Exploring the Potential of Biomimetic Peptides in Targeting Fibrillar and Filamentous Alpha-Synuclein—An In Silico and Experimental Approach to Parkinson’s Disease
<p>SiteMap analysis showing binding pocket regions in (<b>a</b>) Lewy body dementia-derived alpha-synuclein filament and (<b>b</b>) pathogenic alpha-synuclein fibrils. The explicit regions within the binding pocket are color-coded as follows: Hydrophilic regions—green; hydrophobic—yellow; hydrogen bond donor region—blue; H-bond acceptor region—red.</p> "> Figure 2
<p>PLIP analysis for peptides with alpha-synuclein filaments derived from Lewy body dementia. (<b>a</b>) PYYYWKDPNGS; (<b>b</b>) PIWWYWKDPNGS; (<b>c</b>) PYYYWKELAQM; (<b>d</b>) PIWWYWKELAQM; (<b>e</b>) PWIWYWKDPNGS; (<b>f</b>) EQALMPWIWYWKDPNGS; (<b>g</b>) ELAQMPYYYWKDPNG; (<b>h</b>) ELAQMPIWWYWKDPNGS; (<b>i</b>) DPNGSPYYYWKELAQM; (<b>j</b>) DPNGSPIWWYWKELAQM; (<b>k</b>) ELAQMGPEGPMGLEDPNGS; (<b>l</b>) EQALMGFYGPTEDPNGS.</p> "> Figure 3
<p>PLIP analysis for peptides with normal alpha-synuclein fibrils. (<b>a</b>) PYYYWKDPNGS; (<b>b</b>) PIWWYWKDPNGS; (<b>c</b>) PYYYWKELAQM; (<b>d</b>) PIWWYWKELAQM; (<b>e</b>) PWIWYWKDPNGS; (<b>f</b>) EQALMPWIWYWKDPNGS; (<b>g</b>) ELAQMPYYYWKDPNG; (<b>h</b>) ELAQMPIWWYWKDPNGS; (<b>i</b>) DPNGSPYYYWKELAQM; (<b>j</b>) DPNGSPIWWYWKELAQM; (<b>k</b>) ELAQMGPEGPMGLEDPNGS; (<b>l</b>) EQALMGFYGPTEDPNGS.</p> "> Figure 4
<p>Trajectory images over 100 ns MD simulations with ASyn LBD-derived filament with (<b>a</b>) EQALMPWIWYWKDPNGS (green), (<b>b</b>) ELAQMGPEGPMGLEDPNGS (dark blue), (<b>c</b>) PYYYWKDPNGS (light blue), and (<b>d</b>) PIWWYWKELAQM (brown).</p> "> Figure 5
<p>Trajectory images over 100 ns MD simulations with ASyn pathogenic fibrils. (<b>a</b>) EQALMGFYGPTEDPNGS (black); (<b>b</b>) DPNGSPYYYWKELAQM (yellow); (<b>c</b>) PYYYWKELAQM (green); (<b>d</b>) PIWWYWKELAQM (purple).</p> "> Figure 6
<p>Comparison of root mean square fluctuation (RMSF) plots of the designed peptides with the (<b>a</b>) ASyn filament derived from Lewy body dementia brains and (<b>b</b>) pathogenic ASyn fibrils.</p> "> Figure 7
<p>SPR sensograms showing binding with ASyn aggregates. Top row, from left to right: PYYYWKDPNGS; PYYYWKELAQM and EQALMPWIWYWKDPNGS. Bottom row, from left to right: ELAQPYYYWKDPNGS and ELAQPEGPMGLEDPNGS.</p> "> Figure 8
<p>Comparison of fluorescence of thioflavin T over time for ASyn fibrils before (control) and after incubation with peptides.</p> "> Figure 9
<p>Comparison of the secondary structures of ASyn upon incubation with peptides.</p> "> Figure 10
<p>Comparison of DPPH radical scavenging activity of the peptides at varying concentrations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Methods
2.1.1. Peptide Design
2.1.2. AnOxPePred
2.1.3. Aggrescan
2.1.4. C-I-TASSER
2.1.5. Protein Processing
2.1.6. SiteMap
2.1.7. Molecular Docking Studies
2.1.8. Protein-Ligand Interactions Profiler (PLIP)
2.1.9. Molecular Dynamics (MDs) Simulations
2.1.10. MMGBSA Studies
2.1.11. Pharmacokinetics Prediction
2.2. Laboratory Methods
2.2.1. Surface Plasmon Resonance (SPR) Studies
2.2.2. Thioflavin-T (ThT) Assay
2.2.3. Circular Dichroism (CD) Spectroscopy
2.2.4. DPPH Antioxidant Assay
3. Results and Discussion
3.1. Antioxidant Activity Prediction
3.2. C-ITASSER Studies
3.3. AGGRESCAN Studies
3.4. SiteMap Analysis
3.5. Molecular Docking Studies
3.5.1. PLIP Analysis
Interactions of Designed Peptides with Lewy Body Dementia (LBD) Filament
3.5.2. Interactions of the Designed Peptides with Pathogenic ASyn Fibrils
3.6. Molecular Dynamics Simulations
3.6.1. Radius of Gyration (rGyr)Studies
3.6.2. Root Mean Square Fluctuation
3.6.3. MMGBSA Analysis
3.7. Laboratory Validation Studies
3.7.1. Surface Plasmon Resonance Studies
3.7.2. Thioflavin-T Assay
3.7.3. CD Spectroscopy
3.7.4. Assessment of Antioxidant Activity
4. Prediction of Pharmacokinetic Properties
5. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mhyre, T.R.; Boyd, J.T.; Hamill, R.W.; Maguire-Zeiss, K. Parkinson’s Disease. Subcell Biochem. 2012, 65, 389–455. [Google Scholar] [PubMed]
- Alexander, G.E. Biology of Parkinson’s Disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004, 6, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Guatteo, E.; Berretta, N.; Monda, V.; Ledonne, A.; Mercuri, N.B. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s disease. Int. J. Mol. Sci. 2022, 23, 4508. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Schaeffer, W.J. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol. 2010, 120, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Mondello, S.; Constantinescu, R.; Zetterberg, H.; Andreasson, U.; Holmberg, B.; Jeromin, A. CSF α-synuclein and UCH-L1 levels in Parkinson’s disease and atypical parkinsonian disorders. Park. Relat. Disord. 2014, 20, 382–387. [Google Scholar] [CrossRef]
- Von Bohlen und Halbach, O.; Schober, A.; Krieglstein, K. Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog. Neurobiol. 2004, 73, 151–177. [Google Scholar] [CrossRef]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Stefanis, L. α-Synuclein in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009399. [Google Scholar] [CrossRef]
- Burré, J. The synaptic function of α-Synuclein. J. Park. Dis. 2015, 5, 699–713. [Google Scholar] [CrossRef]
- Jenner, P. Oxidative stress in Parkinson’s disease. Ann. Neurol. 2003, 53 (Suppl. S3), S26–S36; discussion S36–S38. [Google Scholar] [CrossRef]
- Chung, S.; Armasu, S.M.; Biernacka, J.; Lesnick, T.; Rider, D.; Lincoln, S.; Ortolaza, A.; Farrer, M.; Cunningham, J.M.; Rocca, W.; et al. Common variants in PARK loci and related genese and Parkinson’s disease. Mov. Disord. 2011, 26, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.J.; Pervaiz, N.; Abbasi, A.A. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Sci. Rep. 2016, 6, 24475. [Google Scholar] [CrossRef]
- Bellucci Zaltieri, M.; Navarria, L.; Grigoletto, J.; Missale, C.; Spano, P.A. From α-synuclein to synaptic dysfunctions: New insights into the pathophysiology of Parkinson’s disease. Brain Res. 2012, 1476, 183–202. [Google Scholar] [CrossRef]
- Volles, M.J.; Lansbury, P. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 2003, 42, 7871–7878. [Google Scholar] [CrossRef]
- Chung, S.Y.; Kishinevsky, S.; Mazzulli, J.R.; Graziotto, J.; Mrejeru, A.; Mosharov, E.V.; Puspita, L.; Valiuahi, P.; Sulzer, D.; Milner, T.A.; et al. Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and alpha-Synuclein accumulation. Stem Cell Rep. 2016, 7, 664–677. [Google Scholar] [CrossRef]
- Vidovíc, M.; Rikalovic, M.G. Alpha-Synuclein Aggregation Pathway in Parkinson’s Disease: Current Status and Novel Therapeutic Approaches. Cells 2022, 11, 1732. [Google Scholar] [CrossRef] [PubMed]
- Deas, E.; Cremades, N.; Angelova, P.R.; Ludtmann, M.H.; Yao, Z.; Chen, S.; Horrocks, M.; Banushi, B.; Little, D.; Devine, M.; et al. Alpha-Synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid. Redox Signal. 2016, 24, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Levin, J.; Hogen, T.; Hillmer, A.S.; Bader, B.; Schmidt, F.; Kamp, F.; Kretzchmar, H.A.; Botzel, K.; Giese, A. Generation of ferric iron links oxidative stress to alpha-synuclein oligomer formation. J. Park. Dis. 2011, 1, 205–216. [Google Scholar]
- Tabner, B.J.; Turnbull, S.; El-Agnaf, O.; Allsop, D. Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases. Curr. Top. Med. Chem. 2001, 1, 507–517. [Google Scholar] [CrossRef]
- Jellen, L.C.; Lu, L.; Wang, X.; Unger, E.; Earley, C.J.; Allen, R.P.; Williams, R.; Jones, B. Iron deficiency alters expression of dopamine-related genes in the ventral midbrain in mice. Neuroscience 2013, 252, 13–23. [Google Scholar] [CrossRef]
- Hashimoto, T.; Hsu, L.; Takenouchi, T.; Masliah, E. Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J. Biol. Chem. 1999, 274, 28849–28852. [Google Scholar] [CrossRef] [PubMed]
- Ruf, R.A.; Lutz, E.A.; Zigoneanu, I.; Pielak, G. Alpha-Synuclein conformation affects its tyrosine-dependent oxidative aggregation. Biochemistry 2008, 47, 13604–13609. [Google Scholar] [CrossRef]
- Sharma, N.; Nehru, B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology 2018, 26, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Sharma, S.; Nehru, B. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injecton. Inflammopharmacology 2017, 29, 1835–1837. [Google Scholar] [CrossRef]
- Paraskevas, G.P.; Kapaki, E.; Petropoulou, O.; Anagnostouli, M.; Vagenas, V.; Papageorgiou, C. Plasma levels of antioxidant vitamins C and E are decreased in vascular parkinsonism. J. Neurol. Sci. 2003, 215, 51–55. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, X.; Calvelli, H.R.; Cao, Y.; Francis, N.L.; Chmielowski, R.A.; Jospeh, L.B.; Pang, Z.P.; Uhrich, K.E.; Baum, J.; et al. Antioxidant Nanoparticles for Concerted Inhibition of α-Synuclein Fibrillization, and Attenuation of Microglial Intracellular Aggregation and Activation. Front. Bioeng. Biotechnol. 2020, 8, 112. [Google Scholar] [CrossRef]
- Riederer, P.; Horowski, R.L. L-DOPA-therapy in Parkinson’s disease: Some personal reflections on L-DOPA therapy from Vienna and Berlin. J. Neural Transm. 2023, 130, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Müller, T. Pharmacokinetics and pharmacodynamics of levodopa/carbidopa co-therapies for Parkinson’s disease. Expert Opin. Drug Metab. Toxicol. 2020, 16, 403–414. [Google Scholar] [CrossRef]
- Crosby, N.J.; Deane, K.; Clarke, C.E. Amantadine in Parkinson’s disease. Cochrane Database Syst. Rev. 2003, 1, 1465–1858. [Google Scholar] [CrossRef]
- Nascimento, G.C.; Santos, B.; Pedrazzi, J.; Silva-Amaral, D.; Bortolanza, M.; Harris, G.; Del Bel, E.; Branco, L. Effects of hydrogen gas inhalation on L-DOPA-induced dyskinesia. Brain Behav. Immun. Health 2023, 30, 100623. [Google Scholar] [CrossRef]
- Fabbrini, G.; Abbruzzese, G.; Marconi, S.; Zappia, M. Selegiline: A reappraisal of its role in Parkinson disease. Clin. Neuropharmacol. 2012, 35, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Jahangeer, M.; Razia, D.M.; Ashiq, M.; Ghaffar, A.; Akram, M.; Allam, A.E.; Bouyahya, A.; Garipova, L.; Shariati, M.A.; et al. Dopamine in Parkinson’s disease. Clin. Chim. Acta 2021, 522, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Rossino, G.; Marchese, E.; Galli, G.; Verde, F.; Finizio, M.; Serra, M.; Linciano, P.; Collina, S. Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era. Molecules 2023, 28, 7165. [Google Scholar] [CrossRef]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The Future of Peptide-based Drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Mason, J.M. Design and development of peptides and peptide mimetics as antagonists for therapeutic intervention. Fut. Med. Chem. 2010, 2, 1813–1822. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Xie, J.; Wang, J. Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson’s Disease. Neurosci. Bull. 2019, 35, 1085–1096. [Google Scholar] [CrossRef]
- Athauda, D.; Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action. Drug Discov. Today 2016, 21, 802–818. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, Z.; Huang, J.; Hu, Y.; Wu, Z.; Mei, B. Mutated recombinant human glucagon-like peptide-1 protects SH-SY5Y cells from apoptosis induced by amyloid-β peptide (1–42). Neurosci. Lett. 2008, 444, 217–221. [Google Scholar] [CrossRef]
- Terrelonge, M., Jr.; Marder, K.S.; Weintraub, D.; Alcalay, R.N. CSF β-Amyloid 1–42 Predicts Progression to Cognitive Impairment in Newly Diagnosed Parkinson Disease. J. Mol. Neurosci. 2016, 58, 88–92. [Google Scholar] [CrossRef]
- Wrasidlo, W.; Tsigelny, I.; Price, D.; Dutta, G.; Rockenstein, E.; Schwarz, T.; Ledolter, K.; Bonhaus, D.; Paulino, A.; Eluteri, S.; et al. A de nevo compound targeting α-synuclein improves deficits in models of Parkinson’s disease. Brain 2016, 139, 3217–3236. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.A.; Hu, C.; Pan, H.; Lu, J.; Abskharon, R.; Bowlder, J.; Rosenberg, G.; Williams, C.; Elezi, G.; Balbirnie, M.; et al. Small molecules disaggregate alpha-synuclein and prevent seeding from patient brain-derived fibrils. Proc. Natl. Acad. Sci. USA 2023, 120, e2217835120. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Ryazanov, S.; Leonov, A.; Levin, J.; Shi, S.; Schmidt, F.; Prix, C.; Pan-Montojo, F.; Bertsch, U.; Mitteregger-Kretschmar, G.; et al. Anle138b: A novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol. 2013, 125, 795–813. [Google Scholar] [CrossRef]
- Antonschmidt, L.; Matthes, D.; Dervisoglu, R.; Frieg, B.; Dienemann, C.; Leonov, A.; Nimerovsky, E.; Sant, V.; Ryazanov, S.; Giese, A.; et al. The clinical drug candidate anle138b binds in a cavity of lipidic α-synuclein fibrils. Nat. Commun. 2022, 13, 5385. [Google Scholar] [CrossRef]
- Gnaraj, C.; Sekar, M.; Fuloria, S.; Swain, S.S.; Gan, S.H.; Chidambaram, K.; Rani, N.N.I.M.; Balan, T.; Stephenie, S.; Lum, P.T.; et al. In Silico Molecular Docking Analysis of Karanjin against Alzheimer’s and Parkinson’s Diseases as a Potential Natural Lead Molecule for New Drug Design, Development and Therapy. Molecules 2022, 27, 2834. [Google Scholar] [CrossRef]
- Jahan, I.; Ahmad, A.; Deep, S. Effect of flavonoids on the destabilization of α-synuclein fibrils and their conversion to amorphous aggregate: A molecular dynamics simulation and experimental study. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2023, 1871, 140951. [Google Scholar] [CrossRef]
- Mooney, C.; Haslam, N.; Pollastri, G.; Shields, D. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE 2012, 7, e45012. [Google Scholar] [CrossRef]
- Oh, Y.; Ahn, C.B.; Cho, W.H.; Yoon, N.Y.; Je, J.Y. Anti-Osteoporotic Effects of Antioxidant Peptides PIISVYWK and FSVVPSPK from Mytilus edulis on Ovariectomized Mice. Antioxidants 2020, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Sannasimuthu, A.; Kumaresan, V.; Pasupuleti, M.; Paray, B.A.; Al-Sadoon, M.K.; Arockiaraj, J. Radical scavenging property of a novel peptide derived from C-terminal SOD domain of superoxide dismutase enzyme in Arhtrospira platensis. Algal Res. 2018, 35, 519–529. [Google Scholar] [CrossRef]
- Marasinghe, C.K.; Jung, W.K.; Je, J.Y. Anti-inflammatory action of ark shell (Scapharca subcrenata) protein hydrolysate in LPS-stimulated RAW264.7 murine macrophages. J. Food Biochem. 2022, 46, e14493. [Google Scholar] [CrossRef]
- Siddiqi, M.K.; Majid, N.; Alam, P.; Malik, S.; Alam, A.; Rajan, S.; Ajmal, M.R.; Khan, R.H. Both beta sheet breaker and alpha helix forming pentapeptide inhibits protein fibrillation: Implication for the treatment of amyloid disorders. Int. J. Biol. Macromol. 2020, 143, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Wojewska, M.; Otero-Jiminez, M.; Gujjarro-Nuez, J.; Alegre-Abarrategui, J. Beyond strains: Molecular diversity in Alpha-Synuclein at the center of disease heterogeneity. Int. J. Mol. Sci. 2023, 24, 13199. [Google Scholar] [CrossRef]
- Landureau, M.; Redeker, V.; Bellande, T.; Eyquem, S.; Melki, R. The differential solvent exposure of N-terminal residues provides “fingerprints” of alpha-synuclein fibrillar polymorphs. J. Biol. Chem. 2021, 296, 100737. [Google Scholar] [CrossRef]
- Olsen, T.H.; Yesiltas, B.; Marin, F.I.; Pertseva, M.; Garcia-Moreno, P.; Gregersen, S.; Overgaard, M.; Jacobsen, C.; Lund, O.; Hansen, E.; et al. AnOxPePred: Using deep learning for the prediction of antioxidative properties of peptides. Sci. Rep. 2020, 10, 21471. [Google Scholar] [CrossRef] [PubMed]
- Conchillo-Solé, O.; de Groot, N.S.; Avilés, F.X.; Vendrell, J.; Daura, X.; Ventura, S. AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinform. 2007, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, C.; Li, Y.; Pearce, R.; Bell, E.W.; Zhang, Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-Tasser assembly simulations. Cell Rep. Methods 2021, 1, 100014. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, Y.; Schweighauser, M.; Zhang, X.; Kotecha, A.; Murzin, A.G.; Garringer, H.J.; Cullinane, P.W.; Saito, Y.; Foroud, T.; et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 2022, 610, 791–795. [Google Scholar] [CrossRef]
- Tuttle, M.D.; Comellas, G.; Nieuwkoop, A.J.; Covell, D.J.; Berthold, D.A.; Kloepper, K.D.; Courtney, J.M.; Kim, J.K.; Barclay, A.M.; Kendall, A.; et al. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 2016, 23, 409–415. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 2.5; Schrödinger, LLC: New York, NY, USA, 2021.
- Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 2009, 49, 377–389. [Google Scholar] [CrossRef]
- Halgren, T.A. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des. 2007, 69, 146–148. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Salentin, S.; Haupt, V.J.; Daminelli, S.; Schroeder, M. Polypharmacology rescored: Protein-ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol. 2014, 116, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Salentin, S.; Schreiber, S.; Haupt, J.; Adasme Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.J.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the ACM/IEEE Conference Supercomputing (SC06), Tampa, FL, USA, 11–17 November 2006. [Google Scholar]
- Bergdorf, M.; Baxter, S.; Rendleman, C.A.; Shae, D.E. Desmond/GPU Performance as of November 2016; DESERS/TR-2016-01; D. E. Shaw Research Technical Report: New York, NY, USA, November 2016. [Google Scholar]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.; Russell, E.; Von Bargen, C.; et al. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Rastelli, G.; Del Rio, A.; Degliesposti, G.; Sgobba, M. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J. Comput. Chem. 2010, 31, 797–810. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations on molecular dynamics simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [Google Scholar] [CrossRef]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Sparks, R.P.; Jenkins, J.; Fratti, R. Use of surface plasmon resonance (SPR) to determine binding affinities and kinetic parameters between components important in fusion machinery. Methods Mol. Biol. 2019, 1860, 199–210. [Google Scholar]
- Lee, J.W.; Sim, S.J.; Cho, S.M.; Lee, J. Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip on surface plasmon resonance for detecting anti-GAD antibody. Biosens. Bioelectron. 2005, 20, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Lin, Y.; Chang, D.; Guo, Z. Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration effect on aggregation. R. Soc. Open Sci. 2017, 4, 160696. [Google Scholar] [CrossRef]
- Wallace, B.A. The role of circular dichroism spectroscopy in the era of integrative structural biology. Curr. Opin. Struct. Biol. 2019, 58, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 2015, 11, E3095–E3103. [Google Scholar] [CrossRef]
- Micsonai, A.; Bulyaki, E.; Kardos, J. BeStSel: From secondary structure analysis to protein fold prediction by circular dichroism spectroscopy. In Structural Genomics, Methods; Chen, Y.W., Yiu, C.P.B., Eds.; Molecular Biology: Humana, NY, USA, 2021; Volume 2199, pp. 175–198. [Google Scholar]
- Moosmann, B.; Behl, C. Cytoprotective antioxidative function of tyrosine and tryptophan residues in transmembrane proteins. Eur. J. Biochem. 2000, 267, 5687–5692. [Google Scholar] [CrossRef]
- Nayak, B.N.; Butta, H.S. Evaluation of the antioxidant properties of tryptophan and its metabolites in in vitro assay. J. Complement. Integr. Med. 2016, 13, 129–136. [Google Scholar] [CrossRef]
- Cui, L.; Li, B. Enrichment of antiplatelet peptides and removal of fishy odor from silver carp skin collagen hydrolysates by macroporous resins: pH value of loading sample affects the peptides separation. Food Chem. 2023, 411, 135481. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Y. Protein structure and functionalization prediction using I-Tasser. Curr. Protoc. Bioinformatics. 2015, 52, 5.8.1–5.8.15. [Google Scholar] [CrossRef]
- Ge, Y.; Pande, V.; Seierstad, M.; Damm-Ganamet, K. Exploring the application of SiteMap and SiteFinder for focused cryptic pocket identification. J. Phys. Chem. B 2024, 128, 6233–6245. [Google Scholar] [CrossRef]
- Goedert, M. Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2001, 2, 492–501. [Google Scholar] [CrossRef]
- de Groot, N.; Pallarés, I.; Avilés, F.; Vendrell, J.; Ventura, S. Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct. Biol. 2005, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Dhavale, D.; Barclay, A.; Borcik, C.; Basore, K.; Berthold, D.; Gordon, I.; Liu, J.; Milchberg, M.; O’Shea, J.; Rau, M.; et al. Structure of alpha-synuclein fibrils derived from Lewy body dementia tissue. Nature Commun. 2024, 15, 2750. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.J.; Ferrie, J.J.; Xu, K.; Lee, I.; Graham, T.J.A.; Tu, Z.; Yu, J.; Dhavale, D.; Kotzbauer, P.; Petersson, E.J.; et al. Alpha Synuclein Fibrils Contain Multiple Binding Sites for Small Molecules. ACS Chem. Neurosci. 2018, 9, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Fevga, C.; Park, Y.; Lohmann, E.; Kievit, A.; Breedveld, G.; Ferraro, F.; Boer, L.; van Minkelen, R.; Hanagasi, H.; Boon, A.; et al. A new alpha-synuclein missense variant (Thr72Met) in two turkish families with Parkinsons disease. Park. Relat. Disord. 2021, 89, 63–72. [Google Scholar] [CrossRef]
- Kochen, N.; Vasandani, V.; Seaney, D.; Pandey, A.; Walters, M.; Braun, A.; Sachs, J. Threonine cavities are targetable motifs that control alpha-synuclein fibril growth. ACS Chem. Neurosci. 2022, 13, 2646–2657. [Google Scholar] [CrossRef]
- Doherty, C.; Ulamec, S.; Maya-Martinez, R.; Good, S.; Makepeace, J.; Khan, G.; van Oosten-Hawle, P.; Radford, S.; Brockwell, D.J. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat. Struct. Mol. Biol. 2020, 27, 249–259. [Google Scholar] [CrossRef]
- Giasson, B.I.; Murray, I.V.; Trojanowski, J.Q.; Lee, V.M. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J. Biol. Chem. 2001, 276, 2380–2386. [Google Scholar] [CrossRef]
- El-Agnaf, O.M.A.; Paleologou, K.E.; Greer, B.; Abogrein, A.M.; King, J.E.; Salem, S.A.; Fullwood, N.J.; Benson, F.E.; Hewitt, R.; Ford, K.J.; et al. A strategy for designing inhibitors of α-synuclein aggregation and toxicity as a novel treatment for Parkinson’s disease and related disorders. FASEB J. 2004, 18, 1315–1317. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Ivanova, M.I.; Sawaya, M.R.; Cascio, D.; Reyes, F.; Shi, D.; Sangwan, S.; Guenther, E.L.; Johnson, L.M.; Zhang, M.; et al. Structure of the toxic core of α-synuclein from invisible crystals. Nature 2015, 535, 486–490. [Google Scholar] [CrossRef]
- Periquet, M.; Fulga, T.; Myllykangas, L.; Schlossmacher, M.G.; Feany, M.B. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J. Neurosci. 2007, 27, 3338–3346. [Google Scholar] [CrossRef]
- Du, H.N.; Tang, L.; Luo, X.Y.; Li, H.T.; Hu, J.; Zhou, J.W.; Hu, H.Y. A peptide motif consisting of glycine; alanine; and valine is required for the fibrillization and cytotoxicity of human alpha-synuclein. Biochemistry 2003, 42, 8870–8878. [Google Scholar] [CrossRef] [PubMed]
- Lashuel, H. Do Lewy bodies contain alpha-synuclein fibrils? And does it matter? A brief history and critical analysis of recent reports. Neurobiol. Dis. 2020, 141, 104876. [Google Scholar] [CrossRef] [PubMed]
- Tarutani, A.; Hasegawa, M. Ultrastructures of α-synuclein filaments in synucleinopathy brains and experimental models. J. Mov. Disord. 2024, 17, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Nouri, E.F. Alpha-Synuclein structure, functions and interactions. J. Res. Med. Sci. 2016, 21, 29. [Google Scholar]
- Pfefferkorn, C.M.; Jiang, Z.; Lee, J.C. Biophysics of α-synuclein membrane interactions Biochim. Biophys. Acta. 2012, 1818, 162–171. [Google Scholar] [CrossRef]
- Chandra, S.; Chen, X.; Rizo, J.; Jahn, R.; Sudhof, T. A broken α-helix in folded α-synuclein. J. Biol. Chem. 2003, 278, 15313–15318. [Google Scholar] [CrossRef] [PubMed]
- Ghahremanian, S.; Rashidi, M.; Raeisi, K.; Toghraie, D. Molecular dynamics simulation approach for discovering potential inhibitors againsts SARS-CoV-2: A structural review. J. Mol. Liq. 2022, 354, 118901. [Google Scholar] [CrossRef]
- Asare, I.; Galende, A.; Garcia, A.; Cruz, M.; Moura, A.; Campbell, C.; Scheyer, M.; Alao, J.; Alston, S.; Kravats, A.N.; et al. Investigating structural dynamics of KCNE3 in different membrane using molecular dynamics simulations. Membranes 2022, 12, 469. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Honarmand, S.; Dabirmanesh, B.; Amanlou, M.; Khajeh, K. The interaction of several herbal extracts with α-synuclein: Fibril formation and surface plasmon resonance analysis. PLoS ONE 2019, 14, e0217801. [Google Scholar] [CrossRef]
- Sulatskaya, A.I.; Rodina, N.P.; Sulatsky, M.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Investigation of α-Synuclein in amyloid fibrils using the fluorescent probe Thioflavin-T. Int. J. Mol. Sci. 2018, 19, 2486. [Google Scholar] [CrossRef] [PubMed]
- Micosonai, A.; Moussong, E.; Wien, F.; Boros, E.; Vadaszi, H.; Murvai, N.; Lee, Y.; Molnar, T.; Refregiers, M.; Goto, Y.; et al. BeStSel: Webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 2022, 50, W90–W98. [Google Scholar] [CrossRef]
- Zhaliazka, K.; Kurouski, D. Nanoscale characterization of parallel and antiparallel β-sheet amyloid beta 1–42 aggregates. ACS Chem. Neurosci. 2022, 13, 2813–2820. [Google Scholar] [CrossRef] [PubMed]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.; Chang, C.-M. Determination of antioxidants by DPPH radical scavenging activity and quantitative photochemical analysis of Ficus Relgiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Pollastri, M.P. Overview on the Rule of Five. Curr. Prot. Pharmarcol. 2010, 49, 9.12.1–9.12.8. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A. Physiochemical Profiling (Solubility; Permeability; and Charge State). Curr. Topics Med. Chem. 2001, 1, 277–351. [Google Scholar] [CrossRef]
- Mitcheson, J.S. hERG Potassium Channels and the Structural Basis of Drug-Induced Arrythmias. Chem. Res. Toxicol. 2008, 21, 1005–1010. [Google Scholar] [CrossRef]
- Elmeliegy, M.; Vourvahis, M.; Guo, C.; Wang, D.D. Effect of P-glycoprotein (P-gp) inducers on exposure of P-gp substrates: Review of clinical drug-drug interaction studies. Clin. Pharmacokin. 2020, 59, 699–714. [Google Scholar] [CrossRef]
Peptide Sequence | FRS Score | Chelation Score |
---|---|---|
PYYYWKDPNGS | 0.53 | 0.14 |
PYYYWKELAQM | 0.53 | 0.16 |
PWIWYWKDPNGS | 0.53 | 0.15 |
PIWWYWKDPNGS | 0.55 | 0.16 |
PIWWYWKELAQM | 0.56 | 0.18 |
DPNGSPIWWYWKELAQM | 0.58 | 0.19 |
ELAQMGPEGPMGLEDPNGS | 0.59 | 0.23 |
EQALMGFYGPTEDPNGS | 0.61 | 0.18 |
EQALMPWIWYWKDPNGS | 0.68 | 0.15 |
DPNGSPYYYWKELAQM | 0.68 | 0.18 |
ELAQMPIWWYWKDPNGS | 0.69 | 0.15 |
ELAQMPYYYWKDPNGS | 0.73 | 0.13 |
Peptide | Secondary Structure | C-Score | TM-Score |
---|---|---|---|
PIWWYWKDPNGS | CCCSSSCCCCCC | −0.56 | 0.64 ± 0.13 |
PYYYWKDPNGS | CCCCCCCCCCC | −0.68 | 0.63 ± 0.14 |
DPNGSPIWWYWKELAQM | CCCCCCHHHHHHHHHHC | −1.14 | 0.57 ± 0.15 |
PWIWYWKDPNGS | CCSSSSCCCCCC | −1.25 | 0.56 ± 0.15 |
PIWWYWKELAQM | CHHHCCCCCCCCCCCCCCC | −1.34 | 0.55 ± −0.15 |
PYYYWKELAQM | CCHHHHHHHHC | −1.37 | 0.55 ± 0.15 |
EQALMPWIWYWKDPNGS | CCCCCCSSSSSSCCCCC | −1.47 | 0.53 ± 0.15 |
ELAQMPIWWYWKDPNGS | CCCCCCSSSSSSCCCCC | −1.52 | 0.53 ± 0.15 |
DPNGSPYYYWKELAQM | CCCCCCCHHHHHHHHC | −1.68 | 0.51 ± 0.15 |
EQALMGFYGPTEDPNGS | CCCCCCCCCCCCCCCCC | −1.71 | 0.51 ± 0.15 |
ELAQMGPEGPMGLEDPNGS | CHHHCCCCCCCCCCCCCCC | −1.84 | 0.49 ± 0.15 |
ELAQMPYYYWKDPNGS | CCCCCCCSSSSCCCCC | −1.89 | 0.49 ± 0.15 |
Peptide | Number of Hot Spots | Total Area | Total Hot Spot Area |
---|---|---|---|
PYYYWKDPNGS | 0 | −1.441 | 0 |
ELAQMPYYYWKDPNGS | 0 | −1.377 | 0 |
ELAQMGPEGPMGLEDPNGS | 0 | −7.373 | 0 |
PIWWYWKELAQM | 1 | 3.522 | 3.79 |
PWIWYWKDPNGS | 1 | 0.115 | 3.568 |
EQALMPWIWYWKDPNGS | 1 | 1.266 | 4.075 |
PIWWYWKDPNGS | 1 | −0.042 | 3.411 |
ELAQMPIWWYWKDPNGS | 1 | 0.221 | 3.918 |
DPNGSPYYYWKELAQM | 1 | −0.803 | 2.699 |
DPNGSPIWWYWKELAQM | 1 | 0.795 | 4.056 |
PYYYWKELAQM | 1 | 2.123 | 2.433 |
EQALMGFYGPTEDPNGS | 1 | −3.623 | 3.075 |
Peptide Sequence | ASyn Filament from Lewy Body Dementia (kcal/mol) | Pathogenic Fibrils of ASyn (kcal/mol) |
---|---|---|
PYYYWKDPNGS | −5.9 | −5.2 |
PIWWYWKDPNGS | −6.4 | −6.5 |
PYYYWKELAQM | −6.3 | −6.3 |
PIWWYWKELAQM | −6.2 | −5.7 |
PWIWYWKDPNGS | −5.0 | −6.4 |
EQALMPWIWYWKDPNGS | −5.7 | −5.8 |
ELAQMPYYYWKDPNGS | −5.2 | −6.2 |
ELAQMPIWWYWKDPNGS | −4.8 | −5.7 |
DPNGSPYYYWKELAQM | −4.4 | −5.3 |
DPNGSPIWWYWKELAQM | −4.9 | −4.4 |
ELAQMGPEGPMGLEDPNGS | −5.6 | −5.2 |
EQALMGFYGPTEDPNGS | −5.1 | −6.6 |
Peptide | Average RMSD (nm) of Complex with ASyn Filament from LBD | Average RMSD (nm) of Complex with Pathogenic ASyn Fibrils |
---|---|---|
PYYYWKDPNGS | 0.82 | 5.5 |
PIWWYWKDPNGS | 1.6 | 1.7 |
PYYYWKELAQM | 1.3 | 1.5 |
PIWWYWKELAQM | 0.88 | 1.6 |
PWIWYWKDPNGS | 1.3 | 1.9 |
EQALMPWIWYWKDPNGS | 0.6 | 1.7 |
ELAQMPYYYWKDPNGS | 1.0 | 10.3 |
ELAQMPIWWYWKDPNGS | 0.74 | 5.3 |
DPNGSPYYYWKELAQM | 1.6 | 1.1 |
DPNGSPIWWYWKELAQM | 0.64 | 1.6 |
EQALMGFYGPTEDPNGS | 1.0 | 0.9 |
ELAQMGPEGPMGLEDPNGS | 0.6 | 3.7 |
Peptide | ΔG Bind kcalc/mol | Coulomb kcal/mol | H-Bond kcal/mol | Lipophilic kcal/mol | Solvent GB kcal/mol | Van der Waals kcal/mol |
---|---|---|---|---|---|---|
(a) | ||||||
EQALMPWIWYWKDPNGS | −118.37 | −49.90 | −5.94 | −21.40 | 48.11 | −87.29 |
PIWWYWKELAQM | −115.66 | −53.13 | −4.52 | −22.59 | 42.89 | −79.79 |
DPNGSPYYYWKELAQM | −109.28 | −58.25 | −4.88 | −22.19 | 52.96 | −79.94 |
ELAQMGPEGPMGLEDEPNGS | −104.86 | −62.71 | −7.97 | −16.69 | 71.10 | −88.72 |
ELAQMPYYYWKDPNGS | −98.66 | −39.26 | −4.64 | −22.02 | 46.25 | −80.24 |
DPNGSPIWWYWKELAQM | −93.40 | −46.45 | −5.64 | −14.10 | 48.08 | −72.38 |
EQALMGFYGPTEDPNGS | −91.48 | −49.02 | −4.35 | −17.76 | 47.62 | −72.52 |
ELAQMPIWWYWKDPNGS | −80.66 | −32.79 | −3.38 | −15.17 | 32.18 | −61.69 |
PIWWYWKDPNGS | −58.73 | −27.65 | −2.27 | −12.62 | 25.21 | −43.61 |
PYYYWKELAQM | −50.37 | −32.35 | −2.35 | −8.82 | 31.23 | −39.54 |
PWIWYWKDPNGS | −50.37 | −32.35 | −2.35 | −8.82 | 31.23 | −39.54 |
(b) | ||||||
Peptide | ΔG Bind kcalc/mol | Coulomb kcal/mol | H-Bond kcal/mol | Lipophilic kcal/mol | Solvent GB kcal/mol | Van der Waals kcal/mol |
PYYYWKDPNGS | −101.79 | −52.87 | −9.27 | −31.20 | 77.61 | −89.06 |
ELAQMGPEGPMGLEDEPNGS | −93.88 | −89.66 | −9.76 | −14.72 | 122.34 | −105.08 |
DPNGSPYYYWKELAQM | −87.31 | −63.77 | −7.02 | −13.83 | 95.05 | −98.67 |
PYYYWKELAQM | −77.28 | −35.73 | −3.56 | −22.24 | 59.92 | −79.09 |
PIWWYWKDPNGS | −69.94 | −39.80 | −6.07 | −11.35 | 67.89 | −82.20 |
EQALMGFYGPTEDPNGS | −63.98 | −41.39 | −6.77 | −16.72 | 73.31 | −72.44 |
ELAQMPIWWYWKDPNGS | −63.75 | −47.91 | −3.90 | −12.94 | 71.09 | −73.97 |
ELAQMPYYYWKDPNGS | −63.33 | −66.84 | −8.46 | −10.35 | 96.86 | −77.19 |
PWIWYWKDPNGS | −62.07 | −59.36 | −6.38 | −7.70 | 86.57 | −76.25 |
EQALMPWIWYWKDPNGS | −60.76 | −57.88 | −5.32 | −14.87 | 84.50 | −66.36 |
PIWWYWKELAQM | −57.85 | −60.02 | −5.85 | −12.61 | 96.43 | −76.89 |
DPNGSPIWWYWKELAQM | −57.67 | −40.97 | −5.25 | −15.19 | 81.25 | −80.71 |
Peptide Sequence | Pfizer Rule | LogP | MDCK Cell Permeability | hERG Blocker | PgP Inhibitor/ Substrate | Blood Brain Barrier Permeability |
---|---|---|---|---|---|---|
PYYYWKDPNGS | Accepted | −1.986 | 1.4 × 10−6 | - | 0/0.005 | Yes |
PIWWYWKDPNGS | Accepted | 0.457 | 1.3 × 10−6 | - | 0.001/0.28 | Yes |
PYYYWKELAQM | Accepted | 0.579 | 1 × 10−6 | - | 0/0.26 | Yes |
PIWWYWKELAQM | Accepted | 3.195 | 2.3 × 10−6 | - | 0.02/0.95 | Yes |
PWIWYWKDPNGS | Accepted | 0.457 | 1.3 × 10−6 | - | 0.001/0.28 | Yes |
ELAQMPWIWYWKDPNGS | Accepted | 0.299 | 7.4 × 10−7 | - | 0/0.93 | Yes |
ELAQMPYYYWKDPNGS | Accepted | −2.146 | 9 × 10−7 | - | 0/0.26 | Yes |
ELAQMPIWWYWKDPNGS | Accepted | 0.372 | 6.8 × 10−7 | - | 0/0.26 | Yes |
DPNGSPIWWYWKELAQM | Accepted | 0.314 | 7.7 × 10−7 | - | 0/0.96 | Yes |
DPNGSPYYYWKELAQM | Accepted | −2.119 | 8.6 × 10−7 | - | 0/0.26 | No |
ELAQMGPEGPMGLEDPNGS | Accepted | −5.150 | 1.2 × 10−6 | - | 0/0.81 | Yes |
EQALMGFYGPTEDPNGS | Accepted | −4.049 | 4.2 × 10−6 | - | 0/0.81 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frantzeskos, S.A.; Biggs, M.A.; Banerjee, I.A. Exploring the Potential of Biomimetic Peptides in Targeting Fibrillar and Filamentous Alpha-Synuclein—An In Silico and Experimental Approach to Parkinson’s Disease. Biomimetics 2024, 9, 705. https://doi.org/10.3390/biomimetics9110705
Frantzeskos SA, Biggs MA, Banerjee IA. Exploring the Potential of Biomimetic Peptides in Targeting Fibrillar and Filamentous Alpha-Synuclein—An In Silico and Experimental Approach to Parkinson’s Disease. Biomimetics. 2024; 9(11):705. https://doi.org/10.3390/biomimetics9110705
Chicago/Turabian StyleFrantzeskos, Sophia A., Mary A. Biggs, and Ipsita A. Banerjee. 2024. "Exploring the Potential of Biomimetic Peptides in Targeting Fibrillar and Filamentous Alpha-Synuclein—An In Silico and Experimental Approach to Parkinson’s Disease" Biomimetics 9, no. 11: 705. https://doi.org/10.3390/biomimetics9110705
APA StyleFrantzeskos, S. A., Biggs, M. A., & Banerjee, I. A. (2024). Exploring the Potential of Biomimetic Peptides in Targeting Fibrillar and Filamentous Alpha-Synuclein—An In Silico and Experimental Approach to Parkinson’s Disease. Biomimetics, 9(11), 705. https://doi.org/10.3390/biomimetics9110705