Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis
<p>Group and individual changes before and after the concurrent training program for all group. *: represents statistically changes. (<b>A</b>) body mass; (<b>B</b>) %fat mass, (<b>C</b>) Fasting Insulin; (<b>D</b>) HOMA-IR; (<b>E</b>) Fasting Glycemia; (<b>F</b>) Maximal Fat Oxidation; (<b>G</b>) Maximal Oxygen Uptake.</p> "> Figure 2
<p>Inter-individual variability to concurrent training in the groups analyzed. (<b>A</b>) body mass; (<b>B</b>) %fat mass, (<b>C</b>) Fasting Insulin; (<b>D</b>) HOMA-IR; (<b>E</b>) Fasting Glycemia; (<b>F</b>) Maximal Fat Oxidation; (<b>G</b>) Maximal Oxygen Uptake.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Design and Participants
2.2. Assessments
2.2.1. Body Composition
2.2.2. Insulin Sensitivity (IS)
2.2.3. Cardiorespiratory Fitness and Maximal Fat Oxidation
2.3. Inter-Day Concurrent Training Program
- Weeks 1–3: 50 min of continuous running at 65% VO2max.
- Weeks 4–6: third session changed to 20 min interval-based approach (1 min intervals at 85% VO2max; 3 min active recovery at 65% VO2max).
- Weeks 7–9: 20 min intervals with 2 min intervals at 85% and 2 min of active recovery at 65% VO2max.
- Weeks 10–12: return to original interval structure (1 min intervals; 1 min recovery).
2.4. Statistical Analysis
3. Results
3.1. Metabolic and Fitness Responses
3.2. Inter-Individual Responses
4. Discussion
4.1. Insulin Sensitivity (HOMA-IR)
4.2. Maximal Fat Oxidation and Cardiorespiratory Fitness
4.3. Inter-Individual Variability
4.4. Limitations
4.5. Perspectives and Future Studies
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malin, S.K.; Stewart, N.R. Metformin May Contribute to Inter-Individual Variability for Glycemic Responses to Exercise. Front. Endocrinol. 2020, 11, 519. [Google Scholar] [CrossRef]
- Azócar-Gallardo, J.; Ramirez-Campillo, R.; Afonso, J.; Sá, M.; Granacher, U.; González-Rojas, L.; Ojeda-Aravena, A.; García-García, J.M. Overweight and Obese Adult Patients Show Larger Benefits from Concurrent Training Compared with Pharmacological Metformin Treatment on Insulin Resistance and Fat Oxidation. Int. J. Environ. Res. Public Health 2022, 19, 14331. [Google Scholar] [CrossRef]
- Bird, S.R.; Hawley, J.A. Update on the Effects of Physical Activity on Insulin Sensitivity in Humans. BMJ Open Sport Exerc. Med. 2017, 2, e000143. [Google Scholar] [CrossRef]
- Goyal, R.; Nguyen, M.; Jialal, I. Glucose Intolerance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Schrauwen-Hinderling, V.B.; Kooi, M.E.; Hesselink, M.K.C.; Jeneson, J.a.L.; Backes, W.H.; van Echteld, C.J.A.; van Engelshoven, J.M.A.; Mensink, M.; Schrauwen, P. Impaired in Vivo Mitochondrial Function but Similar Intramyocellular Lipid Content in Patients with Type 2 Diabetes Mellitus and BMI-Matched Control Subjects. Diabetologia 2007, 50, 113–120. [Google Scholar] [CrossRef]
- Kelley, D.E.; He, J.; Menshikova, E.V.; Ritov, V.B. Dysfunction of Mitochondria in Human Skeletal Muscle in Type 2 Diabetes. Diabetes 2002, 51, 2944–2950. [Google Scholar] [CrossRef]
- Keshel, T.E.; Coker, R.H. Exercise Training and Insulin Resistance: A Current Review. J. Obes. Weight Loss Ther. 2015, 5, S5-003. [Google Scholar] [CrossRef]
- Terada, T.; Boulé, N.G. Does Metformin Therapy Influence the Effects of Intensive Lifestyle Intervention? Exploring the Interaction between First Line Therapies in the Look AHEAD Trial. Metabolism 2019, 94, 39–46. [Google Scholar] [CrossRef]
- Wang, Y.-W.; He, S.-J.; Feng, X.; Cheng, J.; Luo, Y.-T.; Tian, L.; Huang, Q. Metformin: A Review of Its Potential Indications. Drug Des. Dev. Ther. 2017, 2421–2429. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization Model List of Essential Medicines: 22nd List (2021); World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Huang, T.; Lu, C.; Schumann, M.; Le, S.; Yang, Y.; Zhuang, H.; Lu, Q.; Liu, J.; Wiklund, P.; Cheng, S. Timing of Exercise Affects Glycemic Control in Type 2 Diabetes Patients Treated with Metformin. J. Diabetes Res. 2018, 2018, 2483273. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, S.M.; Saeidi, A.; Shahghasi, R.; Golmohammadi, M. The Eight-Week Circuit Resistance Training Decreased the Serum Levels of WISP−1 and WISP−2 in Individuals with Type 2 Diabetes. Ann. Appl. Sport Sci. 2023, 11, e1290. [Google Scholar] [CrossRef]
- Holten, M.K.; Zacho, M.; Gaster, M.; Juel, C.; Wojtaszewski, J.F.P.; Dela, F. Strength Training Increases Insulin-Mediated Glucose Uptake, GLUT4 Content, and Insulin Signaling in Skeletal Muscle in Patients with Type 2 Diabetes. Diabetes 2004, 53, 294–305. [Google Scholar] [CrossRef]
- Phillips, S.M.; Han, X.X.; Green, H.J.; Bonen, A. Increments in Skeletal Muscle GLUT−1 and GLUT−4 after Endurance Training in Humans. Am. J. Physiol. 1996, 270, E456–E462. [Google Scholar] [CrossRef]
- Tayebi, S.M.; Eslami, R.; Iranshad, I.; Golmohammadi, M. The Effect of Eight Weeks of Circuit Resistance Training on Serum Levels of GPR119 and β-Arrestin1 in Individuals with Type 2 Diabetes. Ann. Appl. Sport Sci. 2023, 11, e1283. [Google Scholar] [CrossRef]
- Malin, S.K.; Gerber, R.; Chipkin, S.R.; Braun, B. Independent and Combined Effects of Exercise Training and Metformin on Insulin Sensitivity in Individuals with Prediabetes. Diabetes Care 2012, 35, 131–136. [Google Scholar] [CrossRef]
- Ortega, J.F.; Hamouti, N.; Fernández-Elías, V.E.; de Prada, M.V.G.; Martínez-Vizcaíno, V.; Mora-Rodríguez, R. Metformin Does Not Attenuate the Acute Insulin-Sensitizing Effect of a Single Bout of Exercise in Individuals with Insulin Resistance. Acta Diabetol. 2014, 51, 749–755. [Google Scholar] [CrossRef]
- Boulé, N.G.; Kenny, G.P.; Larose, J.; Khandwala, F.; Kuzik, N.; Sigal, R.J. Does Metformin Modify the Effect on Glycaemic Control of Aerobic Exercise, Resistance Exercise or Both? Diabetologia 2013, 56, 2378–2382. [Google Scholar] [CrossRef]
- Pesta, D.H.; Goncalves, R.L.S.; Madiraju, A.K.; Strasser, B.; Sparks, L.M. Resistance Training to Improve Type 2 Diabetes: Working toward a Prescription for the Future. Nutr. Metab. 2017, 14, 24. [Google Scholar] [CrossRef]
- Malin, S.K.; Braun, B. Impact of Metformin on Exercise-Induced Metabolic Adaptations to Lower Type 2 Diabetes Risk. Exerc. Sport Sci. Rev. 2016, 44, 4–11. [Google Scholar] [CrossRef]
- Walton, R.G.; Dungan, C.M.; Long, D.E.; Tuggle, S.C.; Kosmac, K.; Peck, B.D.; Bush, H.M.; Villasante Tezanos, A.G.; McGwin, G.; Windham, S.T.; et al. Metformin Blunts Muscle Hypertrophy in Response to Progressive Resistance Exercise Training in Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial: The MASTERS Trial. Aging Cell 2019, 18, e13039. [Google Scholar] [CrossRef]
- Cadeddu, C.; Nocco, S.; Cugusi, L.; Deidda, M.; Bina, A.; Fabio, O.; Bandinu, S.; Cossu, E.; Baroni, M.G.; Mercuro, G. Effects of Metformin and Exercise Training, Alone or in Association, on Cardio-Pulmonary Performance and Quality of Life in Insulin Resistance Patients. Cardiovasc. Diabetol. 2014, 13, 93. [Google Scholar] [CrossRef]
- Konopka, A.R.; Laurin, J.L.; Schoenberg, H.M.; Reid, J.J.; Castor, W.M.; Wolff, C.A.; Musci, R.V.; Safairad, O.D.; Linden, M.A.; Biela, L.M.; et al. Metformin Inhibits Mitochondrial Adaptations to Aerobic Exercise Training in Older Adults. Aging Cell 2019, 18, e12880. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef]
- Malin, S.K.; Braun, B. Effect of Metformin on Substrate Utilization after Exercise Training in Adults with Impaired Glucose Tolerance. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2013, 38, 427–430. [Google Scholar] [CrossRef]
- Álvarez, C.; Ramírez-Campillo, R.; Ramírez-Vélez, R.; Izquierdo, M. Effects and Prevalence of Nonresponders after 12 Weeks of High-Intensity Interval or Resistance Training in Women with Insulin Resistance: A Randomized Trial. J. Appl. Physiol. 2017, 122, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Sharoff, C.G.; Hagobian, T.A.; Malin, S.K.; Chipkin, S.R.; Yu, H.; Hirshman, M.F.; Goodyear, L.J.; Braun, B. Combining Short-Term Metformin Treatment and One Bout of Exercise Does Not Increase Insulin Action in Insulin-Resistant Individuals. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E815–E823. [Google Scholar] [CrossRef]
- Acosta, A.M.; Escalona, M.; Maiz, A.; Pollak, F.; Leighton, F. [Determination of the insulin resistance index by the Homeostasis Model Assessment in a population of Metropolitan Region in Chile]. Rev. Med. Chil. 2002, 130, 1227–1231. [Google Scholar]
- Barrera, R. Cuestionario Internacional de Actividad Física (IPAQ). Rev. Enferm. Trab. 2017, 7, 49–54. [Google Scholar]
- Vandenbroucke, J.P. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Ann. Intern. Med. 2007, 147, 1500–1524. [Google Scholar] [CrossRef]
- de Sanctis, V.; Soliman, A.T.; Daar, S.; Tzoulis, P.; Fiscina, B.; Kattamis, C. Retrospective Observational Studies: Lights and Shadows for Medical Writers. Acta Bio Medica Atenei Parm. 2022, 93, e2022319. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Brun, J.-F.; Romain, A.-J.; Mercier, J. Maximal Lipid Oxidation during Exercise (Lipoxmax): From Physiological Measurements to Clinical Applications. Facts and Uncertainties. Sci. Sports 2011, 26, 57–71. [Google Scholar] [CrossRef]
- Jones, N.L.; Makrides, L.; Hitchcock, C.; Chypchar, T.; McCartney, N. Normal Standards for an Incremental Progressive Cycle Ergometer Test. Am. Rev. Respir. Dis. 1985, 131, 700–708. [Google Scholar] [CrossRef]
- Morris, C.; Grada, C.O.; Ryan, M.; Roche, H.M.; De Vito, G.; Gibney, M.J.; Gibney, E.R.; Brennan, L. The Relationship between Aerobic Fitness Level and Metabolic Profiles in Healthy Adults. Mol. Nutr. Food Res. 2013, 57, 1246–1254. [Google Scholar] [CrossRef]
- Frayn, K.N. Calculation of Substrate Oxidation Rates in Vivo from Gaseous Exchange. J. Appl. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef]
- Jeffries, A.C.; Marcora, S.M.; Coutts, A.J.; Wallace, L.; McCall, A.; Impellizzeri, F.M. Development of a Revised Conceptual Framework of Physical Training for Use in Research and Practice. Sports Med. 2021, 52, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Shrier, I.; McLaren, S.J.; Coutts, A.J.; McCall, A.; Slattery, K.; Jeffries, A.C.; Kalkhoven, J.T. Understanding Training Load as Exposure and Dose. Sports Med. 2023, 53, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.J.; De Paz, J.A. Application of the 1RM Estimation Formulas from the RM in Bench Press in a Group of Physically Active Middle-Aged Women. J. Hum. Sport Exerc. 2008, 3, 10–22. [Google Scholar] [CrossRef]
- LeSuer, D.A.; McCormick, J.H.; Mayhew, J.L.; Wasserstein, R.L.; Arnold, M.D. The Accuracy of Prediction Equations for Estimating 1-RM Performance in the Bench Press, Squat, and Deadlift. J. Strength Cond. Res. 1997, 11, 211–213. [Google Scholar]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Cancino-López, J.; Zapata-Bastias, J.; García-García, J.M. Inter-Individual Variability of a High-Intensity Interval Training With Specific Techniques vs. Repeated Sprints Program in Sport-Related Fitness of Taekwondo Athletes. Front. Physiol. 2021, 12, 1882. [Google Scholar] [CrossRef] [PubMed]
- Bonafiglia, J.T.; Rotundo, M.P.; Whittall, J.P.; Scribbans, T.D.; Graham, R.B.; Gurd, B.J. Inter-Individual Variability in the Adaptive Responses to Endurance and Sprint Interval Training: A Randomized Crossover Study. PLoS ONE 2016, 11, e0167790. [Google Scholar] [CrossRef]
- Herrera-Valenzuela, T.; Carter, J.; Leiva, E.; Valdés-Badilla, P.; Ojeda-Aravena, A.; Franchini, E. Effect of a Short HIIT Program with Specific Techniques on Physical Condition and Activity during Simulated Combat in National-Level Boxers. Sustainability 2021, 13, 8746. [Google Scholar] [CrossRef]
- Abdelbasset, W.K. Resistance Exercise Versus Aerobic Exercise Combined with Metformin Therapy in the Treatment of Type 2 Diabetes: A 12-Week Comparative Clinical Study. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Methenitis, S. A Brief Review on Concurrent Training: From Laboratory to the Field. Sports 2018, 6, 127. [Google Scholar] [CrossRef]
- Musi, N.; Hirshman, M.F.; Nygren, J.; Svanfeldt, M.; Bavenholm, P.; Rooyackers, O.; Zhou, G.; Williamson, J.M.; Ljunqvist, O.; Efendic, S.; et al. Metformin Increases AMP-Activated Protein Kinase Activity in Skeletal Muscle of Subjects with Type 2 Diabetes. Diabetes 2002, 51, 2074–2081. [Google Scholar] [CrossRef]
- Malin, S.K.; Stephens, B.R.; Sharoff, C.G.; Hagobian, T.A.; Chipkin, S.R.; Braun, B. Metformin’s Effect on Exercise and Postexercise Substrate Oxidation. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.; Sharoff, C.; Chipkin, S.R.; Beaudoin, F. Effects of Insulin Resistance on Substrate Utilization during Exercise in Overweight Women. J. Appl. Physiol. 2004, 97, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-Activated Protein Kinase in Mechanism of Metformin Action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef]
- Long, Y.C.; Zierath, J.R. AMP-Activated Protein Kinase Signaling in Metabolic Regulation. J. Clin. Investig. 2006, 116, 1776–1783. [Google Scholar] [CrossRef]
- Viollet, B.; Guigas, B.; Sanz Garcia, N.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and Molecular Mechanisms of Metformin: An Overview. Clin. Sci. 2012, 122, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From Mechanisms of Action to Therapies. Cell Metab. 2014, 20, 953–966. [Google Scholar] [CrossRef]
- Tokubuchi, I.; Tajiri, Y.; Iwata, S.; Hara, K.; Wada, N.; Hashinaga, T.; Nakayama, H.; Mifune, H.; Yamada, K. Beneficial Effects of Metformin on Energy Metabolism and Visceral Fat Volume through a Possible Mechanism of Fatty Acid Oxidation in Human Subjects and Rats. PLoS ONE 2017, 12, e0171293. [Google Scholar] [CrossRef]
- Andrzejewski, S.; Gravel, S.-P.; Pollak, M.; St-Pierre, J. Metformin Directly Acts on Mitochondria to Alter Cellular Bioenergetics. Cancer Metab. 2014, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Seward, S.; Ramos, J.; Drummond, C.; Dalleck, A.; Byrd, B.; Kehmeier, M.; Dalleck, L. Inter-Individual Variability in Metabolic Syndrome Severity Score and VO2max Changes Following Personalized, Community-Based Exercise Programming. Int. J. Environ. Res. Public Health 2019, 16, 4855. [Google Scholar] [CrossRef] [PubMed]
- Williamson, P.J.; Atkinson, G.; Batterham, A.M. Inter-Individual Responses of Maximal Oxygen Uptake to Exercise Training: A Critical Review. Sports Med. 2017, 47, 1501–1513. [Google Scholar] [CrossRef]
- Bonafiglia, J.T.; Preobrazenski, N.; Gurd, B.J. A Systematic Review Examining the Approaches Used to Estimate Interindividual Differences in Trainability and Classify Individual Responses to Exercise Training. Front. Physiol. 2021, 12, 1881. [Google Scholar] [CrossRef]
Outcomes | Group | Pre | Post | ∆% | ES (Pre vs. Post) | RS (%) | Group by Time (F2,17; p Value; η2p) |
---|---|---|---|---|---|---|---|
Body Mass (kg) | M-G | 94.23 ± 13.93 | 89.39 ± 14.77 * | −5.15 | 0.30 | 3 (33.3%) | 11.961, 0.13, 0.088 |
E-G | 85.27 ± 19.67 | 77.23 ± 19.06 * | −9.43 | 0.73 | 5 (71.4%) | ||
EM-G | 88.13 ± 12.66 | 80.00 ± 13.44 * | −9.21 | 0.05 | 5 (83.3%) | ||
%Fat Mass | M-G | 41.14 ± 12.88 | 36.26 ± 13.67 * | −11.87 | 0.45 | 5 (71.4%) | 2.437, 0.11, 0.22 |
E-G | 35.21 ± 8.200 | 27.29 ± 6.522 * | −22.52 | 0.83 | 7 (100%) | ||
EM-G | 41.53 ± 10.93 | 34.62 ± 11.30 * | −16.65 | 0.63 | 4 (66.7%) | ||
Fasting Insulin (mg/dl) | M-G | 15.63 ± 3.74 | 15.73 ± 5.86 | +0.63 | 0.02 | 0 | 34.059, 0.001, 0.88 * |
E-G | 16.4 ± 3.31 | 2.92 ± 1.89 *✤ | +82.1 | 4.06 | 5 (71.4%) | ||
EM-G | 18.5 ± 3.45 | 2.76 ± 1.49 *✤ | +85 | 4.54 | 6 (100%) | ||
HOMA -IR | M-G | 3.24 ±0.94 | 3.24± 1.28 | 0 | 0 | 0 | 35.597, 0.001, 0.80 * |
E-G | 3.57 ± 0.75 | 0.62 ± 0.40 *✤ | +82.6 | −3.91 | 3 (42.8%) | ||
EM-G | 4.1 ± 0.93 | 0.63 ± 0.37 * | +84.6 | 3.69 | 6 (100%) | ||
Fasting Glycemia (mg/dl) | M-G | 83.43 ± 8.18 | 82.86 ± 6.89 | −0.68 | 0.06 | 2 (28.5%) | 1.318, 0.294, 0.134 |
E-G | 88.2 ± 3.98 | 88 ± 3.36 | −0.22 | 0.07 | 3 (50%) | ||
EM-G | 89.83 ± 6.61 | 86.25 ± 7.53 | −3.98 | −0.54 | 3 (50%) | ||
MFO (g/h) | M-G | 6.07 ± 5.23 | 6.13 ± 4.72 | +0.09 | 0.01 | 1 (14.2%) | 4.541, 0.026, 0.348 * |
E-G | 4.5 ± 5.89 | 12.65 ± 3.94 * | +181.1 | 1.38 | 3 (42.8%) | ||
EM-G | 6.66 ± 5.93 | 11.16 ± 4.10 | +67.5 | 0.75 | 2 (33.3%) | ||
VO2max (L/min) | M-G | 2.98 ± 2.06 | 2.06 ± 0.66 | −30.8 | −0.05 | 0 | 3.379, 0.058, 0.284 |
E-G | 2.1 ± 0.93 | 2.38 ± 1.13 * | +13.3 | 0.30 | 3 (42.8%) | ||
EM-G | 1.71 ± 0.51 | 1.8 ± 0.55 | +5.26 | 0.16 | 1 (16.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azócar-Gallardo, J.; Ojeda-Aravena, A.; Báez-San Martín, E.; Herrera-Valenzuela, T.; Tuesta, M.; González-Rojas, L.; Calvo-Rico, B.; García-García, J.M. Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis. Biomolecules 2024, 14, 1470. https://doi.org/10.3390/biom14111470
Azócar-Gallardo J, Ojeda-Aravena A, Báez-San Martín E, Herrera-Valenzuela T, Tuesta M, González-Rojas L, Calvo-Rico B, García-García JM. Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis. Biomolecules. 2024; 14(11):1470. https://doi.org/10.3390/biom14111470
Chicago/Turabian StyleAzócar-Gallardo, Jairo, Alex Ojeda-Aravena, Eduardo Báez-San Martín, Tomás Herrera-Valenzuela, Marcelo Tuesta, Luis González-Rojas, Bibiana Calvo-Rico, and José Manuel García-García. 2024. "Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis" Biomolecules 14, no. 11: 1470. https://doi.org/10.3390/biom14111470
APA StyleAzócar-Gallardo, J., Ojeda-Aravena, A., Báez-San Martín, E., Herrera-Valenzuela, T., Tuesta, M., González-Rojas, L., Calvo-Rico, B., & García-García, J. M. (2024). Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis. Biomolecules, 14(11), 1470. https://doi.org/10.3390/biom14111470