Portable Miniaturized IoT-Enabled Point-of-Care Device for Electrochemical Sensing of Zopiclone in Cocktails
<p>The steps of the methodology implemented for the laccase biosensor characterizations with each zopiclone concentration. First, control measurements were made using only zopiclone. Furthermore, each concentration was mixed with the emulated interfering substances (ELJ, ET, and ETS); in all the previously mentioned circumstances, measurements were made using a laccase biosensor and a portable potentiostat which, using Wi-Fi and IoT platform technology, sent the measured data to a phone. Diagram built using BioRender (Toronto, ON, Canada) [<a href="#B33-biosensors-14-00557" class="html-bibr">33</a>].</p> "> Figure 2
<p>(<b>a</b>) Voltammogram of zopiclone per concentration for concentrations from 3 to 7% (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<b>b</b>) Curve suggesting the existence of a linear dependence between oxidation current and concentration of zopiclone. (<b>c</b>) Curve suggesting existing linearity between reduction current and concentration of zopiclone.</p> "> Figure 2 Cont.
<p>(<b>a</b>) Voltammogram of zopiclone per concentration for concentrations from 3 to 7% (<span class="html-italic">w</span>/<span class="html-italic">v</span>). (<b>b</b>) Curve suggesting the existence of a linear dependence between oxidation current and concentration of zopiclone. (<b>c</b>) Curve suggesting existing linearity between reduction current and concentration of zopiclone.</p> "> Figure 3
<p>FTIR analysis of (<b>a</b>) unused APTES only and APTES + glut electrodes and of (<b>b</b>) unused and used laccase-immobilized electrodes.</p> "> Figure 4
<p>SEM digital images at 1 kX (<b>left</b>), 10 kX (<b>center</b>), and 40 kX (<b>right</b>) magnifications. Ten kV of accelerating voltage was applied to (<b>a</b>–<b>i</b>) unused electrodes and (<b>j</b>–<b>l</b>) used electrodes. The green square indicates where the magnifications were made.</p> "> Figure 5
<p>EDS graphic characterization of (<b>a</b>–<b>c</b>) unused electrodes and (<b>d</b>) used electrodes.</p> "> Figure 6
<p>Line graph of the results obtained for the tests performed on zopiclone when mixed with no other substance (which oxidized at 0.116 V), when combined with ETS (which achieved its oxidation at 0.005 V), and when mixed with ET (which oxidized at 0.027 V).</p> "> Figure 7
<p>Oxidation current of 25.7 mM of zopiclone when using the laccase biosensor 200 times.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Potentiostat Design and Electrode Design
2.3. Production and Purification of Laccase
2.4. FTIR Characterization
2.5. SEM and EDS Characterization
2.6. Sensor Design
2.7. Point-of-Care Sensing Device Design and Characterization
2.8. Point-of-Care Sensing Device Testing with Zopiclone
2.9. Cycle of Operations
3. Results and Discussion
3.1. FTIR Characterization Results
3.2. SEM and EDS Characterizations
3.3. Potentiostat Characterization
3.4. Laccase Biosensor Characterization with Pharmacological Substances
3.5. Cycle of Operations Results
3.6. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kenan, N.; Mercan, S.; Acikkol, M. Development and Validation of a Practical Analytical Method for Zolpidem as a Drug Facilitated Crime Tool. J. Chem. Metrol. 2019, 13, 68–74. [Google Scholar] [CrossRef]
- Arfè, R.; Bilel, S.; Tirri, M.; Frisoni, P.; Serpelloni, G.; Neri, M.; Boccuto, F.; Bernardi, T.; Foti, F.; De-Giorgio, F.; et al. Comparison of N-Methyl-2-Pyrrolidone (NMP) and the “Date Rape” Drug GHB: Behavioral Toxicology in the Mouse Model. Psychopharmacology 2021, 238, 2275–2295. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Borges, I.; Bueno Goularte, R.; Raphael Vanoni, C.; Lima, S.; Scheide, M.R.; Zambelli Mezalira, D.; Vitali, L.; Stulzer, H.K.; Jost, C.L. Exploiting the Synergistic Effects of Combined Carbon-Based Materials for Rape Drug Diazepam Electrochemical Sensing: Application to Simulated Casework Matrices. Electroanalysis 2023, 36, e202300231. [Google Scholar] [CrossRef]
- Piergiovanni, M.; Cappiello, A.; Famiglini, G.; Termopoli, V.; Palma, P. Determination of Benzodiazepines in Beverages Using Green Extraction Methods and Capillary HPLC-UV Detection. J. Pharm. Biomed. Anal. 2018, 154, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Busardò, F.P.; Varì, M.R.; di Trana, A.; Malaca, S.; Carlier, J.; di Luca, N.M. Drug-Facilitated Sexual Assaults (DFSA): A Serious Underestimated Issue. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 10577–10587. [Google Scholar] [CrossRef]
- García, M.G.; Pérez-Cárceles, M.D.; Osuna, E.; Legaz, I. Drug-Facilitated Sexual Assault and Other Crimes: A Systematic Review by Countries. J. Forensic Leg. Med. 2021, 79, 102151. [Google Scholar] [CrossRef]
- Ryu, J.; Manivannan, R.; Son, Y.-A. Azo Dye-Based Optical Probe for the Detection toward Mimic Molecule of Date Rape Drug. Microchem. J. 2021, 166, 106237. [Google Scholar] [CrossRef]
- Bansal, H.; Kohli, R.K.; Saluja, K.; Chaurasia, A. Recent Advancements in Biomedical Research in the Era of AI and ML. Artif. Intell. Comput. Dyn. Biomed. Res. 2022, 8, 1–20. [Google Scholar] [CrossRef]
- Dhanvijay, M.M.; Patil, S.C. Internet of Things: A Survey of Enabling Technologies in Healthcare and Its Applications. Comput. Netw. 2019, 153, 113–131. [Google Scholar] [CrossRef]
- Affia, A.O.; Finch, H.; Jung, W.; Samori, I.A.; Potter, L.; Palmer, X.-L. IoT Health Devices: Exploring Security Risks in the Connected Landscape. IoT 2023, 4, 150–182. [Google Scholar] [CrossRef]
- Wehrl, H.F.; Judenhofer, M.S.; Wiehr, S.; Pichler, B.J. Pre-Clinical PET/MR: Technological Advances and New Perspectives in Biomedical Research. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Stelmaszczyk, P.; Gacek, E.; Wietecha-Posłuszny, R. Optimized and Validated DBS/MAE/LC–MS Method for Rapid Determination of Date-Rape Drugs and Cocaine in Human Blood Samples—A New Tool in Forensic Analysis. Separations 2021, 8, 249. [Google Scholar] [CrossRef]
- Stelmaszczyk, P.; Białkowska, K.; Wietecha-Posłuszny, R. Paper-Supported Polystyrene Membranes for Micro-Solid Phase Extraction of Date-Rape Drugs from Urine: A Sustainable Analytical Approach. Anal. Chim. Acta 2024, 1316, 342874. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, T.S.T.; Kwaczyński, K.; Rizwan, M.; Poltorak, L. Current Trends in Rapid Electroanalytical Screening of Date and Rape Drugs in Beverages. TrAC Trends Anal. Chem. 2024, 175, 117712. [Google Scholar] [CrossRef]
- Segawa, H.; Fukuoka, T.; Itoh, T.; Imai, Y.; Iwata, Y.T.; Yamamuro, T.; Kuwayama, K.; Tsujikawa, K.; Kanamori, T.; Inoue, H. Rapid Detection of Hypnotics Using Surface-Enhanced Raman Scattering Based on Gold Nanoparticle Co-Aggregation in a Wet System. Analyst 2019, 144, 2158–2165. [Google Scholar] [CrossRef]
- Tralla, L.; Gustavsson, S.; Söderberg, C.; Jönsson, A.K.; Kugelberg, F.C. Fatal Intoxications with Zopiclone—A Cause for Concern? Drug Saf. 2024, 47, 687–697. [Google Scholar] [CrossRef]
- Anilanmert, B.; Yonar, F.C. Speedy Gonzales Analysis Method in One Drop of Beverage, for Crimes Committed with Drugs from Three Different Groups. Anal. Sci. 2023, 39, 843–849. [Google Scholar] [CrossRef]
- Segura Gómez, C.C. A Low-Cost Multi-Technique Portable Electrochemical Device for Remote Biosensors. 2022. Available online: https://repositorioslatinoamericanos.uchile.cl/handle/2250/3575480?show=full (accessed on 11 November 2024).
- Thiyagarajan, P.; Selvam, K.; Sudhakar, C.; Selvankumar, T. Enhancement of Adsorption of Magenta Dye by Immobilized Laccase on Functionalized Biosynthesized Activated Carbon Nanotubes. Water Air Soil Pollut. 2020, 231, 364. [Google Scholar] [CrossRef]
- US Department of Agriculture. FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/167747/nutrients (accessed on 11 November 2024).
- Penniston, K.L.; Nakada, S.Y.; Holmes, R.P.; Assimos, D.G. Quantitative Assessment of Citric Acid in Lemon Juice, Lime Juice, and Commercially-Available Fruit Juice Products. J. Endourol. 2008, 22, 567–570. [Google Scholar] [CrossRef]
- Close, L. Alcohol Percentage Contents of Various Beverages. Available online: https://sunrisehouse.com/stop-drinking-alcohol/percentage-contents/ (accessed on 11 November 2024).
- Healthline. Tequila Health Benefits: Low-Sugar and Low-Carb. Available online: https://www.healthline.com/health/why-tequila-should-be-your-drink-of-choice#Tips-for-a-healthier-tequila-cocktail- (accessed on 11 November 2024).
- Difford, S. Triple Sec Liqueurs. Available online: https://www.diffordsguide.com/beer-wine-spirits/category/176/triple-sec-liqueurs#:~:text=Triple%20Sec%20refers%20to%20a (accessed on 24 July 2024).
- Autodesk Instructables. Sugar-Free Margarita. Available online: https://www.instructables.com/Sugar-Free-Margarita/ (accessed on 24 July 2024).
- Osma, J.F.; Segura, C.C. Miniaturization of Cyclic Voltammetry Electronic Systems for Remote Biosensing. Int. J. Biosens. Bioelectron. 2017, 3, 297–299. [Google Scholar] [CrossRef]
- Ramírez-Cavazos, L.I.; Junghanns, C.; Ornelas-Soto, N.; Cárdenas-Chávez, D.L.; Hernández-Luna, C.; Demarche, P.; Enaud, E.; García-Morales, R.; Agathos, S.N.; Parra, R. Purification and Characterization of Two Thermostable Laccases from Pycnoporus Sanguineus and Potential Role in Degradation of Endocrine Disrupting Chemicals. J. Mol. Catal. B Enzym. 2014, 108, 32–42. [Google Scholar] [CrossRef]
- Sigma Aldrich. IR Spectrum Table. Available online: https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table (accessed on 11 November 2024).
- Mondragón Cortez, P. Análisis de Los Espectros de Infrarrojo. In En Principios Y Aplicaciones de La Espectroscopia de Infrarrojo En El Análisis de Alimentos Y Bebidas; CIATEJ: Guadalajara, Mexico, 2020; pp. 66–82. [Google Scholar]
- Isanapong, J.; Lohawet, K.; Kumnorkaew, P. Optimization and Characterization of Immobilized Laccase on Titanium Dioxide Nanostructure and Its Application in Removal of Remazol Brilliant Blue R. Biocatal. Agric. Biotechnol. 2021, 37, 102186. [Google Scholar] [CrossRef]
- Suni, I.I. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. Biosensors 2021, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Biorender BioRender. Available online: https://www.biorender.com/ (accessed on 7 July 2024).
- Stone, D.C.; Ellis, J. Statistics in Analytical Chemistry—Regression (7). Available online: https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/LimDetect.html (accessed on 11 November 2024).
- Papadopoulos, F.; Diamanteas, K.; Economou, A.; Kokkinos, C. Rapid Drop-Volume Electrochemical Detection of the “Date Rape” Drug Flunitrazepam in Spirits Using a Screen-Printed Sensor in a Dry-Reagent Format. Sensors 2020, 20, 5192. [Google Scholar] [CrossRef]
- Stojanović, G.M.; Milić, L.; Endro, A.A.; Simić, M.; Nikolić, I.; Savić, M.; Savić, S. Textile-Based Wearable Device for Detection of Date Rape Drugs in Drinks. Text. Res. J. 2023, 94, 763–776. [Google Scholar] [CrossRef]
- Paschoarelli, M.V.; Kavai, M.S.; de Lima, L.F.; de Araujo, W.R. Laser-Scribing Fabrication of a Disposable Electrochemical Device for Forensic Detection of Crime Facilitating Drugs in Beverage Samples. Talanta 2023, 255, 124214. [Google Scholar] [CrossRef]
- Rocha, D.S.; Duarte, L.C.; Silva-Neto, H.A.; Chagas, C.L.S.; Santana, M.H.P.; Antoniosi Filho, N.R.; Coltro, W.K.T. Sandpaper-Based Electrochemical Devices Assembled on a Reusable 3D-Printed Holder to Detect Date Rape Drug in Beverages. Talanta 2021, 232, 122408. [Google Scholar] [CrossRef]
- Rocha, R.G.; Silva, W.P.; Sousa, R.M.; Junior, M.C.; Santana, M.H.; Munoz, R.A.; Richter, E.M. Investigation of Midazolam Electro-Oxidation on Boron Doped Diamond Electrode by Voltammetric Techniques and Density Functional Theory Calculations: Application in Beverage Samples. Talanta 2020, 207, 120319. [Google Scholar] [CrossRef]
- Soliman, S.S.; Mahmoud, A.M.; Elghobashy, M.R.; Zaazaa, H.E.; Sedik, G.A. Eco-Friendly Electrochemical Sensor for Determination of Conscious Sedating Drug “Midazolam’’ Based on Au-NPs@Silica Modified Carbon Paste Electrode. Talanta 2024, 267, 125238. [Google Scholar] [CrossRef]
- Chenarani, S.; Ebrahimi, M.; Arabali, V.; Beyramabadi, S.A. Determination of Lorazepam Using the Electrocatalytic Effect of NiO/SWCNTs Modified Carbon Paste Electrode as a Powerful Sensor. Top. Catal. 2022, 65, 733–738. [Google Scholar] [CrossRef]
- Narang, J.; Malhotra, N.; Singhal, C.; Mathur, A.; Chakraborty, D.; Anil, A.; Ingle, A.; Pundir, C.S. Point of Care with Micro Fluidic Paper Based Device Integrated with Nano Zeolite–Graphene Oxide Nanoflakes for Electrochemical Sensing of Ketamine. Biosens. Bioelectron. 2017, 88, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Pérez, R.; Sevilla, J.M.; Pineda, T.; Blázquez, M.; Gonzalez-Rodriguez, J. Electrocatalytic Performance Enhanced of the Electrooxidation of Gamma-Hydroxybutyric Acid (GHB) and Ethanol on Platinum Nanoparticles Surface. A Contribution to the Analytical Determination of GHB in the Presence of Ethanol. Sens. Actuators B Chem. 2018, 256, 553–563. [Google Scholar] [CrossRef]
- Gräwe, A.; Dreyer, A.; Vornholt, T.; Barteczko, U.; Buchholz, L.; Drews, G.; Ho, U.L.; Jackowski, M.E.; Kracht, M.; Lüders, J.; et al. A Paper-Based, Cell-Free Biosensor System for the Detection of Heavy Metals and Date Rape Drugs. PLoS ONE 2019, 14, e0210940. [Google Scholar] [CrossRef]
- Su, Z.; Hu, S.; Xu, Y.; Liu, J.; Liang, P.; Wang, J.; Cao, Q.; Peng, Y.; Zhang, W.; Fan, D. A Smart Portable Electrochemical Sensor Based on Electrodeposited Ferrocene-Functionalized Multiwalled Carbon Nanotubes for in Vitro and in Vivo Detection of Nicotine in Tobacco Samples. New J. Chem. 2024, 48, 3370–3380. [Google Scholar] [CrossRef]
- Novak, I. A Simple Electrochemical Approach for the Rapid Determination of Cannabinoid Designer Drug ADB-BUTINACA. Electroanalysis 2024, 256, 553–563. [Google Scholar] [CrossRef]
- Pizarro, J.; Keley, F.; Segura, R.; Godoy, F.; Martí, A.A.; Mascayano, C.; Aguirre, M.J.; Flores, E. Fast and Simple Preparation of a Sensor Based on Electrochemically Reduced Graphene Oxide (RGO) for the Determination of Zopiclone in Pharmaceutical Dosage by Square Wave Adsorptive Stripping Voltammetry (SWAdSV). Electroanalysis 2022, 35, e202200357. [Google Scholar] [CrossRef]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera de los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation. Microb. Cell Factories 2019, 18, 200. [Google Scholar] [CrossRef]
- Arvizu, I.C.; García-Reyes, R.B.; Pech-Canul, M.A.; García-González, A. Evaluating the Role of Laccase Immobilized TiO2 for Potential Use as Biocathode in a Microbial Electrolysis Cell. Biochem. Eng. J. 2023, 194, 108883. [Google Scholar] [CrossRef]
Interfering Substance | Concentration Range (mM) | Oxidation Voltage (V) | Trendline Equation | Sensibility (mA/mM) | Limit of Detection (LOD) (mM) | Linear Correlation |
---|---|---|---|---|---|---|
None (control) | 77.2 to 205.8 | 0.116 | y = 0.0005x + 0.0714 | 0.0005 | 0.0729 | 0.8782 |
Emulated tequila (ET) | 77.2 to 205.8 | 0.005 | y= 0.0001x + 0.0276 | 0.0001 | 0.0279 | 0.8704 |
Emulated triple sec (ETS) | 77.2 to 205.8 | 0.027 | y= 0.0001x + 0.0222 | 0.0001 | 0.0225 | 0.5307 |
Sensor Materials | Biosensor (Yes/No) | Use of Interfering Substances (Yes/No) | IoT (Yes/No) | Drug | Detection Technique | Sensitivity | LOD | Ref. |
---|---|---|---|---|---|---|---|---|
Carbon-screen printed and Ag/AgCl reference | No | Yes | No | Flunitrazepam | CV | 0.142 μA/ μM | 1.8–14.6 μM | [35] |
Silver thread | No | Yes | No | Diazepam | EIS | 2.46867 ΩL/mg | Not reported | [36] |
CPE/GCPE/MWCNTs | No | Yes | No | Diazepam | SWV | 0.21 μA/μM | 0.33 μM | [3] |
Laser-scribed graphene | No | Yes | No | Diazepam and Midazolam | SWV | 0.20 μA/ μM | 0.66 μM | [37] |
Graphite on aluminum sandpaper | No | Yes | No | Midazolam | SWV | Not reported | 6.1 μM | [38] |
Boron-doped diamond electrode (BDDE) | No | Yes | No | Midazolam | CV + SWV | Not reported | 0.46 μM | [39] |
Au-NPs@Silica modified carbon paste electrode | No | No | No | Midazolam | DPV | 0.0034 (No units reported) | 2.24 × 10−8 M | [40] |
NiO/ SWCNT-modified carbon paste electrode | No | No | No | Lorazepam | SWV | 0.371 μA/μM | 50 nM | [41] |
Zeolite nanoflakes and graphene-oxide nanocrystals (Zeo-GO) | No | Yes | No | Ketamine | CV | Not reported | 1 nM | [42] |
Glassy carbon/platinum nanoparticles/polyvinyl alcohol modified electrode (GC/PtNPs/PVA) | No | Yes | No | GHB | CV+CA | Not reported | 0.872 mM | [43] |
Paper cell-free biosensor based on the BlcR from Agrobacterium tumefaciens and Shigella flexneri MerR transcriptional activator | Yes | No | No | GHB | Does not apply fluorescence sensor | 0.2% | 0.3% | [44] |
Ferrocene-functionalized multiwalled carbon nanotubes (FC-MWCNTs | No | No | No | Tobacco | CV, EIS | Not reported | 4.25 μM | [45] |
Modification-free boron-doped diamond electrode in an aqueous electrolyte solution | No | No | No | ADB-BUTINCA | SWV | 0.20 μA/μM | 0.83 μ mol dm−3 | [46] |
GC/rGO | No | No | No | Zopiclone | SWAdSV | 0.164 μA/μg L | 2.14 μg/L | [47] |
Immobilized laccase copper electrode with Ag/AgCl reference | Yes | Yes | Yes | Zopiclone | CV | 1.266 μA/mM | 0.220 μM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Méndez, M.G.; Cifuentes-Delgado, P.C.; Gómez, S.D.; Segura, C.C.; Ornelas-Soto, N.; Osma, J.F. Portable Miniaturized IoT-Enabled Point-of-Care Device for Electrochemical Sensing of Zopiclone in Cocktails. Biosensors 2024, 14, 557. https://doi.org/10.3390/bios14110557
Mejía-Méndez MG, Cifuentes-Delgado PC, Gómez SD, Segura CC, Ornelas-Soto N, Osma JF. Portable Miniaturized IoT-Enabled Point-of-Care Device for Electrochemical Sensing of Zopiclone in Cocktails. Biosensors. 2024; 14(11):557. https://doi.org/10.3390/bios14110557
Chicago/Turabian StyleMejía-Méndez, María Gabriela, Paula C. Cifuentes-Delgado, Sergio D. Gómez, Crhistian C. Segura, Nancy Ornelas-Soto, and Johann F. Osma. 2024. "Portable Miniaturized IoT-Enabled Point-of-Care Device for Electrochemical Sensing of Zopiclone in Cocktails" Biosensors 14, no. 11: 557. https://doi.org/10.3390/bios14110557
APA StyleMejía-Méndez, M. G., Cifuentes-Delgado, P. C., Gómez, S. D., Segura, C. C., Ornelas-Soto, N., & Osma, J. F. (2024). Portable Miniaturized IoT-Enabled Point-of-Care Device for Electrochemical Sensing of Zopiclone in Cocktails. Biosensors, 14(11), 557. https://doi.org/10.3390/bios14110557