Biosensors and Microfluidic Biosensors: From Fabrication to Application
<p>Three generations of the biosensor process.</p> "> Figure 2
<p>Schematics of a biosensor device consisting of various modules.</p> "> Figure 3
<p>Classification of biosensors depending on the diverse use of bioreceptors and transducers.</p> "> Figure 4
<p>Types of nanomaterial-based biosensors (nano-biosensors).</p> "> Figure 5
<p>Schematic diagram of (<b>a</b>) amperometric/voltammetric, (<b>b</b>) potentiometric, and (<b>c</b>) conductometric biosensors, and (<b>d</b>) equivalent circuit of the impedimetric biosensor.</p> "> Figure 5 Cont.
<p>Schematic diagram of (<b>a</b>) amperometric/voltammetric, (<b>b</b>) potentiometric, and (<b>c</b>) conductometric biosensors, and (<b>d</b>) equivalent circuit of the impedimetric biosensor.</p> "> Figure 6
<p>Miniaturized biosensors based on existing handheld devices and microfluidic systems for point-of-care testing (POCT).</p> "> Figure 7
<p>Schematic representation of various fabrication techniques used in the development of miniaturized microfluidic biosensors.</p> "> Figure 8
<p>(<b>A</b>) Optimized ink-jetted paper device for electroanalytical detection of picric acid [<a href="#B114-biosensors-12-00543" class="html-bibr">114</a>]. (<b>B</b>) Bacterial cellulose-based electrochemical sensing platform for miniaturized biosensors [<a href="#B115-biosensors-12-00543" class="html-bibr">115</a>]. Reprinted from the above-mentioned references with the permission of copyright from the respective journals.</p> "> Figure 9
<p>(<b>A</b>) (<b>a</b>) Schematic illustration of the fabrication of micro-patterned design with proposed heavy-metal-detection sensor with three electrodes and TRGO coating onto Au electrode; (<b>b</b>) photomicrograph of a miniaturized and completely integrated sensor [<a href="#B116-biosensors-12-00543" class="html-bibr">116</a>]. (<b>B</b>) (<b>a</b>) Droplet-based electrochemical (EC) sensor design principle; (<b>b</b>) sensor component sizes and three-electrode arrangements; and (<b>c</b>) schematic illustration of the droplet-based sensor production technique using screen printing [<a href="#B117-biosensors-12-00543" class="html-bibr">117</a>]. Reprinted from the above-mentioned references with permission of copyright from the respective journals.</p> "> Figure 10
<p>(<b>A</b>) Stepwise approach for fabricating a microfluidic device showing the use of a PCB printer to print microelectrodes and three-electrode inset [<a href="#B118-biosensors-12-00543" class="html-bibr">118</a>]. (<b>B</b>) MoboSens has a concept design and a practical package: (<b>a</b>) assembly view of MoboSens, (<b>b</b>) detailed element description of MoboSens, and (<b>c</b>) photograph of the entire MoboSens system [<a href="#B119-biosensors-12-00543" class="html-bibr">119</a>]. Reprinted with permission of copyright from the respective journals.</p> "> Figure 11
<p>Schematic representation of various applications of biosensors.</p> "> Figure 12
<p>Detailed SWOT analysis of miniaturized biosensors.</p> "> Figure 13
<p>Future scope of biosensors.</p> ">
Abstract
:1. Introduction
2. Evolution of Biosensors
2.1. Design and Principles of Biosensors
2.2. Classification of Biosensors
2.2.1. Based on Bioreceptors
Enzymes, Antibodies, Whole Cell, and Hormone-Based Biosensors
Nanoparticles (NPs)
2.2.2. Based on Transducers
Calorimetric Biosensors
Acoustic Biosensors
Electronic Biosensors
Electrochemical Biosensors
2.2.3. Based on Detection System
Optical Biosensors
Mechanical Biosensors
2.2.4. Based on Technology
Miniaturized Biosensors
2.3. Characteristics of Biosensors
3. Miniaturized Microfluidic-Based Biosensors: Design and Fabrication
Materials
4. Applications
4.1. Food Processing and Environmental Monitoring
4.2. Biomedical Domain
4.3. Plant Biology
4.4. Biodefense Sensing
5. Limitations and Challenges in Biosensors
6. Future Scope
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, J. Glucose biosensors: 40 Years of advances and challenges. Electroanalysis 2001, 13, 983–988. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2020, 122, 115701. [Google Scholar] [CrossRef]
- Lee, M.; Zine, N.; Baraket, A.; Zabala, M.; Campabadal, F.; Caruso, R.; Trivella, M.G.; Jaffrezic-Renault, N.; Errachid, A. A novel biosensor based on hafnium oxide: Application for early stage detection of human interleukin-10. Sens. Actuators B Chem. 2012, 175, 201–207. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications—An overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Puneeth, S.B.; Kulkarni, M.B.; Goel, S. Microfluidic viscometers for biochemical and biomedical applications: A review. Eng. Res. Express 2021, 3, 022003. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goyal, S.; Dhar, A.; Sriram, D.; Goel, S. Miniaturized and IoT enabled Continuous-flow based Microfluidic PCR Device for DNA Amplification. IEEE Trans. Nanobiosci. 2021, 21, 97–104. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. Miniaturized DNA amplification platform with soft-lithographically fabricated continuous-flow PCR microfluidic device on a portable temperature controller. Microfluid. Nanofluid. 2021, 25, 69. [Google Scholar] [CrossRef]
- Kwon, S.H.; Lee, S.; Jang, J.; Seo, Y.; Lim, H.Y. A point-of-care diagnostic system to influenza viruses using chip-based ultra-fast PCR. J. Med. Virol. 2018, 90, 1019–1026. [Google Scholar] [CrossRef]
- Wang, D.; Chan, H.N.; Liu, Z.; Micheal, S.; Li, L.; Baniani, D.B.; Tan, M.J.A.; Huang, L.; Wang, J. Recent Developments in Microfluidic-Based Point-of-care Testing (POCT) Diagnoses. In Nanotechnology and Microfluidics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Liu, X.; Zhao, C.; Zheng, B.; Guo, Q.; Duan, X.; Wulamu, A. Wearable Devices for Gait Analysis in Intelligent Healthcare. Front. Comput. Sci. 2021, 3, 661676. [Google Scholar] [CrossRef]
- Annabestani, M.; Esmaeili-dokht, P.; Nejad, S.K.; Fardmanesh, M. NAFAS: Non-Rigid Air Flow Active Sensor, a Cost-Effective, Wearable, and Ubiquitous. IEEE Sens. J. 2021, 21, 9530–9537. [Google Scholar] [CrossRef]
- Kanakasabapathy, M.K.; Sadasivam, M.; Singh, A.; Preston, C.; Thirumalaraju, P.; Venkataraman, M.; Bormann, C.L.; Draz, M.S.; Petrozza, J.C.; Shafiee, H. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Trans. Med. 2017, 7863, eaai7863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, J.M.; Griffin, E.G. The influence of certain substances on the activity of invertase. J. Am. Chem. Soc. 1916, 38, 722–730. [Google Scholar]
- Nelson, J.M.; Griffin, E.G. Adsorption of invertase. J. Am. Chem. Soc. 1916, 38, 1109–1115. [Google Scholar] [CrossRef] [Green Version]
- Hughes, W.S. The potential difference between glass and electrolytes in contact with the glass. J. Am. Chem. Soc. 1922, 44, 2860–2867. [Google Scholar] [CrossRef] [Green Version]
- Heineman, W.R.; Jensen, W.B. Leland c. Clark Jr. (1918–2005). Biosens. Bioelectron. 2006, 21, 1403–1404. [Google Scholar] [CrossRef]
- Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Updike, S.J.; Hicks, G.P. The Enzyme Electrode. Nature 1967, 214, 986–988. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an Ion-Sensitive Solid-State. IEEE Trans. Biomed. Eng. 1970, BME-17, 70–71. [Google Scholar] [CrossRef]
- Guilbault, G.G.; Lubrano, G.J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 1973, 64, 439–455. [Google Scholar] [CrossRef]
- Mosbach, K.; Danielsson, B. An enzyme thermistor. Biochim. Biophys. Acta-Enzymol. 1974, 364, 140–145. [Google Scholar] [CrossRef]
- Miller, B.V.; Limes, R.W. Recent Advances in Particle Size Measurements: A Critical Review. Crit. Rev. Anal. Chem. 1988, 20, 75–116. [Google Scholar] [CrossRef]
- Brückel, J.; Zier, H.; Kerner, W.; Pfeiffer, E. Progress in Practical Endocrinology. Horm. Metab. Res. 1990, 22, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, P.G.; LaRoche, J. Acclimation to spectral irradiance in algae. J. Phycol. 1991, 27, 8–14. [Google Scholar] [CrossRef]
- Peterson, J.I. Fiber optic pH sensor for gastric measurements-preliminary results. In Proceedings of the Fiber Optic Sensors in Medical Diagnostics, Los Angeles, CA, USA, 21 May 1993; Volume 1886, pp. 109–117. [Google Scholar]
- Schultz, J.S.; Mansouri, S.; Goldstein, I.J. Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care 1982, 5, 245–253. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Roederer, J.E.; Bastiaans, G.J. Microgravimetric Immunoassay with Piezoelectric Crystals. Anal. Chem. 1983, 55, 2333–2336. [Google Scholar] [CrossRef]
- D’Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69. [Google Scholar] [CrossRef]
- Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef] [Green Version]
- Gribi, S.; du Bois de Dunilac, S.; Ghezzi, D.; Lacour, S.P. A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nat. Commun. 2018, 9, 4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, M.B.; Enaganti, P.K.; Amreen, K.; Goel, S. Integrated Temperature Controlling Platform to Synthesize ZnO Nanoparticles and its Deposition on Al-Foil for Biosensing. IEEE Sens. J. 2021, 21, 9538–9545. [Google Scholar] [CrossRef]
- Bhatt, G.; Bhattacharya, S. Biosensors on chip: A critical review from an aspect of micro/nanoscales. J. Micromanuf. 2019, 2, 198–219. [Google Scholar] [CrossRef]
- Simonian, A.L.; Grimsley, J.K.; Flounders, A.W.; Schoeniger, J.S.; Cheng, T.C.; DeFrank, J.J.; Wild, J.R. Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates. Anal. Chim. Acta 2001, 442, 15–23. [Google Scholar] [CrossRef]
- Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 2008, 24, 339–348. [Google Scholar] [CrossRef]
- Kalita, P.; Singh, J.; Kumar Singh, M.; Solanki, P.R.; Sumana, G.; Malhotra, B.D. Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Appl. Phys. Lett. 2012, 100, 093702. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. Microfluidic devices for synthesizing nanomaterials—A review. Nano Express 2020, 1, 032004. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. A Review on Recent Advancements in Chamber-Based Microfluidic PCR Devices. In Microelectronics and Signal Processing; CRC Press: Boca Raton, FL, USA, 2021; pp. 49–70. [Google Scholar]
- Kulkarni, M.B.; US, J.; Amreen, K.; Goel, S. Portable Thermal Management Platform for Synthesis of ZnO Nanoparticle in a Microfluidic Device: Validated for Electrochemical Sensing and Glucose Fuel Cell Applications. IEEE Trans. Electron Devices 2021, 68, 4070–4076. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Velmurugan, K.; Prasanth, E.; Amreen, K.; Nirmal, J.; Goel, S. Smartphone enabled miniaturized temperature controller platform to synthesize nio/cuo nanoparticles for electrochemical sensing and nanomicelles for ocular drug delivery applications. Biomed. Microdevices 2021, 23, 31. [Google Scholar] [CrossRef]
- Draz, M.S.; Vasan, A.; Muthupandian, A.; Kanakasabapathy, M.K.; Thirumalaraju, P.; Sreeram, A.; Krishnakumar, S.; Yogesh, V.; Lin, W.; Yu, X.G.; et al. Virus detection using nanoparticles and deep neural network–enabled smartphone system. Sci. Adv. 2020, 6, eabd5354. [Google Scholar] [CrossRef]
- de Castro, A.C.H.; Alves, L.M.; Siquieroli, A.C.S.; Madurro, J.M.; Brito-Madurro, A.G. Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum. Microchem. J. 2020, 155, 104746. [Google Scholar] [CrossRef]
- Niu, X.; Zhong, Y.; Chen, R.; Wang, F.; Liu, Y.; Luo, D. A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens. Actuators B Chem. 2018, 255, 1577–1581. [Google Scholar] [CrossRef]
- Basiri, S.; Mehdinia, A.; Jabbari, A. A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 138–146. [Google Scholar] [CrossRef]
- Wei, Y.P.; Zhang, Y.W.; Mao, C.J. A silver nanoparticle-assisted signal amplification electrochemiluminescence biosensor for highly sensitive detection of mucin 1. J. Mater. Chem. B 2020, 8, 2471–2475. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Liu, S.; Zhang, Q.; Liu, X.; Wong, D.K.Y. Gold nanoparticle encapsulated-tubular TIO2 nanocluster as a scaffold for development of thiolated enzyme biosensors. Anal. Chem. 2013, 85, 4350–4356. [Google Scholar] [CrossRef]
- Yang, Q.; Li, N.; Li, Q.; Chen, S.; Wang, H.L.; Yang, H. Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe3O4@C nanospheres. Anal. Chim. Acta 2019, 1078, 161–167. [Google Scholar] [CrossRef]
- Jia, W.; Su, L.; Lei, Y. Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosens. Bioelectron. 2011, 30, 158–164. [Google Scholar] [CrossRef]
- Fu, C.; Sun, Y.; Huang, C.; Wang, F.; Li, N.; Zhang, L.; Ge, S.; Yu, J. Ultrasensitive sandwich-like electrochemical biosensor based on core-shell Pt@CeO2 as signal tags and double molecular recognition for cerebral dopamine detection. Talanta 2021, 223, 121719. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, X.; Chang, W.; Zhang, Y.; Maruyama, T.; Luo, L.; Zhao, X. Green fabrication of Cu/rGO decorated SWCNT buckypaper as a flexible electrode for glucose detection. Mater. Sci. Eng. C 2021, 120, 111757. [Google Scholar] [CrossRef]
- Wang, B.; Luo, Y.; Gao, L.; Liu, B.; Duan, G. High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosens. Bioelectron. 2021, 171, 112736. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Chen, A. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochim. Acta 2021, 368, 137612. [Google Scholar] [CrossRef]
- Hu, F.; Liu, T.; Pang, J.; Chu, Z.; Jin, W. Facile preparation of porous Co3O4 nanocubes for directly screen-printing an ultrasensitive glutamate biosensor microchip. Sens. Actuators B Chem. 2020, 306, 127587. [Google Scholar] [CrossRef]
- Xue, L.; Guo, R.; Huang, F.; Qi, W.; Liu, Y.; Cai, G.; Lin, J. An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria. Biosens. Bioelectron. 2021, 173, 112800. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Arya, P.; Singh, A.; Kaswan, J.; Shukla, A.; Kushwaha, H.R.; Gupta, S.; Singh, S.P. ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum. Biosens. Bioelectron. 2020, 165, 112347. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C 2017, 78, 960–968. [Google Scholar] [CrossRef]
- Tian, J.; Li, Y.; Dong, J.; Huang, M.; Lu, J. Photoelectrochemical TiO2 nanotube arrays biosensor for asulam determination based on in-situ generation of quantum dots. Biosens. Bioelectron. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Vermeir, S.; Nicolaï, B.M.; Verboven, P.; Van Gerwen, P.; Baeten, B.; Hoflack, L.; Vulsteke, V.; Lammertyn, J. Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmaceuticals. Anal. Chem. 2007, 79, 6119–6127. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Hua, T.C.; Sun, D.W.; Xiao, J.J.; Xu, F.; Wang, F.F. Detection of dichlorvos residue by flow injection calorimetric biosensor based on immobilized chicken liver esterase. J. Food Eng. 2006, 74, 24–29. [Google Scholar] [CrossRef]
- Wang, L.; Sipe, D.M.; Xu, Y.; Lin, Q. A MEMS thermal biosensor for metabolic monitoring applications. J. Microelectromech. Syst. 2008, 17, 318–327. [Google Scholar] [CrossRef]
- Diculescu, V.C.; Chiorcea-Paquim, A.M.; Oliveira-Brett, A.M. Applications of a DNA-electrochemical biosensor. TrAC Trends Anal. Chem. 2016, 79, 23–36. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Yashas; Enaganti, P.K.; Amreen, K.; Goel, S. Internet of Things enabled portable thermal management system with microfluidic platform to synthesize MnO2 nanoparticles for electrochemical sensing. Nanotechnology 2020, 31, 425504. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Salve, M.; Goel, S. Miniaturized Thermal Monitoring Module with CO Laser Ablated Microfluidic Device for Electrochemically Validated DNA Amplification. IEEE Trans. Instrum. Meas. 2021, 70, 4006008. [Google Scholar] [CrossRef]
- Koncki, R. Recent developments in potentiometric biosensors for biomedical analysis. Anal. Chim. Acta 2007, 599, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef]
- Chouteau, C.; Dzyadevych, S.; Chovelon, J.M.; Durrieu, C. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens. Bioelectron. 2004, 19, 1089–1096. [Google Scholar] [CrossRef]
- Chuang, Y.H.; Chang, Y.T.; Liu, K.L.; Chang, H.Y.; Yew, T.R. Electrical impedimetric biosensors for liver function detection. Biosens. Bioelectron. 2011, 28, 368–372. [Google Scholar] [CrossRef]
- Stobiecka, A.; Radecka, H.; Radecki, J. Novel voltammetric biosensor for determining acrylamide in food samples. Biosens. Bioelectron. 2007, 22, 2165–2170. [Google Scholar] [CrossRef]
- Becker, B.; Cooper, M.A. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 2011, 24, 754–787. [Google Scholar] [CrossRef]
- Lee, Y.O.; Chen, F.; Keun, K.; Kadota, M.; Tanaka, S.; Maka, M.; Martowicz, A. An Analysis of an Equivalent Circuit Model for an Interdigital Surface-Acoustic-Wave Transducer. J. Appl. Phys. 1988, 27, 163. [Google Scholar]
- Yoo, S.M.; Lee, S.Y. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol. 2016, 34, 7–25. [Google Scholar] [CrossRef]
- Baird, C.L.; Myszka, D.G. Current and emerging commercial optical biosensors. J. Mol. Recognit. 2001, 14, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Cross, G.H.; Reeves, A.A.; Brand, S.; Popplewell, J.F.; Peel, L.L.; Swann, M.J.; Freeman, N.J. A new quantitative optical biosensor for protein characterisation. Biosens. Bioelectron. 2003, 19, 383–390. [Google Scholar] [CrossRef]
- Chen, Y.T.; Lee, Y.C.; Lai, Y.H.; Lim, J.C.; Huang, N.T.; Lin, C.T.; Huang, J.J. Review of Integrated Optical Biosensors for Point-Of-Care Applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, H.; Chen, J.; Lee, S.; Hou, T.C.; Wang, Z.L. Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 2013, 6, 1744–1749. [Google Scholar] [CrossRef]
- Tamayo, J.; Kosaka, P.M.; Ruz, J.J.; Paulo, Á.S.; Calleja, M. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 2013, 42, 1287–1311. [Google Scholar] [CrossRef] [Green Version]
- Duocastella, M.; Fernández-Pradas, J.M.; Morenza, J.L.; Zafra, D.; Serra, P. Novel laser printing technique for miniaturized biosensors preparation. Sens. Actuators B Chem. 2010, 145, 596–600. [Google Scholar] [CrossRef]
- Duocastella, M.; Fernández-Pradas, J.M.; Serra, P.; Morenza, J.L. Laser-induced forward transfer of liquids for miniaturized biosensors preparation. J. Laser Micro Nanoeng. 2008, 3, 1–4. [Google Scholar] [CrossRef]
- Sung, W.J.; Bae, Y.H. Glucose oxidase, lactate oxidase, and galactose oxidase enzyme electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopant. Sens. Actuators B Chem. 2006, 114, 164–169. [Google Scholar] [CrossRef]
- Ahmad, R.; Tripathy, N.; Jang, N.K.; Khang, G.; Hahn, Y.B. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens. Actuators B Chem. 2015, 206, 146–151. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, L.; Hu, M.; Wang, L.; Hu, J. Detection of hepatitis B virus by piezoelectric biosensor. J. Pharm. Biomed. Anal. 2002, 27, 341–345. [Google Scholar] [CrossRef]
- Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Kabiri, S.; Omidfar, K. Advances in HbA1c Biosensor Development Based on Field Effect Transistors: A Review. IEEE Sens. J. 2020, 20, 8912–8921. [Google Scholar] [CrossRef]
- Jung, J.H.; Cheon, D.S.; Liu, F.; Lee, K.B.; Seo, T.S. A Graphene Oxide Based Immuno-biosensor for Pathogen Detection. Angew. Chem. 2010, 122, 5844–5847. [Google Scholar] [CrossRef]
- Nehra, A.; Pal Singh, K. Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens. Bioelectron. 2015, 74, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Liss, M.; Petersen, B.; Wolf, H.; Prohaska, E. An aptamer-based quartz crystal protein biosensor. Anal. Chem. 2002, 74, 4488–4495. [Google Scholar] [CrossRef]
- Juan-Colás, J.; Parkin, A.; Dunn, K.E.; Scullion, M.G.; Krauss, T.F.; Johnson, S.D. The electrophotonic silicon biosensor. Nat. Commun. 2016, 7, 12769. [Google Scholar] [CrossRef] [Green Version]
- Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin hydrogel films for optical biosensor applications. Membranes 2012, 2, 49–69. [Google Scholar] [CrossRef] [Green Version]
- Radke, S.M.; Alocilja, E.C. A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sens. J. 2005, 5, 744–750. [Google Scholar] [CrossRef]
- Mǎdǎraş, M.B.; Popescu, I.C.; Ufer, S.; Buck, R.P. Microfabricated amperometric creatine and creatinine biosensors. Anal. Chim. Acta 1996, 319, 335–345. [Google Scholar] [CrossRef]
- Rahman, B.M.A.; Viphavakit, C.; Chitaree, R.; Ghosh, S.; Pathak, A.K.; Verma, S.; Sakda, N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. Biosensors 2022, 12, 42. [Google Scholar] [CrossRef]
- Minopoli, A.; Acunzo, A.; Della Ventura, B.; Velotta, R. Nanostructured Surfaces as Plasmonic Biosensors: A Review. Advanced Mater. Interfaces 2022, 9, 2101133. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Min, R.; Kumar, S.; Li, X. GeO2 Doped Optical Fiber Plasmonic Sensor for Refractive Index Detection. Front. Phys. 2021, 9, 707113. [Google Scholar] [CrossRef]
- Srivastava, R.; Prajapati, Y.K.; Pal, S.; Kumar, S. Micro-channel Plasmon Sensor Based on a DShaped Photonic Crystal Fiber for Malaria Diagnosis With Improved Performance. IEEE Sens. J. 2022. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. MXenes-Based Fiber-Optic SPR Sensor for Colorectal Cancer Diagnosis. IEEE Sens. J. 2022, 22, 6661–6668. [Google Scholar] [CrossRef]
- Pathak, A.K.; Rahman, B.M.A.; Viphavakit, C. Nanowire embedded micro-drilled dual-channel approach to develop highly sensitive biosensor. IEEE Photonics Technol. Lett. 2022, 34, 707–710. [Google Scholar] [CrossRef]
- Pathak, A.K.; Rahman, B.M.A.; Singh, V.K.; Kumari, S. Sensitivity enhancement of a concave shaped optical fiber refractive index sensor covered with multiple au nanowires. Sensors 2019, 19, 4210. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A.K.; Singh, V.K. SPR Based Optical Fiber Refractive Index Sensor Using Silver Nanowire Assisted CSMFC. IEEE Photonics Technol. Lett. 2020, 32, 465–468. [Google Scholar] [CrossRef]
- Annabestani, M. An Intelligent Machine Learning-Based Sheath-free Microfluidic Impedance Flow cytometer. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; pp. 284–288. [Google Scholar]
- Ali, S.; Hassan, A.; Hassan, G.; Eun, C.H.; Bae, J.; Lee, C.H.; Kim, I.J. Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens. Sci. Rep. 2018, 8, 5920. [Google Scholar] [CrossRef]
- Ballacchino, G.; Weaver, E.; Mathew, E.; Dorati, R.; Genta, I.; Conti, B.; Lamprou, D.A. Manufacturing of 3d-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations. Int. J. Mol. Sci. 2021, 22, 8064. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. Recent advancements in integrated microthermofluidic systems for biochemical and biomedical applications—A review. Sensors Actuators A Phys. 2022, 341, 113590. [Google Scholar] [CrossRef]
- Lee, D.S.; Park, S.H.; Chung, K.H.; Pyo, H.B. A disposable plastic-silicon micro PCR chip using flexible printed circuit board protocols and its application to genomic DNA amplification. IEEE Sens. J. 2008, 8, 558–564. [Google Scholar] [CrossRef]
- Felix, F.S.; Baccaro, A.L.B.; Angnes, L. Disposable voltammetric immunosensors integrated with Microfluidic Platforms for Biomedical, Agricultural and Food Analyses: A Review. Sensors 2018, 18, 4124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Srivastava, V.C. Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters. Photochem. Photobiol. Sci. 2016, 15, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Tilli, M.; Haapalinna, A. Properties of Silicon. In Handbook of Silicon Based MEMS Materials and Technologies; William Andrew: Norwich, NY, USA, 2015; ISBN 9780128177860. [Google Scholar]
- Joung, S.; Kim, J.; Choi, Y.J.; Kang, C.J.; Kim, Y. ITO-coated glass/polydimethylsiloxane. In Proceedings of the 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 January 2007; pp. 691–694. [Google Scholar]
- Mankar, C.; Rewatkar, P.; Dhone, M.; Balpande, S.; Kalambe, J.; Pande, R.; Goel, S. Paper Based Microfluidic Microbial Fuel Cell to Harvest Energy from Urine. Sens. Lett. 2019, 17, 69–74. [Google Scholar] [CrossRef]
- Kakaei, K.; Esrafili, M.D.; Ehsani, A. Graphene-Based Electrochemical Supercapacitors. Interface Sci. Technol. 2019, 27, 339–386. [Google Scholar] [CrossRef]
- Raj, M.K.; Chakraborty, S. PDMS microfluidics: A mini review. J. Appl. Polym. Sci. 2020, 137, 48958. [Google Scholar] [CrossRef]
- Hong, T.F.; Ju, W.J.; Wu, M.C.; Tai, C.H.; Tsai, C.H.; Fu, L.M. Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid. Nanofluid. 2010, 9, 1125–1133. [Google Scholar] [CrossRef]
- Mohan, J.M.; Amreen, K.; Kulkarni, M.B.; Javed, A.; Dubey, S.K.; Goel, S. Optimized Ink Jetted Paper Device for Electroanalytical Detection of Picric Acid. Colloids Surf. B Biointerfaces 2021, 208, 112056. [Google Scholar] [CrossRef]
- Gomes, N.O.; Carrilho, E.; Machado, S.A.S.; Sgobbi, L.F. Bacterial cellulose-based electrochemical sensing platform: A smart material for miniaturized biosensors. Electrochim. Acta 2020, 349, 136341. [Google Scholar] [CrossRef]
- Xuan, X.; Hossain, M.F.; Park, J.Y. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide. Sci. Rep. 2016, 6, 33125. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, C. A novel one-step fabricated, droplet-based electrochemical sensor for facile biochemical assays. Sensors 2016, 16, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanth, S.; Mohan, J.M.; Raut, S.; Dubey, S.K.; Ishii, I.; Javed, A.; Goel, S. Droplet based microfluidic device integrated with ink jet printed three electrode system for electrochemical detection of ascorbic acid. Sens. Actuators A Phys. 2021, 325, 112685. [Google Scholar] [CrossRef]
- Wang, X.; Gartia, M.R.; Jiang, J.; Chang, T.W.; Qian, J.; Liu, Y.; Liu, X.; Liu, G.L. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sens. Actuators B Chem. 2015, 209, 677–685. [Google Scholar] [CrossRef]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 2019, 141, 111417. [Google Scholar] [CrossRef]
- Holah, J.T. Industrial Monitoring: Hygiene in Food Processing. In Biofilms—Science and Technology; Springer: Dordrecht, The Netherlands, 1992; pp. 645–659. [Google Scholar] [CrossRef]
- McHugh, A.J.; Yap, M.; Crispie, F.; Feehily, C.; Hill, C.; Cotter, P.D. Microbiome-based environmental monitoring of a dairy processing facility highlights the challenges associated with low microbial-load samples. NPJ Sci. Food 2021, 5, 4. [Google Scholar] [CrossRef]
- Beno, S.M.; Stasiewicz, M.J.; Andrus, A.D.; Ralyea, R.D.; Kent, D.J.; Martin, N.H.; Wiedmann, M.; Boor, K.J. Development and validation of pathogen environmental monitoring programs for small cheese processing facilities. J. Food Prot. 2016, 79, 2095–2106. [Google Scholar] [CrossRef]
- Radke, S.M.; Alocilja, E.C. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens. Bioelectron. 2005, 20, 1662–1667. [Google Scholar] [CrossRef]
- Leong, D.; Alvarez-Ordóñez, A.; Jordan, K. Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Front. Microbiol. 2014, 5, 436. [Google Scholar] [CrossRef]
- Meshram, B.D.; Agrawal, A.K.; Adil, S.; Ranvir, S.; Sande, K.K. Biosensor and its Application in Food and Dairy Industry: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3305–3324. [Google Scholar] [CrossRef]
- Rhouati, A.; Hayat, A.; Hernandez, D.B.; Meraihi, Z.; Munoz, R.; Marty, J.L. Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A. Sens. Actuators B Chem. 2013, 176, 1160–1166. [Google Scholar] [CrossRef]
- Roisen, F.I.; Murphy, R.A.; Pichichero, M.E.; Braden, W.G. Cyclic adenosine monophosphate stimulation of axonal elongation. Science 1972, 175, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Shokr, A.; Pacheco, L.G.C.; Thirumalaraju, P.; Kanakasabapathy, M.K.; Gandhi, J.; Kartik, D.; Silva, F.S.R.; Erdogmus, E.; Kandula, H.; Luo, S.; et al. Enabled with Adaptive Adversarial Learning. ACS Nano 2020, 15, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Critical overview on the application of sensors and biosensors for clinical analysis. TrAC Trends Anal. Chem. 2016, 85, 36–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Liu, M.; Kaneko, T.; McIntyre, P.C. Atomic layer deposited hafnium oxide gate dielectrics for charge-based biosensors. Electrochem. Solid-State Lett. 2010, 13, G29. [Google Scholar] [CrossRef]
- Bergveld, P. The development and application of rapid. Biosensors 1986, 2, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Ariffin, S.A.B.; Adam, T.; Hashim, U.; Faridah, S.; Zamri, I.; Uda, M.N.A. Plant diseases detection using nanowire as biosensor transducer. Adv. Mater. Res. 2014, 832, 113–117. [Google Scholar] [CrossRef]
- Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Evanko, D.S.; Haydon, P.G. Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 2005, 37, 341–348. [Google Scholar] [CrossRef]
- Lee, W.G.; Kim, Y.G.; Chung, B.G.; Demirci, U.; Khademhosseini, A. Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv. Drug Deliv. Rev. 2010, 62, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Prakash, R.; Kaler, K.V.I.S. An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination. Microfluid. Nanofluid. 2007, 3, 177–187. [Google Scholar] [CrossRef]
- Sriram, G.; Bhat, M.P.; Patil, P.; Uthappa, U.T.; Jung, H.Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T.M.; Pai, R.K.; Madhuprasad; et al. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. TrAC Trends Anal. Chem. 2017, 93, 212–227. [Google Scholar] [CrossRef]
Year | Generation | Development Phases of Biosensor |
---|---|---|
1906 | First | M. Cramer noticed voltage difference generating between parts of the electrolyte. |
1909 | Sorensen described the idea of pH and pH sensors. | |
1909–1922 | Nelson and Griffin were the first to discover that enzyme invertase could be immobilized on charcoal aluminium hydroxide [15,16]. | |
1922 | Hughes observed a pH determination electrode [17]. | |
1956 | Clark first discovered the biosensor electrode that is capable of determining blood oxygen levels [18]. | |
1962 | Clark also demonstrated the use of an amperometric enzyme electrode for glucose sensing [19]. | |
1967 | Hicks et al. [20] enhanced Clark’s work; glucose oxidase was immobilized using an enzyme-based working electrode with an oxygen sensor. | |
1969 | The first potentiometric enzyme electrode-based urea detection sensor was reported by Montalvo and Guilbault. | |
1970 | Bergveld discovered ion-sensitive field-effect transistors (ISFET) [21]. | |
1973 | Lubrano and Guilbault demonstrated glucose and lactate enzyme platinum electrode to detect hydrogen peroxide (H2O2) [22]. | |
1974 | Klaus Mosbach group developed a thermistor sensor based on a heat-sensitive enzyme [23]. | |
1975 | Opitz and Lubbers developed an optical biosensor for alcohol detection [24]. | |
1976 | Second | Clemens et al. [25] integrated an electrochemical biosensor for glucose detection into an artificial bedside pancreas. A unique semi-continuous catheter-based blood glucose analyzer was also demonstrated using VIA-based technology. |
1977 | La Roche introduced the lactate analyzer LA 640, which was utilized to transmit an electron from dehydrogenase to an electrode [26]. | |
1980 | Peterson was the first to perform in vivo blood gas analysis to create a fiber-optic pH sensor [27]. | |
1982 | Schultz detected glucose by using the fiber-optic biosensor [28]. | |
1983 | Third | Liedberg discovered the reliance-based reactions in real time using the surface plasmon resonance (SPR) method in real time [29]. |
1984 | For glucose detection, the first mediated amperometric biosensor was constructed using ferrocene and glucose oxidase [30]. | |
1987 | University of Cambridge created a pen-sized detector for assessing blood glucose levels. | |
1990 | Pharmacia Biacore proposed an SPR-based biosensor [31]. | |
1992 | i-STAT developed a handheld blood biosensor [32]. | |
2018 | Girbi designed a neuron-on-chip biosensor to measure the nerve impulse conduction [33]. | |
2021 | Kulkarni et al. [34] described an Al-foil-based electrode for sensing cysteine. |
Nanoparticle | Analyte | Transducer | Linear Range | LOD | Ref |
---|---|---|---|---|---|
Au NPs | Aflatoxin B1 | SPR Impedimetric | 0.2–600 nM | 0.40 nM | [43] |
Au NPs | Pb2+ | Fluorescence | 40 nm–3 µm | 15.9 nm | [44] |
Ag NPs | H2O2 Glucose | Colorimetric | 0.04–7.4 µm 1.4–3.5 µm | 0.032 nm 0.29 nm | [45] |
Ag/Pd NPs | Mucin 1 | Electrochemi-luminescence | 1.210 fg mL−1 −0.2110 ng mL−1 | 0.45 fg mL−1 | [46] |
Au NPs/TiO2 | H2O2 | Electrochemical | 67–1525 µm | 6 µm | [47] |
Pt-Fe3O4@C | Sarcosine | Amperometric | 0.4–62 µm | 0.43 µm | [48] |
Pt NFs/PANi | Urea | Cyclic Voltammetry | 25 mM | 10 µm | [49] |
Pt@CeO2 | Dopamine | Electrochemical | 2–185 nM | 0.71 nM | [50] |
Cu/rGO-BP | Glucose | Electrochemical | 0.3–5 mM | 11 µm | [51] |
Ni/Cu MOF | Glucose | FET | 2 µM−25 mM | 0.51 µM | [52] |
NiO@Au | Lactic acid | Electrochemical | 150 µM−0.6 M | 11.6 µM | [53] |
Co3O4 | Glutamate | Electrochemical chip | 12–650 µM | 10 µM | [54] |
MnO2 | Salmonella | Impedimetric | 3 × 101–3 × 106 | 19 CFU mL−1 | [55] |
ZnO-rGO | Dopamine | CV | 0.5–1550 pM | 8.75 ± 0.64 pM | [56] |
ZnO NPs | Amyloid | Optoelectronic | 1–15 µL | 2.76 ng | [57] |
TiO2 | Asulam | Photoelectrochemical | 0.04–4 ng mL−1 | 4.1 pg mL−1 | [58] |
Electrochemical Biosensors | Principles | Advantages | Disadvantages |
---|---|---|---|
Potentiometric | Electric potential | Decreased analysis time, good selectivity and sensitivity, and sample treatment not required. | Temperature, pH, and immunological cross-reaction variables all have an impact on sensitivity and lifespan. |
Amperometric | Oxidation/reduction | Portability due to the portable system, high selectivity, sensitivity. | Regenerative between measurements. |
Impedimetric | Change in impedance | High selectivity and sensitivity, simple operation, small device. | Complex construction, expensive labelling markers. |
Conductometric | Change in conductance | Low cost, fast response. | Highly buffered solution may interfere. |
Types | Principles | Applications | Ref |
---|---|---|---|
Glucose oxidase electrode biosensor | Glucose oxidation using electrochemistry | Glucose study in biological samples. | [80] |
Uric acid biosensor | Electrochemistry | The purpose of this test is to discover clinical abnormalities or diseases. | [81] |
Piezoelectric biosensor | Electrochemistry | Detecting carbamate and organophosphate. | [82] |
Acetylcholinesterase inhibition-based biosensor | Electrochemistry | Understanding the effects of pesticides. | [83] |
HbA1c biosensor | Electrochemistry using ferroceneboronic acid | Glycated haemoglobin measurement with a robust analytical approach. | [84] |
Fluorescence-tagged biosensor | Fluorescence | For a better knowledge of biological processes including the numerous molecular systems that make up a cell. | [85] |
Nanoparticles-based biosensor | Electrochemical/optical/visual | Diagnostic tools are used in a variety of disciplines, including biomedicine. | [86] |
Quartz–crystal biosensor | Electromagnetic | For the development of ultra-high-sensitive protein detection in liquids. | [87] |
Silicon biosensor | Optical/fluorescence | Cancer therapy, bioimaging, and biosensing. | [88] |
Hydrogel biosensor | Optical/visual | Biomolecular immobilization. | [89] |
Microfabricated biosensor | Optical using cytochrome P450 enzyme | Pharmaceutical research and development. | [90] |
Microfabricated Biosensor | Optical | To monitor biochemical oxygen demand and environmental toxicity as well as heavy metal and pesticide toxicity. | [91] |
Nano-biosensors | Fiber optic | Cylindrical waveguide that guides the light within the core of the fiber used for nanomaterials and the terahertz domain meta-surface-based refractometric. | [92] |
Plasmonic biosensors | Surface plasmon resonance (SPR) | Highly sensitive to the refractive index (RI) of the medium in direct contact with the metal film. | [93] |
GeO2-doped biosensors | Refractive index (RI) | High sensitivity offers a promising approach for the detection of unknown RI analytes in chemical and biological fields in the near-infrared region. | [94] |
Microchannel plasmon biosensors | Photonic crystal fiber | D-shaped photonic crystal fiber (PCF) sensor for malaria diagnosis. | [95] |
MXenes-based biosensors | Fiber optic SPR sensor | A spectral SPR-based fiber optic to diagnose colorectal cancer. | [96] |
Au nanowire-based biosensors | Optics | Embedded micro-drilled dual-channel approach | [97] |
Au Nanowire-based biosensors | Optical Fiber Refractive Index | Concave-shaped refractive index sensor (CSRIS) exploiting localized surface plasmon resonance (LSPR). | [98] |
Ag Nanowire-based biosensors | Surface plasmon resonance | Concave-shaped microfluidic channel (CSMFC). | [99] |
Fabrication Instruments [Ref] | Materials | Specifications | Advantages | Disadvantages |
---|---|---|---|---|
CO2 Laser Ablation [101] | PMMA, polyimide | IR source, λ = 10.6 µm | Precise dissection, good efficiency | Expensive instrument |
Voltera Ink-jet Printer [102] | Paper, PCB, polyimide | Minimum trace width = 0.2 mm | Flexible substrates | Refilling of conductive ink |
UV-Direct Laser writer (DLW) [9] | Glass, silicon wafer | GaN laser diode, λ = 405 nm | Better resolution | Expensive instrument |
FDM 3D printer [103] | ABS, PLA, PCL | Filament Diameter = 1.75 mm, accuracy = 100 µm | Easily scaled to any size | Less throughput, low speed, low resolution |
Z-morph 3D printer [104] | Paper, wood, PMMA | Blue laser, λ = 420 nm | Multipurpose tool with interchangeable tool heads capable of FDM 3D printing (50 µm accuracy), CNC cutting/drilling, and PCB engraving | Slow process |
Photolithography [105] | Dry film photoresist (DFR) | Max width = 325 mm, maximum substrate thickness = 3 mm | Photosensitive polymers are necessary | Mask is expensive |
SLA 3D printer [103] | Various liquid resins | Layer resolution = 35 microns | Higher resolution and accuracy | Requires post-processing tasks such as cleaning with IPA and ethanol |
Screen printer [106] | Cloth, paper | Minimum trace width = 0.4 mm | Low cost | Less accurate |
Sothlithography [107] | PDMS | Silicone elastomer | Transparent | Low thermal conductivity |
Materials | Melting Point (°C) | Thermal Conductivity (W/mK) | Advantages | Disadvantages | Ref |
---|---|---|---|---|---|
Polydimethylsiloxane (PDMS) | >200 °C | 2.73 |
|
| [112] |
Polymethylmethacrylate (PMMA) | 150 °C | 0.17–0.19 |
|
| [113] |
Graphene | >250 °C | ~4000 |
|
| [111] |
Glass | 1200 °C | 0.76 |
|
| [109] |
Silicone | 350 °C | 0.2 |
|
| [108] |
Paper (Cellulose) | 220 °C | 0.05 |
|
| [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. https://doi.org/10.3390/bios12070543
Kulkarni MB, Ayachit NH, Aminabhavi TM. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors. 2022; 12(7):543. https://doi.org/10.3390/bios12070543
Chicago/Turabian StyleKulkarni, Madhusudan B., Narasimha H. Ayachit, and Tejraj M. Aminabhavi. 2022. "Biosensors and Microfluidic Biosensors: From Fabrication to Application" Biosensors 12, no. 7: 543. https://doi.org/10.3390/bios12070543
APA StyleKulkarni, M. B., Ayachit, N. H., & Aminabhavi, T. M. (2022). Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors, 12(7), 543. https://doi.org/10.3390/bios12070543