Satellite-Based Reconstruction of the Volcanic Deposits during the December 2015 Etna Eruption
<p>Minimum (orange), medium (dark red) and maximum (violet) estimates for (<b>a</b>) TADR and (<b>b</b>) cumulative volume computed from 6 to 8 December 2015 by HOTSAT using SEVIRI data.</p> "> Figure 1 Cont.
<p>Minimum (orange), medium (dark red) and maximum (violet) estimates for (<b>a</b>) TADR and (<b>b</b>) cumulative volume computed from 6 to 8 December 2015 by HOTSAT using SEVIRI data.</p> "> Figure 2
<p>(<b>a</b>) Spatial distribution of the GPS GCPs used to validate the Pleiades-derived pre-eruptive DEM. Colors represent the height difference between the GCPs and the corresponding pixels of the DEM. The five summit craters of Etna are highlighted: NEC (North-East Crater), VOR (Voragine), BN (Bocca Nuova), SEC (South-East Crater) and NSEC, (New South-East Crater); (<b>b</b>) Histogram of the residuals, peaking at 0.94 m, with a standard deviation of 1.63 m, representing the vertical accuracy of the DEM.</p> "> Figure 3
<p>(<b>a</b>) Elevation change obtained by differencing the two DEMs derived from Pleiades images acquired before and after the December 2015 Etna eruptions. The colors indicate flow thickness in meters inside the lava flow fields. The five summit craters of Etna are highlighted: NEC (North-East Crater), VOR (Voragine), BN (Bocca Nuova), SEC (South-East Crater) and NSEC, (New South-East Crater); (<b>b</b>) The zero-peaked histogram of the terrain residuals, proving that the two DEMs are properly aligned.</p> ">
Abstract
:1. Summary
2. Data Description
3. Methods
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramsey, M.S.; Harris, A.J.L. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade? J. Volcanol. Geotherm. Res. 2012, 249, 217–233. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Flynn, L.P.; Keszthelyi, L.; Mouginis-Mark, P.J.; Rowland, S.K.; Resing, J.A. Calculation of lava effusion rates from Landsat TM data. Bull. Volcanol. 1998, 60, 52–71. [Google Scholar] [CrossRef]
- Wright, R.; Blake, S.; Harris, A.; Rothery, D. A simple explanation for the space-based calculation of lava eruption rates. Earth Planet. Sci. Lett. 2001, 192, 223–233. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Herault, A.; Zago, V.; Del Negro, C. Mapping Volcanic Deposits of the 2011–2015 Etna Eruptive Events Using Satellite Remote Sensing. Front. Earth Sci. 2018, 6, 83. [Google Scholar] [CrossRef]
- Bernard, M.; Decluseau, D.; Gabet, L.; Nonin, P. 3D capabilities of Pleiades satellite. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 553–557. [Google Scholar] [CrossRef]
- Bagnardi, M.; González, P.J.; Hooper, A. High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano. Geophys. Res. Lett. 2016, 43, 6267–6275. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; Vicari, A.; Fortuna, L.; Del Negro, C. The HOTSAT volcano monitoring system based on a combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54. [Google Scholar] [CrossRef]
- Ganci, G.; Bilotta, G.; Cappello, A.; Hérault, A.; Del Negro, C. HOTSAT: A multiplatform system for the satellite thermal monitoring of volcanic activity. Geol. Soc. Lond. Spec. Publ. 2016, 426, 207–221. [Google Scholar] [CrossRef]
- Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Rupnik, E.; Daakir, M.; Pierrot Deseilligny, M. MicMac—A free, open-source solution for photogrammetry. Open Geospat. Data, Softw. Stand. 2017, 14. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Hérault, A.; Zago, V.; Del Negro, C. 3D Lava flow mapping at Etna volcano from Pléiades-derived DEM differences. PANGAEA 2019. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Del Negro, C.; Cappello, A.; Ganci, G. Quantifying Lava Flow Hazards in Response to Effusive Eruption. Bull. Geol. Soc. Am. 2016, 128, 1–13. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Zago, V.; Bilotta, G.; Hérault, A.; Del Negro, C. 3D Lava flow mapping of the 17–25 May 2016 Etna eruption using tri-stereo optical satellite data. Ann. Geophys. 2018, 61. [Google Scholar] [CrossRef]
Deposit | Thickness [m] | Area [m2] | Volume [×106 m3] | |||
---|---|---|---|---|---|---|
Mean | Max | Min | Mean | Max | ||
Cone | 4.81 | 20.39 | 79,024 | 0.23 | 0.38 | 0.53 |
Flows | 5.40 | 20.09 | 435,276 | 1.50 | 2.35 | 3.20 |
Total | 5.31 | 20.39 | 514,300 | 1.73 | 2.73 | 3.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganci, G.; Cappello, A.; Bilotta, G.; Corradino, C.; Del Negro, C. Satellite-Based Reconstruction of the Volcanic Deposits during the December 2015 Etna Eruption. Data 2019, 4, 120. https://doi.org/10.3390/data4030120
Ganci G, Cappello A, Bilotta G, Corradino C, Del Negro C. Satellite-Based Reconstruction of the Volcanic Deposits during the December 2015 Etna Eruption. Data. 2019; 4(3):120. https://doi.org/10.3390/data4030120
Chicago/Turabian StyleGanci, Gaetana, Annalisa Cappello, Giuseppe Bilotta, Claudia Corradino, and Ciro Del Negro. 2019. "Satellite-Based Reconstruction of the Volcanic Deposits during the December 2015 Etna Eruption" Data 4, no. 3: 120. https://doi.org/10.3390/data4030120