Ethyl Vanillin Rapid Crystallization from Carboxymethyl Chitosan Ion-Switchable Hydrogels
<p>EVA crystallization from CMCS gels with different concentration ratio (<b>a1</b>–<b>a5</b> and <b>b1</b>–<b>b3</b>) in centrifuge tube (five repeats <b>a1</b>–<b>a5</b>) and ampoule bottle (three repeats <b>b1</b>–<b>b3</b>).</p> "> Figure 2
<p>EVA hang-wall growth (<b>a</b>) at air/liquid interface or bulge growth (<b>b</b>,<b>c</b>) on liquid surface, and occasionally acquired linear EVA crystals (<b>d</b>) in CMCS/EVA con-mixture gels.</p> "> Figure 3
<p>EVA crystal growth in CMCS/EVA co-mixture gels with appearances from leaves (<b>a1–a6</b>) to trees ramification (<b>a7–a11</b>).</p> "> Figure 4
<p>EVA in CMCS sol. (<b>a</b>) growth pattern of EVA crystal in CMCS gels, (<b>b</b>) Free spherical growth in sol (blue arrow) or tree growth in CMCS gels (yellow arrow)), (<b>c</b>) Hydrophobic aggregation core of EVA in CMCS sol, (<b>d</b>) spherical aggregation of CMCS/EVA on silicon wafer surface; (<b>e</b>) 2 × 10<sup>3</sup> molecular weight CMCS forms loose velvet flower in CMCS sol (grey arrow); (<b>f</b>) dried state of velvet flower, (<b>g</b>) 15 × 10<sup>4</sup> molecular weight CMCS forms CMCS/EVA tree crystals in plate.</p> "> Figure 5
<p>SEM images of dried CMCS/EVA with at 2 × 10<sup>3</sup> (<b>a</b>), 2 × 10<sup>4</sup> (<b>b</b>) and (<b>c</b>) 15 × 10<sup>4</sup> molecular weight, which are stirred in a magnetic mixer at 120 rpm for 15 days; (<b>d</b>) EVA precipitated with symmetrical shapes (<b>e</b>) dried d and (<b>f</b>) regular structure of e.</p> "> Figure 6
<p>Irregular arrangement of CMCS blank gels (<b>a</b>) and regular arrangement of CMCS/EVA co-mixture gels (<b>b</b>) in SEM images.</p> "> Figure 7
<p>EVA crystals were recovered from CMCS/EVA co-mixture gels. (<b>a</b>) EVA growth in CMCS gel, (<b>b</b>) 0.1M HCl hydrolyze CMCS gels, (<b>c</b>) EVA crystals float in CMCS solution and (<b>d</b>) EVA crystals recovered from membrane filtration.</p> "> Figure 8
<p>FT-IR (<b>A</b>) and XRD (<b>B</b>) of LMW CMCS (ⅰ), CMCS (ⅱ), EVA (ⅲ), CMCS/EVA dried gel (ⅳ), EVA crystals (ⅴ, 25 °C obtained) and EVA crystals (ⅵ, 4 ℃ obtained). Detailed descriptions please see the text.</p> "> Scheme 1
<p>Process chart of EVA crystallization from CMCS gels.</p> ">
Abstract
:1. Introduction
2. Results and Discussions
2.1. Effect of CMCS Molecular Weight on Gel Formation
2.2. EVA Crystallization in CMCS Gels
2.3. Crystallization Law and Mechanism of EVA in CMCS Gel
2.4. Recovery and Characterization
3. Conclusions
4. Experimental
4.1. Reagents
4.2. Apparatus
4.3. CMCS/EVA Co-Mixture Gel Preparation by Sol-Gel Method
4.4. EVA Nucleation and Rapid Crystallization
4.5. Crystal Recover and Calculation
4.6. Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomes, E.; Rodrigues, A. Crystallization of vanillin from kraft lignin oxidation. Sep. Purif. Technol. 2020, 247, 116977. [Google Scholar] [CrossRef]
- Chakraborty, D.; Gupta, G.; Kaur, B. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Protein Expr. Purif. 2016, 128, 123–133. [Google Scholar] [CrossRef]
- Augugliaro, V.; Camera-Roda, G.; Loddo, V.; Palmisano, G.; Palmisano, L.; Parrino, F.; Puma, M.A. Synthesis of vanillin in water by TiO2 photocatalysis. Appl. Catal. B Environ. 2012, 111–112, 555–561. [Google Scholar] [CrossRef]
- Amouheydari, M.; Ehsani, M.R.; Javadi, I. Effect of a dietary supplement composed of hydrolyzed milk proteins and vanillin on the reduction of infection and oxidative stress induced by chemotherapy. J. Food Biochem. 2020, 44, e13434. [Google Scholar] [CrossRef]
- Fayeulle, A.; Trudel, E.; Damiens, A.; Josse, A.; Youssef, N.B.H.; Vigneron, P.; Vayssade, M.; Rossi, C.; Ceballos, C. Antimicrobial and antioxidant activities of amines derived from vanillin as potential preservatives: Impact of the substituent chain length and polarity. Sustain. Chem. Pharm. 2021, 22, 100471. [Google Scholar] [CrossRef]
- Jung, H.-J.; Song, Y.S.; Kim, K.; Lim, C.-J.; Park, E.-H. Assessment of the anti-angiogenic, anti-inflammatory and antino-ciceptive properties of ethyl vanillin. Arch. Pharmacal Res. 2010, 33, 309–316. [Google Scholar] [CrossRef]
- Li, G.; Kong, B.; Tong, Q.; Li, Y.; Chen, L.; Zeng, J.; Yu, H.; Xie, X.; Zhang, J. Vanillin downregulates NNMT and attenuates NNMT-related resistance to 5-fluorouracil via ROS-induced cell apoptosis in colorectal cancer cells. Oncol. Rep. 2021, 45, 1–15. [Google Scholar] [CrossRef]
- Singh, O.; Singh, N. Growth of vanillin crystals for second harmonic generation (SHG) applications in the near-IR wavelength region. J. Cryst. Growth 2001, 225, 470–473. [Google Scholar] [CrossRef]
- McCrone, W.C. Crystallographic data Vanillin I (3-Methoxy-4-hydroxybenzaldehyde. Anal. Chem. 1950, 22, 500. [Google Scholar] [CrossRef]
- Sundareswaran, S.; Karuppannan, S. Nucleation control and separation of vanillin polymorphs I and II through the swift cooling crystallization process. Crystengcomm 2021, 23, 1634–1642. [Google Scholar] [CrossRef]
- Singh, N.; Henningsen, T.; Metz, E.; Hamacher, R.; Cumberledge, E.; Hopkins, R.; Mazelsky, R. Solution growth of vanillin single crystals. Mater. Lett. 1991, 12, 270–275. [Google Scholar] [CrossRef]
- Friberg, S.E.; Heisig, C.C.; Kayali, I. Precipitation of Vanillin from a Water/Soybean Oil Emulsion Stabilized by Lecithin. Flavour Fragr. J. 1996, 11, 183–189. [Google Scholar] [CrossRef]
- Sundareswaran, S.; Karuppannan, S. Supersaturation Dependent Separation of Vanillin Polymorphs from Aqueous Solution in the Presence of Ni-Foam as Template. Cryst. Res. Technol. 2020, 55, 2000020. [Google Scholar] [CrossRef]
- Supriya, S.; Sushmitha, S.; Srinivasan, K. Effective Control of Liquid-Liquid Phase Separation and Nucleation of Vanillin Single crystals through Vapour Diffusion Crystallization Process at selected solvent environments. Cryst. Growth Des. 2019, 19, 6315–6323. [Google Scholar] [CrossRef]
- Lloyd, G.; Steed, J. Anion-tuning of supramolecular gel properties. Nat. Chem. 2009, 1, 437–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, Y.; Helgeson, M.E.; Myerson, A.S.; Hatton, T.A.; Doyle, P.S.; Trout, B.L. Controlled Nucleation from Solution Using Polymer Microgels. J. Am. Chem. Soc. 2011, 133, 3756–3759. [Google Scholar] [CrossRef]
- Safari, M.; Boigues, L.L.; Shi, G.; Maiz, J.; Liu, G.; Wang, D.; Mijangos, C.; Müller, A.J. Effect of Nanoconfinement on the Iso-dimorphic Crystallization of Poly(butylene succinate-ran-caprolactone) Random Copolymers. Macromolecules 2020, 53, 6486–6497. [Google Scholar] [CrossRef]
- Jiang, Q.; Ward, M.D. Crystallization under nanoscale confinement. Chem. Soc. Rev. 2013, 43, 2066–2079. [Google Scholar] [CrossRef]
- Parker, A.S.; Taylor, L.S.; Beaudoin, S.P. Polymer effects on crystallization at the amorphous atazanavir-water interface. J. Cryst. Growth 2021, 571, 126254. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, M.; Tan, R.; Sun, Y.; Ma, Z.; Li, J.; Dong, X.-H. Quantitatively unravel the effect of chain length heterogeneity on polymer crystallization using discrete oligo l-lactide. Polymer 2021, 225, 123746. [Google Scholar] [CrossRef]
- Tian, F.; Baldursdottir, S.G.; Rantanen, J. Effects of Polymer Additives on the Crystallization of Hydrates: A Molecular-Level Modulation. Mol. Pharm. 2008, 6, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Sudha, C.; Nandhini, R.; Srinivasan, K. Polymer-Induced Selective Nucleation of Mono or Ortho Polymorphs of Paracetamol through Swift Cooling of Boiled Aqueous Solution. Cryst. Growth Des. 2014, 14, 705–715. [Google Scholar] [CrossRef]
- Diao, Y.; Whaley, K.E.; Helgeson, M.E.; Woldeyes, M.A.; Doyle, P.S.; Myerson, A.S.; Hatton, T.A.; Trout, B.L. Gel-Induced Selective Crystallization of Polymorphs. J. Am. Chem. Soc. 2011, 134, 673–684. [Google Scholar] [CrossRef]
- Mohammadi, R.S.; Zolali, A.M.; Tabatabaei, S.H.; Ajji, A. Nanoconfinement Induced Direct Formation of Form I and III Crystals inside in Situ Formed Poly(butene-1) Nanofibrils. Macromolecules 2020, 53, 1346–1355. [Google Scholar] [CrossRef]
- Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef]
- Foster, J.; Piepenbrock, M.-O.M.; Lloyd, G.; Clarke, N.; Howard, J.A.K.; Steed, J. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth. Nat. Chem. 2010, 2, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ji, N.; Xiong, L.; Sun, Q. Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dy-namic covalent crosslinking. Carbohydr. Polym. 2020, 246, 116586–116596. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhan, W.; Tang, X.; Mo, F.; Fu, L.; Lin, B. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages. Polym. Test. 2018, 66, 155–163. [Google Scholar] [CrossRef]
- Beiner, M. Nanoconfinement as a tool to study early stages of polymer crystallization. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1556–1561. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, K.; Li, Q.; Huang, C. pH responsive release of paclitaxel by self-assembling Chitosan-ethyl vanillin@GNRs nanocomposites. Int. J. Pharm. 2021, 607, 121047. [Google Scholar] [CrossRef]
- Lee, K.Y.; Ha, W.S.; Park, W.H. Blood comoatibilitv and biodegradability ofpartially IV-acylated chitosan derivatives. Bio-Mater. 1995, 16, 1211–1216. [Google Scholar]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Borsagli, F.G.M.; Mansur, A.A.; Chagas, P.; Oliveira, L.C.; Mansur, H.S. O-carboxymethyl functionalization of chitosan: Complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions. React. Funct. Polym. 2015, 97, 37–47. [Google Scholar] [CrossRef]
- Pino-García, O.; Rasmuson, Å.C. Influence of Additives on Nucleation of Vanillin Experiments and Introductory Molecular Simulations. Cryst. Growth Des. 2004, 4, 1025–1037. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Wang, Y.; Meng, Z.; Zhao, Z. A self-healing carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel with fluorescent bioprobes for glucose detection. Carbohydr. Polym. 2021, 274, 118642. [Google Scholar] [CrossRef]
- Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design:a practical perspective. Adv. Drug Deliv. Re-Views 2004, 56, 335–347. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829, Erratum in Nature 2021, 592, E12. [Google Scholar] [CrossRef]
- Goldenberg, L.M.; Wagner, J.; Stumpe, J.; Paulke, B.-R.; Görnitz, E. Simple Method for the Preparation of Colloidal Particle Monolayers at the Water/Alkane Interface. Langmuir 2002, 18, 5627–5629. [Google Scholar] [CrossRef]
- Capes, J.S.; Cameron, R.E. Contact Line Crystallization To Obtain Metastable Polymorphs. Cryst. Growth Des. 2006, 7, 108–112. [Google Scholar] [CrossRef]
- Shang, L.; Liu, C.; Watanabe, M.; Chen, B.; Hayashi, K. LSPR sensor array based on molecularly imprinted sol-gels for pattern recognition of volatile organic acids. Sensors Actuators B Chem. 2017, 249, 14–21. [Google Scholar] [CrossRef]
- Wang, K.; Tang, H.; Chen, H.; Huang, X.; Fang, Y.; Men, R.; Gao, J.; Wang, Y.; Wang, Y.; Huang, C. Synthesis, fabrication and properties research of CS-mPEG-AN nanocomposite. Ferroelectrics 2022, 593, 37–50. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Zhou, Y.; Guo, N.; Liu, Q.; Zong, S.; Bao, Y.; Hao, H. Solid–liquid phase equilibrium and dissolution properties of ethyl vanillin in pure solvents. J. Chem. Thermodyn. 2017, 105, 345–351. [Google Scholar] [CrossRef]
- Sorensen, T.J. Oiling-Out and Crystallization of Vanillin from Aqueous Solutions. Chem. Eng. Technol. 2014, 37, 1959–1963. [Google Scholar] [CrossRef]
- Han, M.; Rogers, S.A.; Espinosa-Marzal, R.M. Rheological Characteristics of Ionic Liquids under Nanoconfinement. Langmuir 2022, 38, 2961–2971. [Google Scholar] [CrossRef]
- Ferrazza, R.; Rossi, B.; Guella, G. DOSY-NMR and Raman Investigations on the Self-Aggregation and Cyclodextrin Com-plexation of Vanillin. J. Phys. Chem. 2014, 118, 7147–7155. [Google Scholar] [CrossRef]
- Xu, J.; Wang, S.; Wang, G.-J.N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V.R.; To, J.W.F.; et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59–64. [Google Scholar] [CrossRef]
- Maor, I.; Koifman, N.; Kesselman, E.; Matsanov, P.; Shumilin, I.; Harries, D.; Weitz, I.S. Molecular self-assembly under nanoconfinement: Indigo carmine scroll structures entrapped within polymeric capsules. Nanoscale 2021, 13, 20462–20470. [Google Scholar] [CrossRef]
- Huang, S.; Pang, L.; Chen, Y.; Zhou, L.; Fang, S.; Yu, H. Hydrogen Bond Induces Hierarchical Self-Assembly in Liq-uid-Crystalline Block Copolymers. Macromol. Rapid Commun. 2018, 39, 1700783. [Google Scholar] [CrossRef]
- Nakagawa, S.; Yoshie, N. Periodic Surface Pattern Induced by Crystallization of Polymer Brushes in Solvents. Macromolecules 2020, 53, 8131–8139. [Google Scholar] [CrossRef]
- Ogawa, K.; Yui, T.; Okuyama, K. Three D structures of chitosan. Int. J. Biological. Macromol. 2004, 34, 1–8. [Google Scholar] [CrossRef]
- Taylor, M.P. Polymer Folding in Slitlike Nanoconfinement. Macromolecules 2017, 50, 6967–6976. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Tang, H.; Huang, X.; Chen, H.; Yang, K.; Yin, Q.; Zhang, L.; Li, X.; Mou, X.; Chen, S.; et al. Ethyl Vanillin Rapid Crystallization from Carboxymethyl Chitosan Ion-Switchable Hydrogels. Gels 2023, 9, 335. https://doi.org/10.3390/gels9040335
Huang C, Tang H, Huang X, Chen H, Yang K, Yin Q, Zhang L, Li X, Mou X, Chen S, et al. Ethyl Vanillin Rapid Crystallization from Carboxymethyl Chitosan Ion-Switchable Hydrogels. Gels. 2023; 9(4):335. https://doi.org/10.3390/gels9040335
Chicago/Turabian StyleHuang, Chenghong, Hong Tang, Xiaorong Huang, Hongjie Chen, Kang Yang, Qi Yin, Lin Zhang, Xia Li, Xue Mou, Shuangkou Chen, and et al. 2023. "Ethyl Vanillin Rapid Crystallization from Carboxymethyl Chitosan Ion-Switchable Hydrogels" Gels 9, no. 4: 335. https://doi.org/10.3390/gels9040335
APA StyleHuang, C., Tang, H., Huang, X., Chen, H., Yang, K., Yin, Q., Zhang, L., Li, X., Mou, X., Chen, S., Zhang, Y., & Hu, Y. (2023). Ethyl Vanillin Rapid Crystallization from Carboxymethyl Chitosan Ion-Switchable Hydrogels. Gels, 9(4), 335. https://doi.org/10.3390/gels9040335