Investigation of α-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T
"> Figure 1
<p>Electron micrographs of α-synuclein during protein aggregation: (<b>A</b>) At the lag-phase (when the ThT fluorescence intensity and the CD spectrum of the protein do not change); (<b>B</b>) at the growth phase (when ThT fluorescence intensity increases and the shape of the CD spectrum changes significantly); and (<b>C</b>) at the phase of mature amyloid fibrils (when the dependence of the ThT fluorescence intensity on time reaches a plateau and the CD spectrum ceases to change). Scale bar is 1 μm.</p> "> Figure 2
<p>Time-dependent change of the photophysical characteristics of α-synuclein and the fluorescent probe thioflavin T (ThT) during fibrillogenesis. Arrows indicate the direction of change. (<b>A</b>) The CD spectra of α-synuclein at 0, 190, 310, 430, 670, 710, 790, 830, 880, and 1000 min; (<b>B</b>) ThT fluorescence spectra at 510, 560, 610, 650, 670, 710, 790, 880, 950, and 1000 min; (<b>C</b>) ThT fluorescence decay curves at 480, 610, 650, 710, 850, and 1000 min after the start of the fibrillogenesis. The instrument response function is presented by the black dashed line. Panel (<b>D</b>) shows the time dependencies of fluorescence (red circles), fluorescence excitation (blue circles), and absorption (green circles) at the maxima of the corresponding spectra.</p> "> Figure 3
<p>Determination of photophysical properties of ThT bound to α-synuclein amyloid fibrils by the preparation of the sample and reference solutions using equilibrium microdialysis. (<b>A</b>) α-Synuclein amyloid fibrils in the buffer solution were placed in chamber #1 and the ThT solution in the same buffer was placed in chamber #2. (<b>B</b>) After equilibration, free ThT concentrations in chambers #1 and #2 become equal, while the total ThT concentration in chamber #1 is greater than that in chamber #2 by the concentration of the bound dye. (<b>C</b>) Normalized absorption (solid curves) and fluorescence (dashed curves) spectra of the free dye in buffer solution (blue curves), and ThT bound to α-synuclein amyloid fibrils (red curves), obtained by the spectroscopic investigation of the solutions after equilibrium microdialysis.</p> "> Figure 4
<p>Determination of ThT-α-synuclein amyloid fibril binding parameters. (<b>A</b>) Scatchard plot and (<b>B</b>) dependence of the fluorescence intensity (corrected on the primary inner filter effect) on the concentration of free ThT are presented. Experimental data (circles) and best-fit curves calculated with the use of the binding constants (<span class="html-italic">K<sub>bi</sub></span>) and number of binding sites (<span class="html-italic">n<sub>i</sub></span>), calculated according to the assumption of one (green solid curves) and two (red dashed curves) binding modes existing, are given. The model of two binding types of ThT is discussed in <a href="#sec2dot3-ijms-19-02486" class="html-sec">Section 2.3</a>.</p> "> Figure 5
<p>Time characteristics of fluorescence of ThT bound to α-synuclein amyloid fibrils. Panel (<b>A</b>) shows the instrument response function (1), experimental fluorescence intensity decay curve of the bound dye (2), best fit calculated fluorescence decay curve (3), deviation between the experimental and calculated decay curves (4), and the value of the average lifetime of the excitation state calculated on the presented experimental data. Panel (<b>B</b>) shows the instrument response function (1), the decay curves of the vertical (2) and horizontal (3) components of fluorescence intensity, the time dependence of the fluorescence anisotropy (4), and the value of the average fluorescence anisotropy.</p> "> Figure 6
<p>Electron micrographs of (<b>A</b>) β-2-microglobulin, (<b>B</b>) insulin, and (<b>C</b>) lysozyme amyloid fibrils. Scale bar is 1 μm.</p> "> Figure 7
<p>Confocal microscopy images of α-synuclein amyloid fibrils. (<b>A</b>) Fluorescence image of the ThT-stained fibrillar structures, (<b>B</b>) transmitted light image, and (<b>C</b>) overlay of these images. Scale bar is 10 μm.</p> "> Scheme 1
<p>Scheme of α-synuclein fibrillogenesis. Created on the basis of the results of Uversky’s work [<a href="#B45-ijms-19-02486" class="html-bibr">45</a>].</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Kinetics of α-Synuclein Fibrillation
2.2. ThT-α-Synuclein Amyloid Fibril Binding Parameters
2.3. Photophysical Characteristics of ThT Bound to α-Synuclein Amyloid Fibrilsα
2.4. The Possibility of the Existence of One More ThT-α-Synuclein Amyloid Fibril Binding Mode
3. Materials and Methods
3.1. Materials
3.2. α-Synuclein Expression and Purification
3.3. Investigation of the Kinetics of Amyloid Fibril Formation
3.4. Electron Microscopy
3.5. Confocal Microscopy
3.6. Equilibrium Microdialysis
3.7. Absorption Spectroscopy
3.8. Fluorescence Spectroscopy
3.9. Time-Resolved Fluorescence Measurements
3.10. CD Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ueda, K.; Fukushima, H.; Masliah, E.; Xia, Y.; Iwai, A.; Yoshimoto, M.; Otero, D.A.; Kondo, J.; Ihara, Y.; Saitoh, T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 1993, 90, 11282–11286. [Google Scholar] [CrossRef] [PubMed]
- Jakes, R.; Spillantini, M.G.; Goedert, M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994, 345, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Lavedan, C. The synuclein family. Genome Res. 1998, 8, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Duda, J.E.; Shah, U.; Arnold, S.E.; Lee, V.M.; Trojanowski, J.Q. The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases. Exp. Neurol. 1999, 160, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Fujita, M.; Waragai, M.; Sugama, S.; Wei, J.; Akatsu, H.; Ohtaka-Maruyama, C.; Okado, H.; Hashimoto, M. Expression of alpha-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoietic lineage. Biochem. Biophys. Res. Commun. 2007, 358, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Barbour, R.; Kling, K.; Anderson, J.P.; Banducci, K.; Cole, T.; Diep, L.; Fox, M.; Goldstein, J.M.; Soriano, F.; Seubert, P.; et al. Red blood cells are the major source of alpha-synuclein in blood. Neuro-Degener. Dis. 2008, 5, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.X.; Campbell, B.C.; McLean, C.A.; Thyagarajan, D.; Gai, W.P.; Kapsa, R.M.; Beyreuther, K.; Masters, C.L.; Culvenor, J.G. Platelet alpha- and gamma-synucleins in Parkinson’s disease and normal control subjects. J. Alzheimer’s Dis. 2002, 4, 309–315. [Google Scholar] [CrossRef]
- Michell, A.W.; Luheshi, L.M.; Barker, R.A. Skin and platelet alpha-synuclein as peripheral biomarkers of Parkinson’s disease. Neurosci. Lett. 2005, 381, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Noori-Daloii, M.R.; Kheirollahi, M.; Mahbod, P.; Mohammadi, F.; Astaneh, A.N.; Zarindast, M.R.; Azimi, C.; Mohammadi, M.R. Alpha- and beta-synucleins mRNA expression in lymphocytes of schizophrenia patients. Genet. Test. Mol. Biomark. 2010, 14, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.A.; Hossain, M.S.; Arima, K.; Takeda, K.; Izumiyama, Y.; Nakamura, M.; Kaji, H.; Shinoda, T.; Hisanaga, S.; Ueda, K. Tubulin seeds alpha-synuclein fibril formation. J. Biol. Chem. 2002, 277, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Qin, Z.J.; Hu, D.; Munishkina, L.A.; Fink, A.L. Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 2006, 45, 8135–8142. [Google Scholar] [CrossRef] [PubMed]
- George, J.M.; Jin, H.; Woods, W.S.; Clayton, D.F. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 1995, 15, 361–372. [Google Scholar] [CrossRef]
- Bonini, N.M.; Giasson, B.I. Snaring the function of alpha-synuclein. Cell 2005, 123, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.; Jeitner, T.M.; Blass, J.P. The role of transglutaminases in neurodegenerative diseases: Overview. Neurochem. Int. 2002, 40, 1–5. [Google Scholar] [CrossRef]
- Breydo, L.; Wu, J.W.; Uversky, V.N. Alpha-synuclein misfolding and Parkinson’s disease. Biochim. Biophys. Acta 2012, 1822, 261–285. [Google Scholar] [CrossRef] [PubMed]
- Ekman, D.; Light, S.; Bjorklund, A.K.; Elofsson, A. What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol. 2006, 7, R45. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, P.H.; Zhen, W.; Poon, A.W.; Conway, K.A.; Lansbury, P.T., Jr. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 1996, 35, 13709–13715. [Google Scholar] [CrossRef] [PubMed]
- Cote, Y.; Delarue, P.; Scheraga, H.A.; Senet, P.; Maisuradze, G.G. From a Highly Disordered to a Metastable State: Uncovering Insights of alpha-Synuclein. ACS Chem. Neurosci. 2018, 9, 1051–1065. [Google Scholar] [CrossRef] [PubMed]
- Fakhree, M.A.A.; Nolten, I.S.; Blum, C.; Claessens, M. Different Conformational Subensembles of the Intrinsically Disordered Protein alpha-Synuclein in Cells. J. Phys. Chem. Lett. 2018, 9, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Ferreon, A.C.; Gambin, Y.; Lemke, E.A.; Deniz, A.A. Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc. Natl. Acad. Sci. USA 2009, 106, 5645–5650. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, G.; Segers-Nolten, I.; Ferlemann, E.; Subramaniam, V. Single-molecule FRET reveals structural heterogeneity of SDS-bound alpha-synuclein. Chembiochem Eur. J. Chem. Biol. 2009, 10, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Nuscher, B.; Kamp, F.; Mehnert, T.; Odoy, S.; Haass, C.; Kahle, P.J.; Beyer, K. Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: A thermodynamics study. J. Biol. Chem. 2004, 279, 21966–21975. [Google Scholar] [CrossRef] [PubMed]
- Pfefferkorn, C.M.; Jiang, Z.; Lee, J.C. Biophysics of alpha-synuclein membrane interactions. Biochim. Biophys. Acta 2012, 1818, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Perovic, I.; Chittuluru, J.; Kaganovich, A.; Nguyen, L.T.; Liao, J.; Auclair, J.R.; Johnson, D.; Landeru, A.; Simorellis, A.K.; et al. A soluble alpha-synuclein construct forms a dynamic tetramer. Proc. Natl. Acad. Sci. USA 2011, 108, 17797–17802. [Google Scholar] [CrossRef] [PubMed]
- Lassen, L.B.; Reimer, L.; Ferreira, N.; Betzer, C.; Jensen, P.H. Protein Partners of alpha-Synuclein in Health and Disease. Brain Pathol. 2016, 26, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Paleologou, K.E.; El-Agnaf, O.M. alpha-Synuclein aggregation and modulating factors. Sub-Cell. Biochem. 2012, 65, 109–164. [Google Scholar]
- Wood, S.J.; Wypych, J.; Steavenson, S.; Louis, J.C.; Citron, M.; Biere, A.L. alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J. Biol. Chem. 1999, 274, 19509–19512. [Google Scholar] [CrossRef] [PubMed]
- Iljina, M.; Garcia, G.A.; Horrocks, M.H.; Tosatto, L.; Choi, M.L.; Ganzinger, K.A.; Abramov, A.Y.; Gandhi, S.; Wood, N.W.; Cremades, N.; et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc. Natl. Acad. Sci. USA 2016, 113, E1206-15. [Google Scholar] [CrossRef] [PubMed]
- Dearborn, A.D.; Wall, J.S.; Cheng, N.; Heymann, J.B.; Kajava, A.V.; Varkey, J.; Langen, R.; Steven, A.C. alpha-Synuclein Amyloid Fibrils with Two Entwined, Asymmetrically Associated Protofibrils. J. Biol. Chem. 2016, 291, 2310–2318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Griggs, A.; Rochet, J.C.; Stanciu, L.A. In vitro study of alpha-synuclein protofibrils by cryo-EM suggests a Cu(2+)-dependent aggregation pathway. Biophys. J. 2013, 104, 2706–2713. [Google Scholar] [CrossRef] [PubMed]
- Naiki, H.; Higuchi, K.; Hosokawa, M.; Takeda, T. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Anal. Biochem. 1989, 177, 244–249. [Google Scholar] [CrossRef]
- LeVine, H., 3rd. Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 1993, 2, 404–410. [Google Scholar] [CrossRef] [PubMed]
- LeVine, H., 3rd. Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 1999, 309, 274–284. [Google Scholar] [PubMed]
- Wu, C.; Biancalana, M.; Koide, S.; Shea, J.E. Binding Modes of Thioflavin-T to the Single-Layer beta-Sheet of the Peptide Self-Assembly Mimics. J. Mol. Biol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, M.; Makabe, K.; Koide, A.; Koide, S. Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J. Mol. Biol. 2009, 385, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804, 1405–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, K.; Kawabata, K.; Kunii, S.; Hamano, K.; Saito, T.; Tonomura, B. Characterization of type I collagen fibril formation using thioflavin T fluorescent dye. J. Biochem. 2009, 145, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Velasco, A.; Fraser, G.; Beach, T.G.; Sue, L.; Osredkar, T.; Libri, V.; Spillantini, M.G.; Goedert, M.; Lockhart, A. In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. J. Neurochem. 2008, 105, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Groenning, M.; Norrman, M.; Flink, J.M.; van de Weert, M.; Bukrinsky, J.T.; Schluckebier, G.; Frokjaer, S. Binding mode of Thioflavin T in insulin amyloid fibrils. J. Struct. Biol. 2007, 159, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J. Chem. Biol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.M.; Sulatskaya, A.I.; Uversky, V.N.; Turoverov, K.K. A new trend in the experimental methodology for the analysis of the thioflavin T binding to amyloid fibrils. Mol. Neurobiol. 2012, 45, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Fonin, A.V.; Sulatskaya, A.I.; Kuznetsova, I.M.; Turoverov, K.K. Fluorescence of dyes in solutions with high absorbance. Inner filter effect correction. PLoS ONE 2014, 9, e103878. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Kuznetsova, I.M.; Belousov, M.V.; Bondarev, S.A.; Zhouravleva, G.A.; Turoverov, K.K. Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils. PLoS ONE 2016, 11, e0156314. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Povarova, O.I.; Kuznetsova, I.M.; Uversky, V.N.; Turoverov, K.K. Binding stoichiometry and affinity of fluorescent dyes to proteins in different structural states. Methods Mol. Biol. 2012, 895, 441–460. [Google Scholar] [PubMed]
- Uversky, V.N.; Li, J.; Fink, A.L. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J. Biol. Chem. 2001, 276, 10737–10744. [Google Scholar] [CrossRef] [PubMed]
- Kjaergaard, M.; Norholm, A.B.; Hendus-Altenburger, R.; Pedersen, S.F.; Poulsen, F.M.; Kragelund, B.B. Temperature-dependent structural changes in intrinsically disordered proteins: Formation of alpha-helices or loss of polyproline II? Prot. Sci. Publ. Prot. Soc. 2010, 19, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278, 16462–16465. [Google Scholar] [CrossRef] [PubMed]
- Selivanova, O.M.; Glyakina, A.V.; Gorbunova, E.Y.; Mustaeva, L.G.; Suvorina, M.Y.; Grigorashvili, E.I.; Nikulin, A.D.; Dovidchenko, N.V.; Rekstina, V.V.; Kalebina, T.S.; et al. Structural model of amyloid fibrils for amyloidogenic peptide from Bgl2p-glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils. Biochim. Biophys. Acta 2016, 1864, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Zahn, R. Prion propagation and molecular chaperones. Q. Rev. Biophys. 1999, 32, 309–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulatskaya, A.I.; Maskevich, A.A.; Kuznetsova, I.M.; Uversky, V.N.; Turoverov, K.K. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS ONE 2010, 5, e15385. [Google Scholar] [CrossRef] [PubMed]
- Oravcova, J.; Bohs, B.; Lindner, W. Drug-protein binding sites. New trends in analytical and experimental methodology. J. Chromatogr. B Biomed. Appl. 1996, 677, 1–28. [Google Scholar] [CrossRef]
- Krebs, M.R.; Bromley, E.H.; Donald, A.M. The binding of thioflavin-T to amyloid fibrils: Localisation and implications. J. Struct. Biol. 2005, 149, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Maskevich, A.A.; Stsiapura, V.I.; Kuzmitsky, V.A.; Kuznetsova, I.M.; Povarova, O.I.; Uversky, V.N.; Turoverov, K.K. Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J. Proteome Res. 2007, 6, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Lavysh, A.V.; Maskevich, A.A.; Kuznetsova, I.M.; Turoverov, K.K. Thioflavin T fluoresces as excimer in highly concentrated aqueous solutions and as monomer being incorporated in amyloid fibrils. Sci. Rep. 2017, 7, 2146. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.M.; Sulatskaya, A.I.; Maskevich, A.A.; Uversky, V.N.; Turoverov, K.K. High Fluorescence Anisotropy of Thioflavin T in Aqueous Solution Resulting from Its Molecular Rotor Nature. Anal. Chem. 2016, 88, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Sulatskaya, A.I.; Rodina, N.P.; Polyakov, D.S.; Kuznatsova, I.M.; Turoverov, K.K. Investigation of amyloid fibrils on the basis of full-length and truncated forms of beta-2-microglobulin with the use of equilibrium microdialysis. In Proceedings of the 7th European Conference on Biology and Medical Sciences, Rome, Italy, 27–29 July 2015; pp. 11–17. [Google Scholar]
- Sulatskaya, A.I.; Rodina, N.P.; Kuznetsova, I.M.; Turoverov, K.K. Different conditions of fibrillogenesis cause polymorphysm of lysozyme amyloid fibrils. J. Mol. Struct. 2017, 1140, 52–58. [Google Scholar] [CrossRef]
- Grabenauer, M.; Bernstein, S.L.; Lee, J.C.; Wyttenbach, T.; Dupuis, N.F.; Gray, H.B.; Winkler, J.R.; Bowers, M.T. Spermine binding to Parkinson’s protein alpha-synuclein and its disease-related A30P and A53T mutants. J. Phys. Chem. B 2008, 112, 11147–11154. [Google Scholar] [CrossRef] [PubMed]
- Vladimirov, Y.A.; Litvin, F.F. Photobiology and spectroscopic methods. In Handbook of General Biophisics; Springer: Berlin, Germany, 1964; p. 8. [Google Scholar]
- O’Connor, D.V.P.D. Time-Correlated Single Photon Counting; Academic Press: New York, NY, USA, 1984; pp. 37–54. [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of non linear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
Conditions | λabs_max, nm | Mode | εi,max × 10−4, M−1cm−1 | Kbi × 10−5, M−1 | ni | qi |
---|---|---|---|---|---|---|
α-synuclein fibrils (by absorption spectroscopy) | 438 ± 4 | 1 | 1.8 ± 0.3 | 0.3 ± 0.3 | 0.13 ± 0.20 | 0.02 ± 0.01 |
α-synuclein fibrils (by absorption and fluorescence spectroscopy) | 438 ± 4 | 1 | 1.8 ± 0.3 | 0.3 ± 0.3 | 0.13 ± 0.20 | 0.02 ± 0.01 |
2 | 7.0 ± 2.0 | 70 ± 10 | (4 ± 10) × 10−4 | 0.13 ± 0.04 | ||
Insulin fibrils [41] | 450 | 1 | 2.3 | 0.4 | 0.14 | 0.27 |
2 | 7.9 | 78 | 0.02 | 0.72 | ||
Lysozyme fibrils [41] | 449 | 1 | 6.2 | 0.6 | 0.25 | 0.0001 |
2 | 5.3 | 72 | 0.11 | 0.44 | ||
Aβ42 fibrils [41] | 440 | 1 | 1.4 | 0.2 | 0.26 | 0.03 |
2 | 8.7 | 70 | 0.004 | 0.18 | ||
Free in aqueous solution [51] | 412 | - | 3.2 | - | - | 0.0001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulatskaya, A.I.; Rodina, N.P.; Sulatsky, M.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Investigation of α-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T. Int. J. Mol. Sci. 2018, 19, 2486. https://doi.org/10.3390/ijms19092486
Sulatskaya AI, Rodina NP, Sulatsky MI, Povarova OI, Antifeeva IA, Kuznetsova IM, Turoverov KK. Investigation of α-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T. International Journal of Molecular Sciences. 2018; 19(9):2486. https://doi.org/10.3390/ijms19092486
Chicago/Turabian StyleSulatskaya, Anna I., Natalia P. Rodina, Maksim I. Sulatsky, Olga I. Povarova, Iuliia A. Antifeeva, Irina M. Kuznetsova, and Konstantin K. Turoverov. 2018. "Investigation of α-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T" International Journal of Molecular Sciences 19, no. 9: 2486. https://doi.org/10.3390/ijms19092486
APA StyleSulatskaya, A. I., Rodina, N. P., Sulatsky, M. I., Povarova, O. I., Antifeeva, I. A., Kuznetsova, I. M., & Turoverov, K. K. (2018). Investigation of α-Synuclein Amyloid Fibrils Using the Fluorescent Probe Thioflavin T. International Journal of Molecular Sciences, 19(9), 2486. https://doi.org/10.3390/ijms19092486