A Sentinel-2 Dataset for Uganda
<p>Africa, Uganda and the Sentinel-2 tiles used, water in blue.</p> "> Figure 2
<p>Land cover from ESA climate change initiative derived from Sentinel-2 for 2016 [<a href="#B21-data-06-00035" class="html-bibr">21</a>].</p> "> Figure 3
<p>The SRTM 30 m spatial resolution elevation data used in the topographic calibration of the Sentinel-2 data. Overlaid is the non-overlapping output grid, which is part of the GLANCE grid for Africa [<a href="#B24-data-06-00035" class="html-bibr">24</a>]. Water areas in blue.</p> "> Figure 4
<p>Process flow for Sentinel-2 data covering Uganda. Data and information flow from the left, where level 1C input data (top of the atmosphere reflectance) are retrieved from the repository, to the right, where analysis-ready (ARD) data in the form of level 2 output data (bottom of the atmosphere reflectance) are calculated. A range of options for further analysis exists, and these are labelled either as <span class="html-italic">This study</span>, <span class="html-italic">FORCE</span> or <span class="html-italic">Other software</span>. <span class="html-italic">This study</span> (grey shaded boxes) include a set of measures of NDVI and EVI (min., max., average, standard deviation, 5%, 50% and 95% quantiles), calculated annually, and average NDVI and EVI, calculated quarterly. Clear sky observations (CSO) and best available pixel (BAP) are produced annually. The 20 m resolutions bands are resampled to 10 m spatial resolution with the ImproPhe method. Additionally available (but unused in the this study) FORCE process sub-models utilizing the FORCE data cube are labelled <span class="html-italic">FORCE</span>. <span class="html-italic">Other software</span> tools suitable for time series analysis (e.g., TIMESAT [<a href="#B31-data-06-00035" class="html-bibr">31</a>]), trend analysis (e.g., Poly_Trend [<a href="#B32-data-06-00035" class="html-bibr">32</a>]) and change detection in time series (e.g., DBEST [<a href="#B33-data-06-00035" class="html-bibr">33</a>] and BFAST [<a href="#B34-data-06-00035" class="html-bibr">34</a>]) can be utilized, but these normally require a time series of level 2 data.</p> "> Figure 5
<p>Average EVI from Sentinel-2 for 2018 and 2020 at 10 m spatial resolution for Uganda. See Figure 8 for illustrations of the differences in EVI (2018 vs. 2020) for a spatial subset.</p> "> Figure 6
<p>Example of a cloud-free mosaic of Uganda for 2019 based on best available pixels (BAP). False color composite with Sentinel band 2,3,4 (RGB).</p> "> Figure 7
<p>Number of clear-sky observations for 2018–2020. The stripes are caused by higher data availability due to Sentinel-2A/B orbit overlaps.</p> "> Figure 8
<p>EVI annual average difference for the Mount Elgon region, 2018–2020. Grey areas indicate a decrease, green indicate an increase, of at least 0.1 from 2018 to 2020. Changes <0.1 are not shown.</p> ">
Abstract
:1. Introduction
1.1. Uganda
1.2. Earth Observation
1.3. Aim
2. Materials and Methods
2.1. Data
2.1.1. Sentinel-2
2.1.2. Land Cover
2.1.3. Digital Elevation Data
2.2. Processing
2.2.1. Radiometric, Atmospheric and Topographic Corrections
2.2.2. Geometric Correction
2.2.3. Clear Sky Observations
2.2.4. Best Available Pixel Composite
2.2.5. Vegetation Indices
2.2.6. Output Format and Naming Convention
2.2.7. Dataset Structure and Reproduction
3. Results
3.1. Level-2 Data
3.2. Level 3 and Higher Level Data
3.2.1. Vegetation Indices
3.2.2. Best Available Pixel Composites (BAP)
3.2.3. Clear Sky Observations (CSO)
3.3. Data Availability and Download
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. File Organization
Appendix B. File Naming Convention
Appendix B.1. BAP
Digits | Description |
---|---|
1–8 | Target date as YYYYMMDD |
10–15 | Product Level |
17–21 | Sensor ID (SEN2L, Sentinel-2 land bands) |
23–25 | Product type (BAP, INF, SCR) |
27–29 | File type (GeoTiff) |
Appendix B.2. Elevation and Land Cover Data
Appendix B.3. CSO
Digits | Description |
---|---|
1–9 | Temporal range for the years as YYYY–YYYY |
11–17 | Temporal binning in DOY as DDD–DDD |
19–20 | Temporal binning in months |
22–23 | Product level |
25–27 | Product |
29–33 | Sensor ID (SEN2L, Sentinel-2 land bands) |
35–37 | Product type (NUM = number of observations) |
39–41 | File type (GeoTiff) |
Appendix B.4. Vegetation indices
Digits | Description |
---|---|
1–9 | Temporal range for the years as YYYY–YYYY |
11–17 | Temporal range for the DOY as DDD–DDD |
19–20 | Product level (HL) |
22–24 | Submodel (TSA) |
26–30 | Sensor ID (SEN2L, Sentinel-2 land bands) |
32–34 | Index Short Name (EVI, NDV) |
36–38 | Product type (FBQ = folded by quarter) |
40–42 | File type (GeoTiff) |
References
- UN. World Population Prospects 2019: Volume II: Demographic Profiles; Technical Report; United Nations, Department of Economic and Social Affairs Population Division: New York, NY, USA, 2019. [Google Scholar]
- Lunyolo, L.D.; Khalifa, M.; Ribbe, L. Assessing the interaction of land cover/land use dynamics, climate extremes and food systems in Uganda. Sci. Total Environ. 2021, 753, 142549. [Google Scholar] [CrossRef]
- Lobell, D.B.; Azzari, G.; Burke, M.; Gourlay, S.; Jin, Z.; Kilic, T.; Murray, S. Eyes in the Sky, Boots on the Ground: Assessing Satellite- and Ground-Based Approaches to Crop Yield Measurement and Analysis in Uganda; The World Bank: Washington, DC, USA, 2018; Available online: https://elibrary.worldbank.org/doi/pdf/10.1596/1813-9450-8374 (accessed on 15 October 2020). [CrossRef] [Green Version]
- Barbosa, H.; Tote, C.; Kumar, L.; Bamutaze, Y. Harnessing Earth Observation and Satellite Information for Monitoring Desertification, Drought and Agricultural Activities in Developing Countries. In Environmental Change and Sustainability; Silvern, S., Young, S., Eds.; IntechOpen: Rijeka, Croatia, 2013; Chapter 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhan, J.; Zhang, Q.; Yao, L.; Liu, W. Impacts of land use/cover change on terrestrial carbon stocks in Uganda. Phys. Chem. Earth Parts A/B/C 2017, 101, 195–203. [Google Scholar] [CrossRef]
- Nakalembe, C.; Dempewolf, J.; Justice, C. Agricultural land use change in Karamoja Region, Uganda. Land Use Policy 2017, 62, 2–12. [Google Scholar] [CrossRef]
- Morgan, B.; Awange, J.; Saleem, A.; Kexiang, H. Understanding vegetation variability and their “hotspots” within Lake Victoria Basin (LVB: 2003–2018). Appl. Geogr. 2020, 122, 102238. [Google Scholar] [CrossRef]
- Bernard, B.; Aron, M.; Loy, T.; Muhamud, N.W.; Benard, S. The impact of refugee settlements on land use changes and vegetation degradation in West Nile Sub-region, Uganda. Geocarto Int. 2020. [Google Scholar] [CrossRef]
- Kyatengerwa, C.; Kim, D.; Choi, M. A national-scale drought assessment in Uganda based on evapotranspiration deficits from the Bouchet hypothesis. J. Hydrol. 2020, 580, 124348. [Google Scholar] [CrossRef]
- Mugizi, F.M.; Matsumoto, T. A curse or a blessing? Population pressure and soil quality in Sub-Saharan Africa: Evidence from rural Uganda. Ecol. Econ. 2021, 179, 106851. [Google Scholar] [CrossRef]
- Habonimana, H.V. Integrated Flood Modeling in Lubigi Catchment Kampala. Master’s Thesis, Faculty of Geo-Information Science and Earth Observation of the University of Twente, Enschede, The Netherlands, 2014. [Google Scholar]
- Jacobs, L.; Maes, J.; Mertens, K.; Sekajugo, J.; Thiery, W.; van Lipzig, N.; Poesen, J.; Kervyn, M.; Dewitte, O. Reconstruction of a flash flood event through a multi-hazard approach: Focus on the Rwenzori Mountains, Uganda. Nat. Hazards 2016, 84, 851–876. [Google Scholar] [CrossRef]
- Nseka, D.; Bamutaze, Y.; Mugagga, F.; Nakileza, B. The Fragility of Agricultural Landscapes and Resilience of Communities to Landslide Occurrence in the Tropical Humid Environments of Kigezi Highlands in South Western Uganda. In Agriculture and Ecosystem Resilience in Sub Saharan Africa: Livelihood Pathways Under Changing Climate; Bamutaze, Y., Kyamanywa, S., Singh, B.R., Nabanoga, G., Lal, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 279–305. [Google Scholar] [CrossRef]
- Nakileza, B.R.; Nedala, S. Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenviron. Disasters 2020, 7, 27. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 MSI Spatial Resolution. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial (accessed on 3 September 2020).
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- ESA. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 3 September 2020).
- CNES. French Access to the Sentinel Products. Available online: https://peps.cnes.fr/rocket/#/home (accessed on 1 September 2020).
- Google. Sentinel-2 Data. Available online: https://cloud.google.com/storage/docs/public-datasets/sentinel-2 (accessed on 12 December 2020).
- ESA. Sentinel-2 Images the Globe Every 5 Days. Available online: https://earth.esa.int/web/sentinel/missions/sentinel-2/news/-/asset_publisher/Ac0d/content/sentinel-2-images-the-globe-every-5-days (accessed on 21 July 2020).
- ESA. CCI LAND COVER—S2 Prototype Land Cover 20 m Map of Africa 2016. Available online: http://2016africalandcover20m.esrin.esa.int/ (accessed on 1 February 2021).
- ESA. Sentinel-2 User Handbook; Technical Report; European Space Agency. 2015. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2-user-handbook (accessed on 24 March 2021).
- Hagolle, O. The Sentinel-2 Tiles, How They Work? Available online: https://labo.obs-mip.fr/multitemp/the-sentinel-2-tiles-how-they-work/ (accessed on 30 January 2021).
- Anon. Africa Global LANd Cover Mapping and Estimation (GLANCE) Grids. Available online: https://measures-glance.github.io/glance-grids/grids/af (accessed on 25 May 2020).
- Anon. 30-Meter SRTM Tile Downloader. Available online: https://dwtkns.com/srtm30m/ (accessed on 3 May 2020).
- Anon. Geospatial Data Abstraction Library. Available online: https://gdal.org/programs/gdalbuildvrt.html (accessed on 4 April 2020).
- Frantz, D. FORCE. Available online: https://force-eo.readthedocs.io/en/latest/ (accessed on 5 September 2020).
- Frantz, D. FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sens. 2019, 11, 1124. [Google Scholar] [CrossRef] [Green Version]
- Frantz, D. Gnu General Public License. Available online: https://force-eo.readthedocs.io/en/latest/policy/license.html?highlight=GNU#gnu-general-public-license (accessed on 5 September 2020).
- Frantz, D. Gnu General Public License. Available online: https://github.com/davidfrantz/force (accessed on 5 May 2020).
- Eklundh, L.; Jönsson, P. TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics. In Remote Sensing Time Series. Remote Sensing and Digital Image Processing; Kuenzer, C., Dech, S., Wagner, W., Eds.; Springer: Cham, Switzerland, 2015; Volume 22. [Google Scholar]
- Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens. Environ. 2014, 141, 79–89. [Google Scholar] [CrossRef]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- ESA. Level-1C Processing. Available online: https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c-processing (accessed on 30 August 2020).
- Frantz, D.; Röder, A.; Stellmes, M.; Hill, J. An Operational Radiometric Landsat Preprocessing Framework for Large-Area Time Series Applications. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3928–3943. [Google Scholar] [CrossRef]
- Frantz, D.; Röder, A.; Udelhoven, T.; Schmidt, M. Enhancing the Detectability of Clouds and Their Shadows in Multitemporal Dryland Landsat Imagery: Extending Fmask. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1242–1246. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Frantz, D.; Stellmes, M.; Röder, A.; Udelhoven, T.; Mader, S.; Hill, J. Improving the Spatial Resolution of Land Surface Phenology by Fusing Medium- and Coarse-Resolution Inputs. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4153–4164. [Google Scholar] [CrossRef]
- Frantz, D. FORCE. Available online: https://force-eo.readthedocs.io/en/latest/components/higher-level/cso/index.html#cso (accessed on 29 January 2021).
- Jönsson, P.; Cai, Z.; Melaas, E.; Friedl, M.A.; Eklundh, L. A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data. Remote Sens. 2018, 10, 635. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Phenology-adaptive pixel-based compositing using optical earth observation imagery. Remote Sens. Environ. 2017, 190, 331–347. [CrossRef] [Green Version]
- Frantz, D. FORCE. Available online: https://force-eo.readthedocs.io/en/latest/components/higher-level/l3/index.html#level3 (accessed on 29 January 2021).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- L3HARRIS-Geospatial. ENVI Image Files. Available online: https://www.l3harrisgeospatial.com/docs/ENVIImageFiles.html (accessed on 2 February 2021).
- Abdi, A.M.; Seaquist, J.; Tenenbaum, D.E.; Eklundh, L.; Ardö, J. The supply and demand of net primary production in the Sahel. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Frantz, D. FORCE—Higher Level. Available online: https://force-eo.readthedocs.io/en/latest/components/higher-level/index.html (accessed on 22 March 2021).
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Sjöström, M.; Ardö, J.; Arneth, A.; Boulain, N.; Cappelaere, B.; Eklundh, L.; de Grandcourt, A.; Kutsch, W.L.; Merbold, L.; Nouvellon, Y.; et al. Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems. Remote Sens. Environ. 2011, 115, 1081–1089. [Google Scholar] [CrossRef]
- Ma, X.; Huete, A.; Yu, Q.; Restrepo-Coupe, N.; Beringer, J.; Hutley, L.B.; Kanniah, K.D.; Cleverly, J.; Eamus, D. Parameterization of an ecosystem light-use-efficiency model for predicting savanna GPP using MODIS EVI. Remote Sens. Environ. 2014, 154, 253–271. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Kilama Luwa, J.; Bamutaze, Y.; Majaliwa Mwanjalolo, J.G.; Waiswa, D.; Pilesjö, P.; Mukengere, E.B. Impacts of land use and land cover change in response to different driving forces in Uganda: Evidence from a review. Afr. Geogr. Rev. 2020, 1–17. [Google Scholar] [CrossRef]
- Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366–380. [Google Scholar] [CrossRef]
- Anonymous. Towards Ecosystem Accounts for Uganda—Uganda Natural Capital Accounting Program; Report; Uganda Bureau of Statistics: Kampala, Uganda, 2020. [Google Scholar]
- ESA. Data Product Quality Reports. Available online: https://sentinels.copernicus.eu/web/sentinel/data-product-quality-reports (accessed on 17 March 2021).
- ESA. L1C Data Quality Report Ref. S2-PDGS-MPC-DQR. 2021. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2+Data+Quality+Report+(DQR)/f42497d3-611f-4165-bcc1-2f81421c646a (accessed on 22 March 2021).
- Bauer, P.; Stevens, B.; Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Chang. 2021, 11, 80–83. [Google Scholar] [CrossRef]
- Bauer, P.; Dueben, P.D.; Hoefler, T.; Quintino, T.; Schulthess, T.C.; Wedi, N.P. The digital revolution of Earth-system science. Nat. Comput. Sci. 2021, 1, 104–113. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Frantz, D. FORCE—L3 Naming Convention. Available online: https://force-eo.readthedocs.io/en/latest/components/higher-level/l3/format.html#naming-convention (accessed on 1 September 2020).
- Frantz, D. FORCE—CSO Naming Convention. Available online: https://force-eo.readthedocs.io/en/latest/components/higher-level/cso/format.html#naming-convention (accessed on 5 January 2021).
- Frantz, D. FORCE—TSA Naming Convention. Available online: https://force-eo.readthedocs.io/en/latest/components/higher-level/tsa/format.html#naming-convention (accessed on 5 January 2021).
Region | ESA Band | FORCE L2 Band | Wavelength [μm] | Original Resolution [m] |
---|---|---|---|---|
Blue | 1 | - | 0.433–0.453 | 60 |
Blue | 2 | 1 | 0.440–0.538 | 10 |
Green | 3 | 2 | 0.537–0.582 | 10 |
Red | 4 | 3 | 0.646–0.684 | 10 |
Rededge1 | 5 | 4 | 0.694–0.713 | 20 |
Rededge2 | 6 | 5 | 0.731–0.749 | 20 |
Rededge3 | 7 | 6 | 0.769–0.797 | 20 |
BroadNIR | 8 | 7 | 0.760–0.908 | 10 |
NIR | 8B | 8 | 0.848–0.881 | 20 |
NIR | 9 | - | 0.935–0.955 | 60 |
NIR | 10 | - | 1.360–1.390 | 60 |
SWIR1 | 11 | 9 | 1.539–1.682 | 20 |
SWIR2 | 12 | 10 | 2.078–2.320 | 20 |
Band | Description |
---|---|
1 | Quality Assurance Information of best observation |
2 | Number of cloud-free observations within compositing period |
3 | Acquisition Day Of Year (DOY) of best observation |
4 | Acquisition Year of best observation |
5 | Difference between band 3 and Target DOY |
6 | Sensor ID of best observation (Sentinel-2A or 2B ) |
Level | Interval | Description | URL |
---|---|---|---|
1C | 5 day | TOA-reflectance | https://console.cloud.google.com/storage/browser/gcp-public-data-sentinel-2 (accessed on 22 March 2021) |
2 | 5 day | BOA-reflectance | Not shared in repository (too large) |
3 | Annual | BAP | * |
Higher | Quaterly | EVI | * |
Higher | Quaterly | NDVI | * |
Higher | Annual | CSO | * |
Extra | - | Elevation | * |
Extra | 2016 | Land Cover | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardö, J. A Sentinel-2 Dataset for Uganda. Data 2021, 6, 35. https://doi.org/10.3390/data6040035
Ardö J. A Sentinel-2 Dataset for Uganda. Data. 2021; 6(4):35. https://doi.org/10.3390/data6040035
Chicago/Turabian StyleArdö, Jonas. 2021. "A Sentinel-2 Dataset for Uganda" Data 6, no. 4: 35. https://doi.org/10.3390/data6040035
APA StyleArdö, J. (2021). A Sentinel-2 Dataset for Uganda. Data, 6(4), 35. https://doi.org/10.3390/data6040035