and β2-microglobulin were the two most common urinary analytes investigated (n = 10 articles), followed by calcium (n = 6), chloride (n = 5), urinary osmolarity (n = 4), and total protein (n = 3). Phosphorus, glucose, creatinine, and urea were analyzed by two articles, and ammonium, potassium, N-Acetyl-l3-D-glucosaminidase, and microalbumin were investigated by one article. The majority of the studies (n = 8) failed to prove the prognostic value of fetal urinary analytes. However, two studies showed that a favorable urinary biochemistry profile (made up of sodium < 100 mg/dL; calcium < 8 mg/dL; osmolality < 200 mOsm/L; β2-microglobulin < 4 mg/L; total protein < 20 mg/dL) could predict good postnatal renal outcomes with statistical significance and urinary levels of β2-microglobulin were significantly higher in fetuses that developed an impaired renal function in childhood (10.9 ± 5.0 mg/L vs. 1.3 ± 0.2 mg/L,
p-value < 0.05).
Conclusions: Several demographic data, fetal imaging parameters, and urinary analytes have been shown to play a role in reliably triaging fetuses with megacystis for the risk of adverse postnatal renal outcomes. We believe that this systematic review can help clinicians for counseling parents on the prognoses of their infants and identifying the selected cases eligible for antenatal intervention.
Full article