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1. Introduction

With the drastic advances in technology over the past decades, the availability, as well as the
quantity, of large data sets for research in almost every scientific field has increased dramati‐
cally. More specifically, the availability of earth observation-based imagery data and satellite
information for research purposes and practical applications has grown with many organiza‐
tions such as the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT), the National Aeronautics Space Administration (NASA), the National Oceanic
and Atmospheric administration (NOAA), the Flemish Institute for Technological Research
(VITO), etc. for example, through GEONETCast, which is part of the core Global Earth
Observation System of Systems (GEOSS), the users do not need to repeatedly build ground
receiving stations for different satellites [1]. However, despite a wealth of remotely sensed data
provided by GEONETCast, investments in science technology and innovations is often a low
priority for decision and policy makers in most developing countries in Africa, Asia and global
emerging economies like India and Brazil. Yet, most of these countries face serious environ‐
mental risks and development challenges which require reliable and timely access to accurate
Earth Observation (EO) data and derived environmental information for their sustainable
development. In particular, there is a clear need for research on the integration and utility of
remote sensing data and products into the risk assessment cycle, scenario development and
impact forecasting, in view of global (climate) change [2].

Climate alterations, although global in nature, may have different impacts in different regions
of the world. Reports of Intergovernmental Panel on Climate Change (IPCC) showed that the
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global average surface temperature has increased over the 20th century by about 0.6ºC [3].
Global Circulation Models have projected that this rise in temperature may increase to a range
of 1.5 – 5.8ºC by the end of the century. Results of crop growth modeling under climate change
scenarios suggest that agriculture, and thus human well-being, will be negatively affected by
climate change, especially in developing countries [4]. The vulnerability to drought and land
degradation has increased in the past decades and this is especially true due to increased
population pressure and limited livelihood options in drought-prone areas [5]. Significant
gaps in observing systems exist, especially in developing countries, and timely access to both
surface-based and space observations is still a challenge in many locations.

Global-scale population growth and economic development will have a large impact on water
supply and demand, and it is necessary to understand the interactions between climate change
and variability, hydrology and human systems, in order to have a view on future water
vulnerabilities [6]. Since developing countries will become more susceptible to climate
variability and drought, it is essential to develop climate (impact) monitoring services. A
climate service involves broad partnerships of producer and user organizations, climate
scientists, climate service providers, economists and social scientists. It provides an opportu‐
nity to interlink global, national and regional information systems; to provide essential
information to policy makers, decision takers and to the public in general at regional and local
scales, and a provide for a distributed decision-relevant research and development capability
[7]. The climate service for the developing countries might focus on collaborative problem
solving. Also capacity building and the improvement of infrastructure, related to the acquis‐
ition of advanced remote sensing technologies and the installation of satellite receiving stations
by, is needed.

The gist of this chapter is therefore to strengthen the capacities of the regional scientific
community to provide stakeholders from drought to agricultural activities with satellite
information that is directly useful to improve decision-making in the context of the developing
countries. The chapter is based on four case studies from Africa, South America, India and
Europe to demonstrate the utility of satellite imagery data obtained from free or low cost
platforms in providing information to address the above environmental issues, which are
critical particularly in developing countries. Based on the expertise, experience and interest of
a regional network of scientists from Uganda, Brazil, India, and Europe, the chapter focuses
on harnessing satellite remote sensing resources and products for drought monitoring of areas
subject to or in risk of land degradation processes, agricultural productivity and drought
assessment. The following paragraphs include a series of example cases where time series of
satellite imagery is used to monitor the impact of climate (change):

i. Degradation monitoring over South America

ii. Relation of NDVI with the moisture Index over the regions of different climatic types

iii. Sugarcane yield estimation and modelling based on NDVI data over Southeastern
Brazil and

iv. Production and yield estimates of five major crops over Uganda
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The importance of each of the above aspects in the context of assessing, monitoring and
managing the natural hazards such as desertification, drought and risk management are
discussed in detail in the individual sections.

All case studies make use of time series of Normalized Difference Vegetation index (NDVI),
an index of vegetation activity that can be derived from broad band measurements in the
visible and infrared channels onboard satellite instruments and which is directly related to
the photosynthetic capacity of plants [8]., Satellite sensors such as NOAA Advanced Very
High  Resolution  Radiometer  (AVHRR),  Moderate  Imaging  Spectroradiometer  (MODIS),
Système  Pour  l’Observation  de  la  Terre  (SPOT)  Vegetation  etc.  provide  NDVI  data  on
different  intervals  (8-day,  10-day,  monthly and seasonal).  NDVI value varies  minus one
(-1) to plus one (+1), whereby low NDVI values (< 0.2) reflect sparse vegetation, and higher
NDVI  values  (>  0.4)  reflect  high  vegetation  densities.  Several  studies  looked  into  the
interannual variability and trends of NDVI in relation to meteorological parameters such
as rainfall, temperature etc [9-11].The long time series of NOAA AVHRR has been widely
used to relate the synoptic meteorology/climatology to understand the vegetation dynam‐
ics, vegetation response to climate and climate vegetation feedback mechanism [5, 12-14].
The studies of [9, 15-17] concluded that AVHRR NDVI is a valuable tool to monitor and
asses large scale agricultural droughts. Other studies use NDVI time series derived from
MODIS [18-20] or SPOT-Vegetation [21, 22].

In this work, the authors made use of NDVI imagery datasets derived from different satellites
to relate the respective crop and climatic parameters to understand the sensitivity of NDVI
with these parameters and further to use them for vegetation monitoring over large areas
which contributes to risk management.

2. Time series analysis for desertification monitoring

In the last decades, remote sensing technologies started to contribute enormously in docu‐
menting changes in land cover and monitoring desertification, drought and agricultural
activities on regional and global spatial scales. Although desertification is highlighted as one
of the most important global environmental issues, both desertification and greening processes
have been reported on global scale [23-26]. These processes are related in many ways with
other environmental issues, such as climate change and the carbon cycle, loss of biodiversity
and sustainability of agriculture [27]. Also in South America environmental change is an
important concern. In the last decades, South American ecosystems underwent important
functional modifications due to climate alterations and direct human interventions on land
use and land cover [28]. In South America, the main forest conversion process in the humid
tropics in the period 1990-1997 was the clear-cutting of closed, open, or fragmented forest to
make room for agriculture at a rate of approximately 1.7 million ha per year [29]. Apart from
deforestation, also forest degradation occurs, a process leading to a temporary or permanent
deterioration in the density or structure of vegetation cover or its species composition. Land
degradation in arid, semi-arid and dry sub-humid areas is called desertification, and is the
result of various factors, including climatic variations and human activities [30].
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To determine desertification conditions, this case study focuses on vegetation dynamics in
South America over a long time period based on a time series of low spatial resolution, high
temporal resolution NDVI derived from SPOT-Vegetation, and to recognize to which extent
this variability can be attributed to variability in rainfall, since rainfall is one of the most
determinant factors of vegetation growth. In general, and especially in semi-arid regions,
strong correlations between precipitation and the NDVI can be found. Therefore, the NDVI
can be used as an indicator for vegetation status and vegetation response to precipitation
variability. This study expands the analysis, as was performed on the Andes region [31] to
South American continental level. In the first phase, trends of vegetation and precipitation
indices are analyzed. In a next step, through correlation of NDVI and precipitation dynamics,
these areas where the evolution of vegetation is not related to climate only and human induced
impacts play an imperative role can be identified.

The time series of SPOT-Vegetation 10-daily composite NDVI data (April 1998 – March 2012)
at 1 km resolution (http://www.vgt.vito.be/) was smoothed [32] and consequently synthesized
to monthly images using the maximum value composite technique. Also 10-daily rainfall
estimates at 0.25° resolution, available from the European Centre for Medium-Range Weather
Forecasts (ECMWF) through MeteoConsult and the Monitoring Agricultural ResourceS
(MARS) unit, were combined to retrieve monthly composites. The spatial resolution of the
NDVI time series was degraded in order to fit the rainfall estimates using a weighted average
approach. Many authors remove seasonality by integrating the data into annual values (e.g.
[25, 28, 33]). In this study, in order to remove seasonal vegetation changes and thus facilitate
the interpretation through the historical record, deviations from the ‘average’ situation were
calculated for the NDVI time series using the Standardized Difference Vegetation Index (SDVI)
[34] and for the precipitation time series using the Standardized Precipitation Index (SPI) [35].
In a next step, for each pixel a correlation analysis is performed on the monthly NDVI and SPI
datasets, in order to identify the temporal scale at which the environment is most sensitive to
precipitation anomalies (the so-called ‘best lag’).

The results of the correlation analysis between NDVI and SPI are shown in Figure 1. Positively
correlated (blue) areas suggest precipitation-vegetation coupling. In general, high positive
correlation with best lags between 3 – 6 months are found in the semi-arid regions of South
America, while weak (or even negative) correlation at all time scales was found in both the hot
and humid zones and the deserts and high mountainous areas. These positive relationships
between vegetation greenness and rainfall in drylands, where biomass production is deter‐
mined by the amount of rainfall, and the opposite in humid and cold regions, where rainfall
is not the limiting factor for vegetation growth, and deserts, where there is no rainfall at all, is
consistent with findings of other authors, such as [33, 36].

In order to identify if a pixel is greening or degrading, and after identifying the best lag for
each pixel, linear least squares trend analyses were performed on the SDVI time series and the
SPI time series, taking into account the accumulated rainfall over the respective best lag. Only
trends with Pearson correlation coefficients significantly different from zero (at significance
level p < 0.05) are considered significant trends. Figure 2 shows the slope of the significant
linear trends of vegetation greenness and precipitation anomalies, SDVI and SPI respectively.
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SDVI show slight but significant (P<0.05) positive trends in large areas in the northern part of
South America, but significant negative trends in Argentina and the Peruvian coast. The results
are comparable, but far more pronounced than results from annual series trend analysis, such
as from [25, 28]. Also the SPI shows positive trends in the north-west of South America and
the centre of Brazil. Negative precipitation trends are found in Argentina, the Peruvian coast
and north-east of Brazil.

 

Figure 2. Slope of the trend analysis of SDVI (left) and SPI (right). Non significant trends are masked in grey.

 

Figure 1. Correlation analysis between NDVI and SPI. Best lag expressed in months.
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Following the trend analyses, a decision tree approach is adopted in order to interpret the
results. Five queries are stipulated: (1) Does the time series of SDVI show a significant trend?
(2) Are significant trends in SDVI coupled to significant correlations between NDVI and SPI?
(3) Are significant trends in SDVI linked to significant trends in SPI? (4) Does the SDVI show
a positive trend? (5) Do trends in SDVI correspond to trends in SPI?

The first question is meant to identify the focus area, i.e. pixels where the de-seasoned
vegetation index (i.e. SDVI) shows a significant linear trend over time. The second and third
queries are used to identify areas that differ in their relationship between vegetation and
precipitation trends, respectively, while queries 4 and 5 are meant to distinguish positive and
negative trends that are linked to trends in precipitation. On the other hand, it is possible to
identify regions where positive or negative trends in vegetation are not linked to changes in
precipitation and other climate variables or human impact play an imperative role. In step 4,
pixels are divided in greening or degrading pixels. In the last step, both the trends in SDVI and
SPI are evaluated.

The results of the decision tree analysis are shown in Figure 3. Green classes show a significant
positive trend in SDVI coupled to an increase in SPI. Red classes show a coupling between a
decrease in SDVI and SPI. The yellow and orange classes are classes where SDVI and SPI show
an opposite trend. Argentina is clearly suffering from vegetation degradation linked to a
decline in precipitation, which confirms the findings of [35]. The opposite is going on in
Colombia and some parts of Brazil, where a process of greening seems to be linked to an
increase in precipitation. Nevertheless, Brazil shows a patchy result, with some areas showing
an increase in SDVI, although the precipitation decreases (yellow areas in Figure 3), and other
areas showing a decline in vegetation, although precipitation increases (orange area in Figure
3), probably related to deforestation or forest degradation.

The resulting map can be used to estimate the coupling between vegetation (SDVI) and
precipitation (SPI), shown in Figure 4. Three estimations are made: (A) a large estimation where
significant trends in SDVI are coupled with trends in precipitation when SPI shows the same
trend (significant or not); (B) an average estimation where significant trends in SDVI are linked
to trends in precipitation when SPI shows a significant trend; and (C) a conservative estimation
where significant trends in SDVI are linked to trends in precipitation when the SPI shows a
significant trend and the correlation between NDVI and SPI is significant.

In estimation A, also weak trends in SPI are taken into account. These non-significant trends
in precipitation are most probably not by itself responsible for significant trends in SDVI.
Together with other variables like temperature change or human impact, these weak changes
in precipitation might however give an extra impulse to greening or degradation processes. It
is also possible that an increase in precipitation does not result in higher vegetation cover
because the area is covered with climax vegetation or, the other way round, a decrease in
precipitation does not result in further degradation because the area is already covered with
minimal vegetation growth. Estimations A and B show little difference. The difference between
estimation B and C is based on the significance of the correlation between NDVI and SPI, and
shows larger differences, mainly in the greening pixels. In many pixels that show a positive
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trend in SDVI, vegetation greenness is not significantly correlated to SPI. It is therefore not
certain that in these areas the increase in SDVI is coupled to an increase in precipitation.

From the conservative estimation, we can conclude that in 8% of South America, vegetation
degradation is coupled to a significant decrease in the amount of precipitation in the last 14
years. Our results corroborate with the findings of [37]. In contrast, in 18% of the subcontinent,
vegetation greenness has significantly increased over the last 14 years, coupled to an increase
in precipitation. For 46% of the study area, significant degradation or greening processes could
not be linked to changes in precipitation over time, indicating human impact or the influence
of other climatic factors, such as temperature. Finally, and without taking into account the link
with trends in precipitation, 40% of the subcontinent is showing an increase in photosynthetic
activity over time, while desertification is taking place in 32% of the area.

Figure 3. Result of the decision tree approach. Pixels are classified according to the 5 queries described in the text
(where Y and N refer to a ‘yes’ or ‘no’ answer to the query, and * to either Y or N): green areas show an increase in
SDVI, coupled to a significant positive trend in SPI (dark green) or not (light green); red areas show a decrease in SDVI,
coupled to a significant negative trend in SPI (dark red) or not (light red); yellow areas show a positive trend in SDVI,
but a negative trend in SPI; orange areas show a negative trend in SDVI, but a positive trend in SPI. Pixels without a
significant trend in SDVI are masked in grey.
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Figure 4. Large (A), average (B) and conservative (C) estimation of the linkage of greening and degradation to
changes in precipitation over time. In case of estimation B and C, the yellow areas in Figure 3 are included in the light
green fraction, while the orange areas in Figure 3 are included in the light red fraction.

3. Time series analysis for drought monitoring

Drought is a recurrent feature of the Indian climate and usually begins at any season and can
prolong for many years. The study of drought characteristics is to ascertain the spatial and
temporal distribution of droughts, synoptic meteorological conditions associated. The
definition of drought mainly depends on the precipitation deficiency. Studies on droughts in
India have been reported by many scientists based on the rainfall anomalies over a particular
region [38-40]. According to India Meteorological Department (IMD) guidelines, drought is
defined as the consequent rainfall deficiency (below 19% of normal) for a period of 2 consec‐
utive weeks. However, this criterion varies from country to country, based on the meteoro‐
logical/climatological conditions such as percentage of moisture present, land topography etc.

Drought is of different types including meteorological droughts, agricultural droughts,
hydrological drought and socioeconomic droughts. These are based on the variations of
rainfall, crop water, surface water and economic conditions respectively. These droughts show
variation with respect to the climatology which prevails of that region. The climatology of a
region is a replica of the severity of drought. The climatology can be derived from the Thor‐
onthwaite Climate System by taking the inputs of rainfall and water need. The model gives
the amount of moisture (annual/seasonal) from which the classification of climate can be
studied.
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In view of the above, the present study focuses in obtaining the climates in different parts of
Karnataka state which is located at the western half of the Deccan Palateau of India. The
Moisture Index values which are the basis for delineating climatic type were compared with
the AVHRR NDVI to understand the drought climatology in different test regions of Karna‐
taka, India (Figure 5).

Figure 5. Study area of the present investigation

The rainfall (P) and potential evapotranspiration (PE) data for the period 1982 to 2000 was
downloaded from [41]. This data is based on the global rainfall and temperature (PE can be
calculated from temperature) data sets of Climate Research Unit, University of East Anglia,
United Kingdom. This was averaged for all the districts of Karnataka state till the year 2000
and uploaded website.

Taking the inputs of P and PE, we run awater balance model and derived the monthly Aridity
Index (IA) and Humidity Index (IH). Moisture Index (IM) which is the basis to tell the climatology
of a region can be obtained by subtracting IA from IH.. Table 1 below shows the infered climate
types based on IM as per Thoronthwaite Climate Approach [42, 43].
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Moisture Index(IM) Climatic Type Notation

100 & above Perhumid A

80 to 100 Humid B4

60 to 80 Humid B3

40 to 60 Humid B2

20 to 40 Humid B1

0 to 20 Moist Subhumid C2

-20 to 0 Dry Subhumid C1

-40 to -20 Semiarid D

-60 to -40 Arid E

Table 1. Classification of climatic types based on Thoronthwaite Approach

The selected districts for the study are Chikkamagaluru, Belgaum, Chamrajnagar and Gul‐
barga of which climates are Humid, Dry subhumid, Semiarid and Arid. A comparative study
was made with the seasonal values of IM and NDVI using time series and correlation analysis.

Table 2 shows the climatology of the four selected test sites during the period of 1982 to 2000.
The overall climate of the test regions for the study period represented the humid, dry
subhumid, semi arid and arid for Chikkamagaluru, Belgaum, Chamrajanagar and Gulbarga
districts respectively.

Year
Climate Type

Chikkamagaluru Belgaum Chamarajanagar Gulbarga

1982 C1 C1 D E

1983 B1 C2 D E

1984 C2 D D E

1985 C1 D D E

1986 C2 D D E

1987 C1 D D E

1988 B2 C1 D E

1989 C2 D D E

1990 C1 D D E

1991 B1 C1 D E

1992 B2 C2 D E

1993 B1 B1 C1 E

1994 B2 C2 D E

1995 C2 C1 D E

1996 B1 D D E

1997 B1 C1 C1 E

1998 B2 C2 C2 E

1999 B1 B1 C1 E

2000 B1 C2 D E

Table 2. Climatic types of test regions from 1982 to 2000
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3.1. Chikkamagaluru (Humid region)

The climatic types of Chikkamagaluru were dominated by humid type which is followed by
the dry sub humid type. Chikmagalore (Humid region) recorded a maximum IM of 450 during
the year 1994 (Figure 6). The variation of IM shows that it has increased from June to August
in all years and recorded a comparative less value in the month of September. In a similar way,
the NDVI progressed from June to September in all years with a maximum value of 0.55 for
September, 1992. It is conspicuous that the variability in NDVI is more than IM and the trends
of IM and NDVI were increasing. The correlation coefficient of these two indices is +0.08 which
is very poor. The studies of [38, 39] also suggested that understanding the relation of NDVI
with rainfall and its by-products is a very difficult task in humid regions. Since the plenty of
moisture is already available in the soil, the vegetation can utilize the moisture for its growth
and in such case it may not directly/immediately dependant on rainfall derived indices in
humid regions.

 

Figure 6. Variation of IM and NDVI – Chikkamagaluru

3.2. Belgaum (Dry subhumid)

The climate of Belgaum varied from semi arid to 1st humid type during the study period. 10
years of the study period show the subhumid climates followed by semi arid in 7 years. The
variation of IM with NDVI over Belgaum unraveled the low variability of IM associated with
high variations of NDVI (Figure 7). The maximum NDVI is 0.55 that is during September of
1984 and 1992 linked with the very low values of IM. The IM values were around zero during
all the years of study period in June and July months countered by the low values of NDVI.
There is no sea – saw relation found between IM and NDVI over this region. The correlation in
this case was also found to be very poor and insignificant.

3.3. Chamrajnagar (Semiarid)

From Table 2, it is noticed that Chamrajanagar shows the arid climate category in 15 years of
the study period. The years such as 1993, 1997, 1998 and 1999 displayed subhumid climates.
The climatic types of this region are the good representative of climatic features over the study
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period. In the case of semi arid region of Chamrajnagar, the variability of IM and NDVI is better
as compared with the humid and dry subhumid regions (Figure 8). The overall IM is varied
from -10% in the year 1984 to a maximum of 44% during the year 1998 for the south west
monsoon season. Accordingly NDVI, also varied from 0.26 to a high value of 0.42 in the year
1996. The values of NDVI are less in this region than previously mentioned areas but the trends
of IM are NDVI were positive with slopes of 0.824 and 0.002 for IM and NDVI respectively along
with the standard deviations of 11.5 and 0.05. The correlation of these two data sets is 0.42 at
0.05 level of significance which infers the good agreement of IM and NDVI. From this analysis,
it can be noticed that the deficiency of moisture which is represented by IM in this study was
well reflected by low NDVI values and adequate moisture conditions are supported by the
moderate vegetation conditions.

 

Figure 8. Variation of IM and NDVI – Chamrajanagar

3.4. Gulbarga (Arid)

All the years of study period are dominated by the arid category for this region. The compar‐
ison of IM and NDVI yielded good results in the arid region of selected test sites (Figure 9). The
interannual variability was found to be very high both in IM and NDVI where as IM varied from
-77% during August of 1982 to zero value during September month in the years 1983 and 1992

 

Figure 7. Variation of IM and NDVI – Belgaum
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with the corresponding NDVI values of 0.055 and 0.127 respectively. The time series plot for
IM and NDVI for the total south west monsoon season display the one to one linear agreement
where the trends of both were highly increasing than other test regions (Figure 8). The slopes
of the trends were 1.68 and 0.007 respectively. The standard deviations of 14 and 0.05 infer that
the interannual variability of IM is more than NDVI from which it can be noticed that the
vegetation over a region may not respond immediately to the rainfall/available moisture
despite there is a dependence of vegetation on rainfall/available moisture. The time series plot
of IM and NDVI (Figure 10) shows that the maximum of amount of moisture of-12% have seen
in the year of 1998 with the NDVI value of maximum NDVI of 0.269 that is recorded during
the entire study period. The correlation in this case is +0.64 which is at 0.01 level of significance
which shows the strong agreement between IM and NDVI.

 

Figure 9. Variation of IM and NDVI – Gulbarga
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Figure 10. Time series of IM and NDVI for southwest monsoon
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The study commenced with the retrieval of IM values from the water balance model on monthly
basis over different selected test regions those represent the various climatic types such as
humid, dry sub humid, semi arid and arid. The knowledge of different climatic types enables
us to understand the climatology of the test regions during the study period. Since these
climates were derived from the IM values, they replicate the status of the moisture content
available which is very essential input to decide the crops fate. The comparison study of IM

with the satellite derived NDVI shown very interesting features of sensitivity of NDVI with
IM over different climatic types. The study inferred the poor correlation such that no linear and
significant relation of IM with NDVI over humid and dry subhumid regions. The reason for
this could be the plenty of available moisture over these regions and even temporary pertur‐
bations of land surface conditions may not affect the crops/agriculture. The relation grown up
to strong when the comparison closes from semi arid to arid regions. Especially, Gulbarga,
arid region displayed very strong relation of IM with NDVI which unraveled the poor/good
vegetative conditions associated with low/high values of IM. The correlation of +0.65 is a good
supporting factor to say that the relation is substantial. The overall analysis of the present study
suggested that the relation of IM with NDVI is very strong and it is of immense use for the
studies of drought monitoring in the arid areas as compared with the other climatic types.

4. Quantification of sugarcane crop productivity: A study case in
Southeastern Brazil

Agriculture represents an important segment of the economy of Brazil. Over the past 30 years,
Brazilian agricultural growth and development has been guided by policies and technologies
based on research for development. Remote sensed imagery plays an important role in
agricultural crop production over large area, quantitatively and non-destructively, because
agricultural crops are often difficult to access, and the cost of ground estimating productivity
can be high. The recent development of GEONETCast–EUMETCast data has allowed us to
obtain frequent and accurate measurements of a number of basic agrometeorological param‐
eters (e.g. evapotranspiration, surface albedo, surface temperature, solar radiation, rainfall
etc.). The GEONETCast–EUMETCast real-time and on-line data dissemination systems
represent global network of satellite-based data dissemination systems designed to distribute
space-based, air-borne and in situ data, metadata and products to diverse communities.

To determine agriculture productivity, this case study aimed to develop a GEONETCast-
EUMETCast product-based method of estimating the productivity of sugarcane using an
agrometeorological spectral model. The study was carried out in the Municipalities of Barretos
and Morro Agudo, located in the state of São Paulo, Southeastern Brazil (Figure 11). The
analysis was performed for 2009/2010 and 2010/2011 year’s crop.

The values of sugarcane parameters used such as Respiration Factor (RF) (0.5 for temp. ≥ 20°C
and 0.6 for temp <20°C); Agricultural Productivity Factor (APF) (2.9), Yield Response Factor
(Ky) and Crop Co-efficient (Kc) were taken from [44-46]. The EUMETCast service is installed
at Laboratory of Analysis and Processing of Satellite Images (LAPIS) at Federal University of
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Alagoas (UFAL). The remote sensing data of NDVI S10, Production of Dry Matter (DMP) are
available at the website http://www.lapismet.com and SPOT Vegetation indices of VITO were
collected form http://free.vgt.vito.be/.

This application proposes to test a remote sensing approach to quantify estimates of sugarcane
productivity over the Coruripe municipality with the Integrated Land and Water Information
System, (ILWIS, 3.7.1) GIS software. ILWIS was used to compute sugarcane crop estimates for
each pixel in NDVI DMP and ETp images by applying radiative, aerodynamic and energy
balance physics in 7 computational steps. These images are currently provided over both daily
and 10 day composites at about a 3km and 1km spatial resolution, by EUMETSAT and VITO
respectively.

Step 1: Input NDVI and DMP databases using algorithm adapted from GEONETCast
Toolbox

To implement a methodology for the ingestion of both the NDVI and DMP databases (raster)
into ILWIS, specific routines of GEONETCast–toobox are adapted to import the datsets. For
the ingestion procedure, based on a GIS approach using open source components, it requires
additional work on corrections using overlays (Status map and LOG–file) to mask all appro‐
priate areas of sugarcane crops over the Coruripe municipality.

Figure 11. Spatial variability of crop yields (2010/2011) of Barretos and Morro Agudo in Sao Paulo, Brazil.
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Step 2: Computation of Fractional Vegetation Cover (FVC) from NDVI

For each pixel, the NDVI is converted to Fractional Vegetation Cover (FVC) by means of the
the formula of [47]. The FVC is the one biophysical parameter that determines the contribution
partitioning between bare soil and vegetation for surface evapotranspiration, photosynthesis,
albedo, and other fluxes crucial to land–atmosphere interactions.

FVC= 1.1101*NDVI – 0.0857.

Step 3: Computation of Leaf Area Index (LAI) from FVC

For each pixel, the FVC is converted to Leaf Area Index (LAI) by means of the formula of [48].
The LAI, defined, as the total one-sided leaf area per unit ground area, is one of the most
important parameters characterizing a canopy. Because LAI most directly quantifies the plant
canopy structure, it is highly related to a variety of canopy processes, such as evapotranspi‐
ration, interception, photosynthesis and respiration.

LAI= –2Ln (1 – FVC).

Step 4: Computation of growth factor from LAI

[49] developed a simple approach for deriving growth rate equation from LAI. Experimental
evidence indicated that the growth rate of several agricultural crop species increases linearly
with increasing amounts of LAI, when soil water nutrients are not limiting [46]. The following
equation is used:

CGF= 0.515 – e –0.667 – (0.515*LAI)

where CGF = Corrected Growth Factor. Experimental evidence indicated that the growth rate
of several agricultural crop species increases linearly with increasing amounts of LAI, when
soil water nutrients are not limiting.

Step 5: Computation of maximum yield potential (Yp)

The final equation that was used to derive maximum yield potential (Yp) includes evaporative
fraction corrected growth factor (CGF), respiration factor (BF), agricultural productivity factor
(APF) and production of dry matter (DMP) product.

Yp=CGF*BF*APF*DMP

where Yp is the maximum yield potential (kg ha-1).

Step 6: Retrieval of evapotranspiration (ETp) via Land Surface Analysis –Satellite Applica‐
tion Facility (LSA SAF) ETp product

The crop coefficient is defined as the ratio of crop evapotranspiration, ETr, to reference
evapotranspiration, ETp. Kc is crop specific and ranges from zero to over unity, depending on
the crop growth stage. Crop evapotranspiration at any time during the growing season is the
product of reference evapotranspiration and the crop coefficient.

ETr= ETp* Kc
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Crop coefficients was developed for nearly all crops by measuring crop water use with
lysimeters and dividing the crop water use by reference evapotranspiration for each day
during the growing season of 2009/2010 [50].

The recent development of LSA–SAF products has allowed us to obtain frequent and accurate
measurements of a number of basic agrometeorological parameters (e.g. surface albedo,
surface temperature, evapotranspiration). The satellite estimated agrometeorological param‐
eters have several advantages compared to conventional measurements of agrometeorological
data in ground meteorological network.

Step 7: Estimation of sugarcane productivity

The sugarcane yield estimation model over the growing season, on a biweekly basis, is
accomplished by using an agrometeorological model integrated to ILWIS according to [46]:

Ye=Yp 1 – ky(1– ETr/ETp)

where Ye is the estimated yield (kg ha-1), Yp the maximum yield (kg ha-1), ky the yield response
factor; ETr the actual evapotranspiration (mm) and ETp the maximum evapotranspiration
(mm). Maximum yield (Yp) is established by the genetic characteristics of the crop and by the
degree of crop adaptation to the environment.

The resulting map of the estimated yield (Ye) is clipped to mask the Coruripe municipality
boundaries in the State of Alagoas, Brazil. To establish correct coordinates, Map calculation
within the ILWIS is used to implement this procedure. Flow diagram of methodology of
quantifying sugarcane productivity via satellite products is shown in Figure 12.

Figure 12. Flow diagram of methodology of quantifying sugarcane productivity via satellite products.
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Figure 12 shows the spatial variations in sugarcane production over the Barretos and Morro
Agudo municipalities for 2009/2010 and 2010/2011. The figure clearly indicates high spatial
patterns in yield variability. This could be due to the mixing of significant fraction of observed
pixels for the “arable pixel” and “non-arable pixel” within the municipalities. The quantified
results give sugarcane yield mean range of 50 to 135 Ton ha-1.The results obtained here
represents a first step towards an operational use of ILWIS tools in Brazil using NDVI S-10,
DMP SPOT and ETo for operational estimating of sugarcane productivity. Overall, the model
was able to identify (Figure 12) and quantify (Table 3) the spatial variability of agricultural
production over the municipalities analysed. Therefore, the methodology is useful for
developing estimates of operational support for the sugarcane productivity [51].

 

Figure 13. Spatial variability of crop yields over the Barretos and Morro Agudo municipalities for 2009/2010 and
2010/2011.
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Mean Productivity (t/ha)

Barretos
Crop

2009/2010 2010/2011
Agrometeorological model 93,15 93,31
CONAB 96,21 93,29

Mean Productivity (t/ha)

Morro Agudo
Crop

2009/2010 2010/2011
Agrometeorological model 87,96 84,10
CONAB 93,60 87,25

Table 3. Comparison between the productivity of sugarcane using an agrometeorological spectral model and
harvested crop yield from National Food Supply Company (CONAB).

5. Time series analysis for agriculture monitoring: Uganda

The economy of Uganda and its development goals are heavily premised on agriculture. Over
79% of the households are engaged in agriculture while 73% are directly or indirectly em‐
ployed in the agricultural sector. Uganda’s agriculture is however almost entirely rain-fed and
very susceptible to climate risks. Studies indicate that Uganda’s agricultural sector will be
adversely affected by climate variability and projected climatic changes making real time
monitoring of crop growth and crop productivity very important for better adaptation to climate
variability and climate change. Quantitative analyzes reveal that the agricultural sector in
Uganda needs to grow at an annual rate of 7% to effectively contribute to national develop‐
ment. Currently, the rate of agricultural growth in Uganda is below the population growth. With
the threats of climate change and variability, Uganda needs to among other things harness geo-
information technologies (remote sensing and geographical information systems) to improve
agricultural productivity.

Remotely sensed images are powerful tools in monitoring crop productivity and yields. In
most developed countries and emerging developing countries like Brazil and India, remote
sensing has been greatly harnessed to plan for agriculture production, monitor crop growth
and estimate yields. This is paramount in the sense that timely interventions can be taken and
obviates possibilities of famine and food insecurity. Although there have been strides taken to
improve the utility of remote sensing in the agriculture some developing countries, a lot
remains to be done to make it more efficient, relevant and more productive. An investigation
of the causative factors of the low utility and uptake of remote sensing in the agricultural sector
in Uganda implicates a number of factors ranging from low capacities to expensive images.
Recent developments have however extended numerous opportunities in utilizing remote
sensing in the agricultural sector.

The onset of utilization of remotely sensed techniques in Uganda was in the early 1990s
spearheaded by the National Biomass Project and focused largely on land use and land cover
mapping. The activities of the National Biomass Project were later taken on by the National
Forestry Authority (NFA) but the domains and scope remained largely the same with more focus
on land use, land cover and related aspects being given priority. Apart from the NFA, academ‐
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ic institutions of higher learning and to some extent some research institutions like the Nation‐
al  Agriculture  Research  Laboratory  Kawanda  (NARL)  and  the  National  Environment
Management Authority (NEMA) have some remote sensing application either for teaching or
research. In general, the remote sensing applications in Uganda in the agricultural field are
scattered and more project based. This is partly due to the fact that there is lack of a govern‐
ment agency with a clear mandate to spearhead and propel the utility of remote sensing
application in the country. Nevertheless, some efforts through the government cooperation with
UN agencies such as the FAO regularly provide some information analyzed at the regional level
for early warning in the agricultural sector. Some of the historical constraints to efficiently
harnessing remote sensing in natural resource management in Uganda are generally those also
experienced in other developing countries in Africa including the high costs of imagery data,
processing software, coarse resolution of images, inadequate physical and human capacities
and weak institutions. To-date, most of the issues to do with data costs and software have been
significantly resolved with many freely available images, open source versatile software or
special low for developing countries on commercial software. The contemporary challenge now
is  more  of  institutional/agency  capacities,  human capacities  and policy  environment  for
enhancing the utilization of remote sensing in the country.

A range of great opportunities, hitherto unavailable exist now for effectively using remote
sensing in agriculture and natural resource management, notably through; (a) datasets
disseminated through the Geonetcast Platform (b) freely available and downloadable datasets
(c) open source softwares and low cost commercial softwares. Details of the Geonetcast is fully
described in various sources (e.g. [48-50]). In brief, its a low cost facility which enables
dissemination of near real time satellite imagery data. It is part of the emerging Global Earth
Observation system of Systems (GEOSS), led by the Group on Earth Observation (GEO), for
environmental analysis [54]. The Geonetcast does not require internet connectivity which is
always a major constrain in developing countries and the data is disseminated at a very high
temporal resolution through a ground recieving station, making monitoring easy. The facility
streams diverse datasets which can broadly be used in environmental monitoring covering
agriculture, water, soils, fire forestry etc. The data can be processed using the ILWIS software,
where a specific toolbox has been developed.

In this case study, we demonstrate the utility of relatively low spatial but high temporal
resolution satellite images from earth observation systems in monitoring and assessment of
agricultural productivity in Uganda. There are two main inputs i.e. production data and
remotely sensed data. Production data was obtained online from the FAOSTAT [55]. We
extracted the annual yield, production and harvested area of the top five crops produced in
Uganda according to FAOSTAT; (1) plantain/banana (2) cassava (3) sweet potatoes (4)
sugarcane and (5) maize for 10 years spanning from 2001 to 2010. Bananas/plantain (Musa
spp) are largely grown in central, western and eastern (highland areas) parts of Uganda. As
perennial crops, banana are year round crops. Cassava (Manihot esculenta) is an important food
security crop in Uganda with the largest production coming from eastern and northern
Uganda. Cassava accounts for approximately 13% of the daily caloric intake in Uganda.
Cassava is commonly planted in the first season which is around February-march in most parts
of the country and its also a perennial crop. Sweet potatoes (Ipomoea batatas) are also a food
security crop in Uganda grown largely in the mid to high altitude regions of the country
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(1000-3000 meters above sea level). They are annual crops grown twice a year with the first
season between February and June, while the second season stretches from September to
November. They thrive well in the deep volcanic soils of Southwesten Uganda and Eastern
Uganda. Sugarcane (Saccharum officinarum) in Uganda is largely grown on large plantations
mainly in the near east and western Uganda. There are also a couple of out growers who are
supported by sugar companies. It is mainly an income generating perennial crop. Maize (Zea
mays L.) is grown in almost every part of the country and is a major staple food crop. It is an
annual crop grown twice a year (March to June and September to November) in areas of the
country where biophysical conditions are supportive. To ease the analysis, the production and
yields for the five crops were compounded into one annual value.

Figure 14. Scope of study
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The results on harvested area, production and yields are shown in Figures 15, 16 and 17
respectively.

 

Data obtained from FAOSTAT

Figure 15. Harvested area of five crops between 2001 and 2010.

 

Data obtained from FAOSTAT

Figure 16. Production (compunded) trends of five selected crops between 2001 and 2010 compounded
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Data obtained from FAOSTAT

Figure 17. Yields (compounded) of five major crops between 2001 and 2010

The results based on the three factors i.e. area harvested, production and yields do not depict
a definitive trend. In terms of harvested area, there is an increasing trend, implying that more
areas are being converted for cultivation of the specified crops (Figure 15). Production between
2001 and 2010 has modestly increased. Yields per hectare are however more variable and
actually show and generally declining trend. Bearing in mind that production is increasing, it
becomes explicit that the increments in production are related to extensification rather than
intensification. In most cases, extensification entails conversion of ecologically sensitive and
fragile areas such as wetlands or reclamation of forest area which has its environmental
implications. Subjected to a statistical analysis, the results revealed a strong and positive
correlation between the yields and production area (r2=0.52, p<0.05).

Remote sensing analysis was on the MODIS NDVI data, which has a spatial and temporal
resolution of 250 m and 16 days respectively. For each year 23 images are available in a decal
arrangement. For the 10 year period, we downloaded a total of 230 images in HDI format and
processed them in ERDAS Imagine where file format conversions were undertaken and later
ILWIS for arithmetic analysis. Individual images (23 decades) for each year were stacked to
generate a single profile for each year. Relevant statistics such as the mean, standard deviation,
coefficient of variation were late extracted. The spatial distributions of average NDVI for
selected years are shown in Figure 18, while Figure 19 gives the temporal average NDVI
dynamics for the 10 years. Mean average NDVI value is 0.56. In spatial terms, the southern
part of the country registers higher NDVI values than the northern part. This is not surprising
in light of the coverage in terms of natural cover and the crops grown which significantly entail
banana and a range of annual crops grown in two seasons. The North Eastern part is particu‐
larly poorest in terms of annual average NDVI values. Understandably it is a semi arid region
and generally more tailored to livestock enterprises than cropping enterprises. Annual NDVI
values for the whole country were subjected to a correlation analysis with production and yield
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data, resulting into poor and insignificant correlations (r2=0.19 to 0.2.1). The low coefficient are
partly explained by the fact that some crops like sugarcane are eother irrigated or are grown
in areas almost permanently under water (wetlands). However when the data was collapsed
into the growing seasons and the water bodies excluded from the analysis, better and signif‐
icant correlations were obtained (r2 0.46 to 0.61, P<0.05) demonstrating the efficacy of using
NDVI for crop monitoring and yield prediction. In light of the expected variability and changes
in climate, coupled with the availability of data in real time, the NDVI analysis represents a
great potential in sustainable adaptation where from both a policy perspective and direct
intervention. This has positive implications in timely provisioning of information to farmers,
adaptation to climate change and variability as well as enabling science based policy options
for appropriate interventions. Specific prediction coefficients for different crops and region‐
alized to the climatic conditions can be helpful to local governments where timely interven‐
tions can obviate social instability related to crop failures. On the other hand, predictions of
higher yields can also enable relevant agencies to solicit for markets for the produce, improving
the welfare and livelihood of the farmers, who in the context of Uganda are largely small holder
farmers. All these can only be realized if there is a good policy framework that ties all the
relevant pieces in the chain i.e. science, production, markets and institutions.

  

Figure 18. Average annual NDVI for selected years
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Figure 19. Variation of annual NDVI values between 2001 and 2010

6. Outlook and conclusions

We have provided four multi-disciplinary case studies on the power of using remote sensing
technologies, and more specifically time series analysis of low resolution satellite derived
indicators, for monitoring and analysing land cover changes, desertification, drought and
agricultural activities on different spatio-temporal scales. Generating this information at finer
temporal resolutions is crucial for reducing risks to disaster, preparedness and formulation of
strategies for better adaptation to climate change particularly the increasing dramatic hydro-
meteorological events in developing and emerging countries.

This chapter provides a variety of methodologies of processing chains over satellite data,
allowing the monitoring of areas subject to or in risk of desertification and land degradation
processes. This chapter provides new insights related on the use of remote sensing data for
climate (change) impact monitoring, which will contribute to the advance of warning systems
and adaptation measures in developing and emerging countries. The focus of future activities
should however focus on institutional support and capacity building for impact assessments
for Africa, South America and India. The importance of training and joint cooperation with
local providers and users cannot be overestimated.

One of the most robust, multi-purpose and yet simple remote sensing index is the NDVI. NDVI
imagery data is widely available for immediate use at almost no cost. This has been given
emphasis in this chapter through demonstration of its utility in various environmental and
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production domains. The section 2 of the chapter mainly emphasizes the relation between
trends of vegetation greenness and rainfall over a long term period, taking into account the
time lag between rainfall and vegetation response. As a result, areas of greening or degradation
can be identified, and the process can be linked or not to changes in precipitation.

The section 3 of the chapter tells the mode of relation between NDVI and moisture index over
different climatic regions. The relation was found to be poor over humid and dry subhumid
regions where as it is improving in semi arid and arid regions. The relation of above cannot
be taken as granted in the humid regions though it is implicitly understood that NDVI
maintains positive relation with IM. The study infers that the NDVI and IM relations cannot
be used to characterize the drought over humid regions but can be taken as an indicator in
arid and semi arid regions. This is particularly relevant for adaptation purposes in semi arid
regions which cover big chunks in Africa, India and some parts of Southern America.

Section 4 of the chapter mainly focuses on the estimation of sugar cane yields in Southeastern
Brazil by using spatial tools which have been integrated in ILWIS 3.7.1, open source software.
This study underpins that the NDVI data along with the other meteorological data is of
immense use for the estimation of crop yields. This gives a business orientation on the utility
of spatial tools, but also has a livelihood implication where small scale farmers or out growers
are involved in sugarcane production. Interestingly, sugarcane is a major crop in all the case
study countries in this chapter.

The last section of the chapter also gives more emphasis on yield estimates of five major crops
in Uganda. The results of the study showed that the production between 2001 and 2010 has
modestly increased with the variability in yields. Also, this analysis showed that the extensi‐
fication of crops is dominated by intensification and it is implied that the increments in
production are related to extensification.

In a nutshell, the chapter demonstrates how remotely sensed data available in the public
domain freely or at very low cost can be harnessed to address critical challenges in developing
countries pertaining to environment, agricultural productivity, drought, desertification and
ultimately climate change adaptation. The chapter shows that relating the satellite derived
vegetation indices with existing models and parameters can be useful proxies to understand
the various phenomena of the crops. However, despite the availability of the technology, full
benefits from available remotely sensed imagery resources for developing countries can only
be realized when enabling policies are formulated and implemented and concerted capacity
development is undertaken to establish a critical human resource base. This will enable the
policy makers to go for the risk managing practices such as agricultural crop reinsurance
schemes, drought defining criteria etc.

In light of the resource constraints in developing countries, cooperation and collaboration is
important to develop a nucleus of future demand and contributing to new scientific insights
related to projected changes in drought drawing information from satellite data, which will
contribute to the improvement of warning systems and adaptation measures in developing
and emerging countries.
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