Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries
<p>(<b>a</b>) Aging test of PEGDME_GPE in contact with Li<sup>0</sup> anode. (<b>b</b>) ATR-FTIR spectra of the PEGDME_GPE-based electrolyte before and after being in contact with Li<sup>0</sup> anode. (<b>c</b>) F 1s and C 1s regions corresponding XPS of the pristine PEGDME_GPE membrane and PEGDME_GPE after contact with Li<sup>0</sup> anode.</p> "> Figure 2
<p>(<b>a</b>) Galvanostatic cycling of Li<sup>0</sup> symmetric cells using PEGDME-based (black) TEGDME-based (red) electrolytes under different current densities (from 0.05 mA cm<sup>−2</sup> to 2 mA cm<sup>−2</sup>) and with 1h for the half cycle. (<b>b</b>) Galvanostatic cycling of Li<sup>0</sup>/PEGDME_GPE/Li<sup>0</sup> (black) and Li<sup>0</sup>/TEGDME_GPE/Li<sup>0</sup> (red) cells at 0.3 mA cm<sup>−2</sup> and 0.3 mAh cm<sup>−2</sup>. (<b>c</b>) Electrochemical impedance spectroscopy (EIS) over time of Li<sup>0</sup>/PEGDME_GPE/Li<sup>0</sup> (<b>d</b>) EIS over time of Li<sup>0</sup>/TEGDME_GPE/Li<sup>0</sup>. (<b>e</b>,<b>f</b>) Optical images and F 1s region corresponding XPS of the Li<sup>0</sup> anode after the galvanostatic cycling with PEGDME_GPE and TEGDME_GPE, respectively.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) Charge/Discharge profiles for PEGDME_GPE and TEGDME_GPE Li-S cells, respectively. (<b>c</b>) battery performance of developed GPEs. (<b>d</b>) Optical post-mortem images of the analyzed GPEs and their corresponding Li<sup>0</sup> anode.</p> "> Figure 4
<p>(<b>a</b>) Schematic illustration of the behavior of the membrane towards the different cell compounds. (<b>b</b>) XPS of F 1s, C 1s, and S 2p of the GPE after the combination of the dehydrofluorination process of the GPE and the presence of LiPS.</p> "> Figure 5
<p>(<b>a</b>) Comparison of the battery performance of PEGDME_GPE with and without LiNO<sub>3</sub> additive and (<b>b</b>) their corresponding optical post-mortem analysis of the membranes and Li<sup>0</sup> anodes.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Preparation of Gel Polymer Electrolytes
4.2. Positive Electrode Preparation
4.3. Electrochemical Tests
4.4. Physicochemical Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Zhang, H.; Judez, X.; Adenusi, H.; Armand, M.; Passerini, S.; Figgemeier, E. Production of High-Energy Li-Ion Batteries Comprising Silicon-Containing Anodes and Insertion-Type Cathodes. Nat. Commun. 2021, 12, 5459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, C.; Eshetu, G.G.; Laruelle, S.; Grugeon, S.; Zaghib, K.; Julien, C.; Mauger, A.; Guyomard, D.; Rojo, T.; et al. From solid solution electrodes and the rocking-chair concept to today’s batteries. Angew. Chem. Int. Ed. 2020, 59, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Boaretto, N.; Garbayo, I.; Valiyaveettil-SobhanRaj, S.; Quintela, A.; Li, C.; Casas-Cabanas, M.; Aguesse, F. Lithium Solid-State Batteries: State-of-the-Art and Challenges for Materials, Interfaces and Processing. J. Power Sources 2021, 502, 229919. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, J.; Li, H. Batteries with High Theoretical Energy Densities. Energy Storage Mater. 2020, 26, 46–55. [Google Scholar] [CrossRef]
- Kaskel, S.; Huang, J.Q.; Sakaebe, H. Lithium-Sulfur Batteries: Current Achievements and Further Development. Batter. Supercaps 2022, 5, e202200467. [Google Scholar] [CrossRef]
- Weret, M.A.; Su, W.N.; Hwang, B.J. Strategies towards High Performance Lithium-Sulfur Batteries. Batter. Supercaps 2022, 5, e202200059. [Google Scholar] [CrossRef]
- Zhao, M.; Li, B.Q.; Zhang, X.Q.; Huang, J.Q.; Zhang, Q. A Perspective toward Practical Lithium-Sulfur Batteries. ACS Cent. Sci. 2020, 6, 1095–1104. [Google Scholar] [CrossRef]
- Zhang, H.; Ono, L.K.; Tong, G.; Liu, Y.; Qi, Y. Long-Life Lithium-Sulfur Batteries with High Areal Capacity Based on Coaxial CNTs@TiN-TiO2 Sponge. Nat. Commun. 2021, 12, 4738. [Google Scholar] [CrossRef]
- Dörfler, S.; Althues, H.; Härtel, P.; Abendroth, T.; Schumm, B.; Kaskel, S. Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level. Joule 2020, 4, 539–554. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Li, S.; Wu, Y.; Yu, C.; Cheng, S.; Xie, J. Challenges and Key Parameters in Exploring the Cyclability Limitation of Practical Lithium-Sulfur Batteries. J. Mater. Chem. A 2021, 9, 24215–24240. [Google Scholar] [CrossRef]
- Robinson, J.B.; Xi, K.; Kumar, R.V.; Ferrari, A.C.; Au, H.; Titirici, M.M.; Parra-Puerto, A.; Kucernak, A.; Fitch, S.D.S.; Garcia-Araez, N.; et al. 2021 Roadmap on Lithium Sulfur Batteries. J. Phys. Energy 2021, 3, 031501. [Google Scholar] [CrossRef]
- Liu, Y.; Elias, Y.; Meng, J.; Aurbach, D.; Zou, R.; Xia, D.; Pang, Q. Electrolyte Solutions Design for Lithium-Sulfur Batteries. Joule 2021, 5, 2323–2364. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, S.; Zhong, L.; Wang, S.; Han, D.; Ren, S.; Xiao, M.; Meng, Y. Organic Liquid Electrolytes in Li-S Batteries: Actualities and Perspectives. Energy Storage Mater. 2021, 34, 128–147. [Google Scholar] [CrossRef]
- Yang, H.; Guo, C.; Chen, J.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2019, 58, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Q.; Guo, C.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. Safer Lithium-Sulfur Battery Based on Nonflammable Electrolyte with Sulfur Composite Cathode. Chem. Commun. 2018, 54, 4132–4135. [Google Scholar] [CrossRef]
- Tang, B.; Wu, H.; Du, X.; Cheng, X.; Liu, X.; Yu, Z.; Yang, J.; Zhang, M.; Zhang, J.; Cui, G. Highly Safe Electrolyte Enabled via Controllable Polysulfide Release and Efficient Conversion for Advanced Lithium–Sulfur Batteries. Small 2020, 16, 1905737. [Google Scholar] [CrossRef]
- Zhu, Q.; Ye, C.; Mao, D. Solid-State Electrolytes for Lithium–Sulfur Batteries: Challenges, Progress, and Strategies. Nanomaterials 2022, 12, 3612. [Google Scholar] [CrossRef]
- Pan, H.; Cheng, Z.; He, P.; Zhou, H. A Review of Solid-State Lithium-Sulfur Battery: Ion Transport and Polysulfide Chemistry. Energy Fuels 2020, 34, 11942–11961. [Google Scholar] [CrossRef]
- Choudhury, S.; Stalin, S.; Vu, D.; Warren, A.; Deng, Y.; Biswal, P.; Archer, L.A. Solid-State Polymer Electrolytes for High-Performance Lithium Metal Batteries. Nat. Commun. 2019, 10, 4398. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, C.; Liu, H.; Liang, Y.; Fan, L.Z. A Review of Polymer-Based Solid-State Electrolytes for Lithium-Metal Batteries: Structure, Kinetic, Interface Stability, and Application. Batter. Supercaps 2023, 6, e202200502. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M. Solid Polymer Electrolytes for Lithium Batteries: A Tribute to Michel Armand. Inorganics 2022, 10, 110. [Google Scholar] [CrossRef]
- Yin, J.; Xu, X.; Jiang, S.; Wu, H.; Wei, L.; Li, Y.; He, J.; Xi, K.; Gao, Y. High Ionic Conductivity PEO-Based Electrolyte with 3D Framework for Dendrite-Free Solid-State Lithium Metal Batteries at Ambient Temperature. Chem. Eng. J. 2022, 431, 133352. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. Adv. Sci. 2021, 8, 2003675. [Google Scholar] [CrossRef]
- Judez, X.; Martinez-Ibañez, M.; Santiago, A.; Armand, M.; Zhang, H.; Li, C. Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives. J. Power Sources 2019, 438, 226985. [Google Scholar] [CrossRef]
- Castillo, J.; Qiao, L.; Santiago, A.; Judez, X.; Sáenz de Buruaga, A.; Jiménez-Martín, G.; Armand, M.; Zhang, H.; Li, C. Perspective of polymer-based solid-state Li-S batteries. Energy Mater. 2022, 2, 200003. [Google Scholar] [CrossRef]
- Xie, P.; Yang, R.; Zhou, Y.; Zhang, B.; Tian, X. Rationally designing composite gel polymer electrolyte enables high sulfur utilization and stable lithium anode. Chem. Eng. J. 2022, 450, 138195. [Google Scholar] [CrossRef]
- Ma, C.; Cui, W.; Liu, X.; Ding, Y.; Wang, Y. In Situ Preparation of Gel Polymer Electrolyte for Lithium Batteries: Progress and Perspectives. InfoMat. 2022, 4, e12232. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, J.; Shen, X.; Li, R.; Chen, Z.; Huang, X.; Zhang, P.; Zhao, J. New UV-Initiated Lithiated-Interpenetrating Network Gel-Polymer Electrolytes for Lithium-Metal Batteries. J. Power Sources 2022, 541, 231681. [Google Scholar] [CrossRef]
- Cui, Y.; Li, J.; Yuan, X.; Liu, J.; Zhang, H.; Wu, H.; Cai, Y. Emerging Strategies for Gel Polymer Electrolytes with Improved Dual-Electrode Side Regulation Mechanisms for Lithium-Sulfur Batteries. Chem. Asian J. 2022, 17, e202200746. [Google Scholar] [CrossRef]
- Mindemark, J.; Lacey, M.J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative Host Materials for Li+-Conducting Solid Polymer Electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar] [CrossRef]
- Chiua, L.-L.; Chung, S.-H. Composite gel-polymer electrolyte for high loading polysulfide cathodes. J. Mater. Chem. A 2022, 10, 13179. [Google Scholar] [CrossRef]
- Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D. Progress and Future Prospects of High-Voltage and High-Safety Electrolytes in Advanced Lithium Batteries: From Liquid to Solid Electrolytes. J. Mater. Chem. A 2018, 6, 11631–11663. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Jin, B.; Li, Y.; Zhan, X.; Hou, Y.; Zhang, Q. Research Progress on Gel Polymer Electrolytes for Lithium-Sulfur Batteries. J. Energy Chem. 2021, 56, 420–437. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and Prospects of PVDF Based Polymer Electrolytes. J. Energy Chem. 2022, 64, 62–84. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Xue, C.; Xin, C.; Lin, Y.; Shen, Y.; Li, L.; Nan, C.W. Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(Vinylidene Difluoride)-Based Solid Electrolytes. Adv. Mater. 2019, 31, 1806082. [Google Scholar] [CrossRef]
- Xue, C.; Guan, S.; Hu, B.; Wang, X.; Xin, C.; Liu, S.; Yu, J.; Wen, K.; Li, L.; Nan, C.W. Significantly Improved Interface between PVDF-Based Polymer Electrolyte and Lithium Metal via Thermal-Electrochemical Treatment. Energy Storage Mater. 2022, 46, 452–460. [Google Scholar] [CrossRef]
- Papp, J.K.; Forster, J.D.; Burke, C.M.; Kim, H.W.; Luntz, A.C.; Shelby, R.M.; Urban, J.J.; McCloskey, B.D. Poly(Vinylidene Fluoride) (PVDF) Binder Degradation in Li-O2 Batteries: A Consideration for the Characterization of Lithium Superoxide. J. Phys. Chem. Lett. 2017, 8, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Chang, Z.; Yin, Y.; Chen, K.; Zhang, Y.; Zhang, X. The PVDF-HFP Gel Polymer Electrolyte for Li-O2 Battery. Solid State Ion. 2018, 318, 88–94. [Google Scholar] [CrossRef]
- Song, J.Y.; Wang, Y.Y.; Wan, C.C. Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries. J. Power Sources 1999, 77, 183–197. [Google Scholar] [CrossRef]
- Bag, S.; Zhou, C.; Kim, P.J.; Pol, V.G.; Thangadurai, V. LiF Modified Stable Flexible PVDF-Garnet Hybrid Electrolyte for High Performance All-Solid-State Li–S Batteries. Energy Storage Mater. 2020, 24, 198–207. [Google Scholar] [CrossRef]
- Xin, M.; Lian, X.; Gao, X.; Xu, P.; Li, W.; Dong, F.; Zhang, A.; Xie, H.; Liu, Y. Enabling High-Capacity Li Metal Battery with PVDF Sandwiched Type Polymer Electrolyte. J. Colloid Interface Sci. 2023, 629, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Stephan, A.M. Review on Gel Polymer Electrolytes for Lithium Batteries. Eur. Polym. J. 2006, 42, 21–42. [Google Scholar] [CrossRef]
- Lu, R.; Shokrieh, A.; Li, C.; Zhang, B.; Amin, K.; Mao, L.; Wei, Z. PVDF-HFP Layer with High Porosity and Polarity for High-Performance Lithium Metal Anodes in Both Ether and Carbonate Electrolytes. Nano Energy 2022, 95, 107009. [Google Scholar] [CrossRef]
- Lang, J.; Long, Y.; Qu, J.; Luo, X.; Wei, H.; Huang, K.; Zhang, H.; Qi, L.; Zhang, Q.; Li, Z.; et al. One-Pot Solution Coating of High Quality LiF Layer to Stabilize Li Metal Anode. Energy Storage Mater. 2019, 16, 85–90. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Zhang, S.; Huang, X.; Xu, B.; Lin, Y.; Xu, B.; Li, L.; Nan, C.W.; Shen, Y. Synergistic Coupling between Li6.75La3Zr175Ta0.25O12 and Poly(Vinylidene Fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785. [Google Scholar] [CrossRef]
- Yu, J.; Kwok, S.C.T.; Lu, Z.; Effat, M.B.; Lyu, Y.Q.; Yuen, M.M.F.; Ciucci, F. A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature. ChemElectroChem 2018, 5, 2873–2881. [Google Scholar] [CrossRef]
- Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I.; Coca Clemente, J.A.; Morant-Miñana, M.C.; Villaverde, A.; González-Marcos, J.A.; Zhang, H.; Armand, M.; et al. Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Chem. Mater. 2021, 33, 8812–8821. [Google Scholar] [CrossRef]
- Wei, H.; Ma, J.; Li, B.; Zuo, Y.; Xia, D. Enhanced Cycle Performance of Lithium -Sulfur Batteries Using a Separator Modified with a PVDF-C Layer. ACS Appl. Mater. Interfaces 2014, 6, 20276–20281. [Google Scholar] [CrossRef]
- Jie, J.; Liu, Y.; Cong, L.; Zhang, B.; Lu, W.; Zhang, X.; Liu, J.; Xie, H.; Sun, L. High-Performance PVDF-HFP Based Gel Polymer Electrolyte with a Safe Solvent in Li Metal Polymer Battery. J. Energy Chem. 2020, 49, 80–88. [Google Scholar] [CrossRef]
- Marshall, J.E.; Zhenova, A.; Roberts, S.; Petchey, T.; Zhu, P.; Dancer, C.E.J.; McElroy, C.R.; Kendrick, E.; Goodship, V. On the Solubility and Stability of Polyvinylidene Fluoride. Polymers 2021, 13, 1354. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Zhang, X.; Wang, S.; Li, L.; Nan, C.W. Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2020, 12, 24837–24844. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Zhou, L.; Zhou, C.; Geng, D.; Yang, J.; Chien, S.W.; Liu, Z.; Ng, M.F.; Yu, A.; Hor, T.S.A.; et al. Building Better Lithium-Sulfur Batteries: From LiNO2 to Solid Oxide Catalyst. Sci. Rep. 2016, 6, 33154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, B.D.; Carino, E.V.; Connell, J.G.; Han, K.S.; Cao, R.; Chen, J.; Zheng, J.; Li, Q.; Mueller, K.T.; Henderson, W.A.; et al. Long Term Stability of Li-S Batteries Using High Concentration Lithium Nitrate Electrolytes. Nano Energy 2017, 40, 607–617. [Google Scholar] [CrossRef]
- Castillo, J.; Santiago, A.; Judez, X.; Coca-Clemente, J.A.; Saenz de Buruaga, A.; Gómez-Urbano, J.L.; González-Marcos, J.A.; Armand, M.; Li, C.; Carriazo, D. High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes. ACS Appl. Energy Mat. 2023, 6, 3579–3589. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, J.; Robles-Fernandez, A.; Cid, R.; González-Marcos, J.A.; Armand, M.; Carriazo, D.; Zhang, H.; Santiago, A. Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries. Gels 2023, 9, 336. https://doi.org/10.3390/gels9040336
Castillo J, Robles-Fernandez A, Cid R, González-Marcos JA, Armand M, Carriazo D, Zhang H, Santiago A. Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries. Gels. 2023; 9(4):336. https://doi.org/10.3390/gels9040336
Chicago/Turabian StyleCastillo, Julen, Adrián Robles-Fernandez, Rosalía Cid, José Antonio González-Marcos, Michel Armand, Daniel Carriazo, Heng Zhang, and Alexander Santiago. 2023. "Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries" Gels 9, no. 4: 336. https://doi.org/10.3390/gels9040336
APA StyleCastillo, J., Robles-Fernandez, A., Cid, R., González-Marcos, J. A., Armand, M., Carriazo, D., Zhang, H., & Santiago, A. (2023). Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries. Gels, 9(4), 336. https://doi.org/10.3390/gels9040336