Advances in the Regulation of Periostin for Osteoarthritic Cartilage Repair Applications
<p>Increased expression of Postn in human OA cartilage. (<b>A</b>) Immunohistochemical analysis of human OA knee cartilage identified increased cell-associated POSTN in lesional areas when compared to normal cartilage (back arrows). OA knee cartilage, obtained from four donors ranging from 35 to 70 years of age and undergoing total knee arthroplasty, was sectioned and stained for POSTN with Vectastain reagents (Vector Laboratories, Burlingame, CA, USA). (<b>B</b>) Quantitation of periostin positively expressing chondrocytes in superficial and deep cartilage zones. Two-way ANOVA; comparison between normal and OA cartilages; **** <span class="html-italic">p</span> < 0.0001; * <span class="html-italic">p</span> < 0.05; <span class="html-italic">n</span> = 4.</p> "> Figure 2
<p>LN suppresses the upregulation of POSTN in human OA osteochondral explants: (<b>a</b>) Human OA osteochondral explants were treated with LN (100 µg/mL) or PBS (CTL) for 14 days. Changes in expression were determined by POSTN staining (arrows); (<b>b</b>) immunohistochemical analysis of POSTN expression in human OA samples, where the stains were divided into three categories: cells unstained with POSTN, cells with minimal Postn staining, and cells with saturated POSTN staining. Means ± SDs; <span class="html-italic">n</span> = 4 donors; chi-squared test.</p> "> Figure 3
<p>Effect of LN on POSTN expression in primary human osteoarthritis chondrocytes. (<b>A</b>) Freshly isolated human osteoarthritis (OA) chondrocytes were cultured as micro-pellets and treated for 6 days with LN at 1 µg/mL and 100 µg/mL. Quantitative real-time PCR was used to measure <span class="html-italic">POSTN</span> mRNA expression levels, normalized against GAPDH. (<b>B</b>) Representative western blot analysis showing the effects of the LN treatments (at 1 µg/mL and 100 µg/mL) on POSTN protein levels over a 3-day treatment period. GAPDH was used as the loading control. (<b>C</b>) Densitometric analysis of POSTN protein levels from western blots (panel B), normalized to GAPDH. Statistical significance is indicated as * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; and **** <span class="html-italic">p</span> < 0.0001 compared to the untreated control group.</p> "> Figure 4
<p>LN suppresses the upregulation of POSTN in a rabbit model of OA. Skeletally mature New Zealand white rabbits underwent unilateral anterior cruciate ligament transection (ACLT) of their left femorotibial joints to induce joint degeneration typical of OA. Beginning at 3 weeks postoperatively, and every three weeks thereafter for 12 weeks, either saline (1 mL) or sLN (100 µg in 1 mL of saline) was injected intraarticularly into the operated knee. Six additional rabbits underwent sham surgery but without ACLT or postoperative injections: (<b>A</b>) POSTN expression, as determined using immunostaining at 12 weeks, was significantly higher in the ACLT rabbits’ knee cartilage when compared with sham knees; (<b>B</b>) the immunohistochemical analysis of the POSTN expression in the rabbit model of OA, where the stains were divided into three categories: cells unstained with POSTN, cells with minimal POSTN staining, and cells with saturated POSTN staining. Statistical significance was assessed using a chi-squared test (<span class="html-italic">p</span> < 0.00001).</p> "> Figure 5
<p>LN decreases POSTN signaling in human OA chondrocytes: (<b>A</b>) western blots demonstrating the inhibition of periostin-induced increases in β-catenin (β-Cat) accumulation by LN; (<b>B</b>) densitometry of blots presented in (<b>A</b>). ANOVA; post hoc Dunnett’s test; *** <span class="html-italic">p</span> < 0.0001; <span class="html-italic">n</span> = 3.</p> "> Figure 6
<p>LN regulates periostin-induced gene expression in human OA chondrocytes. Chondrocyte pellets were treated with Link N (at 1 or 100 µg/mL) or PBS (CTL) for 6 days in the absence or presence of periostin (20 μg/mL). Gene expression was measured using qPCR. Means ± SDs; <span class="html-italic">n</span> = 3 donors; ANOVA; post hoc Dunnett’s multiple comparison test; **** <span class="html-italic">p</span> < 0.0001; *** <span class="html-italic">p</span> < 0.001; ** <span class="html-italic">p</span> < 0.01; * <span class="html-italic">p</span> < 0.05 in comparison with the control.</p> "> Figure 7
<p>LN interacts with POSTN and induces dissociation: (<b>A</b>) The peptide docking of the LN to POSTN (crystal structure: 5yjg) was determined using the CABS–dock web server. The model was created using PyMOL (Schrodinger, LLC). POSTN residues known to be important in its dimerization are shown to interact with LN. (<b>B</b>) The immunoprecipitation (IP) of the LN with POSTN. Biotinylated LN or biotinylated scrambled LN (SC) was attached to Avidin-labelled agarose beads and then incubated with POSTN. Western blotting was performed to identify POSTN–LN interactions. Lane 1: CTL (PBS) with POSTN; lane 2: IP of LN with POSTN; lane 3: SC with POSTN. (<b>C</b>) POSTN incubated with LN dissociates dimer/oligomer formation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Peptide Synthesis
2.3. Antibodies
2.4. Rabbit ACL Transection of an OA Model
2.5. Human OA Cartilage Explant Preparation and Treatments
2.6. Immunohistochemistry
2.7. Chondrocyte Isolation
2.8. Chondrocyte Activation and Gene Expression
2.9. β-Catenin Signaling and POSTN Expression
2.10. Peptide Docking
2.11. Immunoprecipitation and POSTN Dissociation
2.12. Statistical Analysis
3. Results
3.1. LN Suppresses the Expression of POSTN in Human OA Cartilage
3.2. POSTN Suppression in an Experimental Model of OA by LN
3.3. LN Decreases POSTN Signaling in Human OA Chondrocytes
3.4. LN Interacts with POSTN and Induces Dissociation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glyn-Jones, S.; Palmer, A.J.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y. Osteoarthritis year in review 2021: Biology. Osteoarthr. Cartil. 2022, 30, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, C.A.; Keller, L.E.; Zhang, S.; Fu, Q.; Hunt, E.R.; Stone, A.V.; Conley, C.E.W.; Lattermann, C.; Fortier, L.A. Periostin regulation and cartilage degradation early after anterior cruciate ligament reconstruction. Inflamm. Res. 2023, 72, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Attur, M.; Krasnokutsky-Samuels, S.; Samuels, J.; Abramson, S.B. Prognostic biomarkers in osteoarthritis. Curr. Opin. Rheumatol. 2013, 25, 136–144. [Google Scholar] [CrossRef]
- Sonnenberg-Riethmacher, E.; Miehe, M.; Riethmacher, D. Periostin in Allergy and Inflammation. Front. Immunol. 2021, 12, 722170. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Xu, F.; Lin, Z.; Li, Z.; Liu, H. Structural characterizations of human periostin dimerization and cysteinylation. FEBS Lett. 2018, 592, 1789–1803. [Google Scholar] [CrossRef]
- Parada, L.; Tsoulfas, P.; Tessarollo, L.; Blair, J.; Reid, S.; Soppet, D. The Trk Family of Tyrosine Kinases: Receptors for NGF-related Neurotrophins. In Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 1992; Volume 57, pp. 43–51. [Google Scholar]
- Cobo, T.; Viloria, C.G.; Solares, L.; Fontanil, T.; Gonzalez-Chamorro, E.; De Carlos, F.; Cobo, J.; Cal, S.; Obaya, A.J. Role of Periostin in Adhesion and Migration of Bone Remodeling Cells. PLoS ONE 2016, 11, e0147837. [Google Scholar] [CrossRef]
- Bonnet, N.; Conway, S.J.; Ferrari, S.L. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc. Natl. Acad. Sci. USA 2012, 109, 15048–15053. [Google Scholar] [CrossRef]
- Wen, W.; Chau, E.; Jackson-Boeters, L.; Elliott, C.; Daley, T.D.; Hamilton, D.W. TGF-ss1 and FAK regulate periostin expression in PDL fibroblasts. J. Dent. Res. 2010, 89, 1439–1443. [Google Scholar] [CrossRef]
- Gillan, L.; Matei, D.; Fishman, D.A.; Gerbin, C.S.; Karlan, B.Y.; Chang, D.D. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res. 2022, 62, 5358–5364. [Google Scholar]
- Loeser, R.F. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 2014, 39, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Marie, P.J.; Hay, E.; Saidak, Z. Integrin and cadherin signaling in bone: Role and potential therapeutic targets. Trends Endocrinol. Metab. 2014, 25, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Mignatti, P.; Abramson, S.B.; Attur, M. Periostin interaction with discoidin domain receptor-1 (DDR1) promotes cartilage degeneration. PLoS ONE 2020, 15, e0231501. [Google Scholar] [CrossRef] [PubMed]
- Melching, L.I.; Roughley, P.J. The role of link protein in mediating the interaction between hyaluronic acid and newly secreted proteoglycan subunits from adult human articular cartilage. J. Biol. Chem. 1985, 260, 16279–16285. [Google Scholar] [CrossRef]
- Maquart, F.X.; Pasco, S.; Ramont, L.; Hornebeck, W.; Monboisse, J.C. An introduction to matrikines: Extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion. Crit. Rev. Oncol. Hematol. 2004, 49, 199–202. [Google Scholar] [CrossRef]
- Liu, H.; McKenna, L.A.; Dean, M.F. The macromolecular characteristics of cartilage proteoglycans do not change when synthesis is up-regulated by link protein peptide. Biochim. Biophys. Acta 1999, 1428, 191–200. [Google Scholar] [CrossRef]
- Liu, H.; McKenna, L.A.; Dean, M.F. An N-terminal peptide from link protein can stimulate biosynthesis of collagen by human articular cartilage. Arch. Biochem. Biophys. 2000, 378, 116–122. [Google Scholar] [CrossRef]
- McKenna, L.A.; Liu, H.; Sansom, P.A.; Dean, M.F. An N-terminal peptide from link protein stimulates proteoglycan biosynthesis in human articular cartilage in vitro. Arthritis Rheum. 1998, 41, 157–162. [Google Scholar] [CrossRef]
- AlGarni, N.; Grant, M.P.; Epure, L.M.; Salem, O.; Bokhari, R.; Antoniou, J.; Mwale, F. Short Link N Stimulates Intervertebral Disc Repair in a Novel Long-Term Organ Culture Model that Includes the Bony Vertebrae. Tissue Eng. Part A 2016, 22, 1252–1257. [Google Scholar] [CrossRef]
- Donohue, P.J.; Jahnke, M.R.; Blaha, J.D.; Caterson, B. Characterization of link protein(s) from human intervertebral-disc tissues. Biochem. J. 1988, 251, 739–747. [Google Scholar] [CrossRef]
- Gawri, R.; Ouellet, J.; Onnerfjord, P.; Alkhatib, B.; Steffen, T.; Heinegard, D.; Roughley, P.; Antoniou, A.; Mwale, F.; Haglund, L. Link N is cleaved by human annulus fibrosus cells generating a fragment with retained biological activity. J. Orthop. Res. 2014, 32, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Mwale, F.; Masuda, K.; Grant, M.P.; Epure, L.M.; Kato, K.; Miyazaki, S.; Cheng, K.; Yamada, J.; Bae, W.C.; Muehleman, C.; et al. Short Link N promotes disc repair in a rabbit model of disc degeneration. Arthritis Res. Ther. 2018, 20, 201. [Google Scholar] [CrossRef] [PubMed]
- Alaqeel, M.; Grant, M.P.; Epure, L.M.; Salem, O.; AlShaer, A.; Huk, O.L.; Bergeron, S.G.; Zukor, D.J.; Kc, R.; Im, H.J.; et al. Link N suppresses interleukin-1β-induced biological effects on human osteoarthritic cartilage. Eur. Cell Mater. 2020, 39, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Gawri, R.; Antoniou, J.; Ouellet, J.; Awwad, W.; Steffen, T.; Roughley, P.; Haglund, L.; Mwale, F. Best paper NASS 2013: Link-N can stimulate proteoglycan synthesis in the degenerated human intervertebral discs. Eur. Cell Mater. 2013, 26, 107–119; discussion 119. [Google Scholar] [CrossRef]
- Wang, Z.; Hutton, W.C.; Yoon, S.T. ISSLS Prize winner: Effect of link protein peptide on human intervertebral disc cells. Spine 2013, 38, 1501–1507. [Google Scholar] [CrossRef]
- He, R.; Wang, B.; Cui, M.; Xiong, Z.; Lin, H.; Zhao, L.; Li, Z.; Wang, Z.; Peggrem, S.; Xia, Z.; et al. Link Protein N-Terminal Peptide as a Potential Stimulating Factor for Stem Cell-Based Cartilage Regeneration. Stem Cells Int. 2018, 2018, 3217895. [Google Scholar] [CrossRef]
- Antoniou, J.; Epure, L.M.; Grant, M.P.; Richard, H.; Sampalis, J.; Roughley, P.J.; Laverty, S.; Mwale, F. Short link N acts as a disease modifying osteoarthritis drug. Eur. Cell Mater. 2019, 37, 347–359. [Google Scholar] [CrossRef]
- Idolazzi, L.; Ridolo, E.; Fassio, A.; Gatti, D.; Montagni, M.; Caminati, M.; Martignago, I.; Incorvaia, C.; Senna, G. Periostin: The bone and beyond. Eur. J. Intern. Med. 2016, 38, 12–16. [Google Scholar] [CrossRef]
- Loeser, R.F.; Olex, A.L.; McNulty, M.A.; Carlson, C.S.; Callahan, M.F.; Ferguson, C.M.; Chou, J.; Leng, X.; Fetrow, J.S. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 2012, 64, 705–717. [Google Scholar] [CrossRef]
- Chou, C.H.; Wu, C.C.; Song, I.W.; Chuang, H.P.; Lu, L.S.; Chang, J.H.; Kuo, S.Y.; Lee, C.H.; Wu, J.Y.; Chen, Y.T.; et al. Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res. Ther. 2013, 15, R190. [Google Scholar] [CrossRef]
- Attur, M.; Yang, Q.; Shimada, K.; Tachida, Y.; Nagase, H.; Mignatti, P.; Statman, L.; Palmer, G.; Kirsch, T.; Beier, F.; et al. Elevated expression of periostin in human osteoarthritic cartilage and its potential role in matrix degradation via matrix metalloproteinase-13. FASEB J. 2015, 29, 4107–4121. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, K.; Amizuka, N.; Takeshita, S.; Takamatsu, H.; Katsuura, M.; Ozawa, H.; Toyama, Y.; Bonewald, L.F.; Kudo, A. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J. Bone Miner. Res. 1999, 14, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Jackson-Boeters, L.; Darling, M.R.; Rieder, M.J.; Hamilton, D.W. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta. J. Dent. Res. 2013, 92, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Butcher, J.T.; Norris, R.A.; Hoffman, S.; Mjaatvedt, C.H.; Markwald, R.R. Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Dev. Biol. 2007, 302, 256–266. [Google Scholar] [CrossRef]
- Inaki, R.; Fujihara, Y.; Kudo, A.; Misawa, M.; Hikita, A.; Takato, T.; Hoshi, K. Periostin contributes to the maturation and shape retention of tissue-engineered cartilage. Sci. Rep. 2018, 8, 11210. [Google Scholar] [CrossRef]
- Chijimatsu, R.; Kunugiza, Y.; Taniyama, Y.; Nakamura, N.; Tomita, T.; Yoshikawa, H. Expression and pathological effects of periostin in human osteoarthritis cartilage. BMC Musculoskelet. Disord. 2015, 16, 215. [Google Scholar] [CrossRef]
- Dai, M.W.; Chu, J.G.; Tian, F.M.; Song, H.P.; Wang, Y.; Zhang, Y.Z.; Zhang, L. Parathyroid hormone(1-34) exhibits more comprehensive effects than celecoxib in cartilage metabolism and maintaining subchondral bone micro-architecture in meniscectomized guinea pigs. Osteoarthr. Cartil. 2016, 24, 1103–1112. [Google Scholar] [CrossRef]
- Honsawek, S.; Wilairatana, V.; Udomsinprasert, W.; Sinlapavilawan, P.; Jirathanathornnukul, N. Association of plasma and synovial fluid periostin with radiographic knee osteoarthritis: Cross-sectional study. Jt. Bone Spine 2015, 82, 352–355. [Google Scholar] [CrossRef]
- Lourido, L.; Calamia, V.; Mateos, J.; Fernandez-Puente, P.; Fernandez-Tajes, J.; Blanco, F.J.; Ruiz-Romero, C. Quantitative proteomic profiling of human articular cartilage degradation in osteoarthritis. J. Proteome Res. 2014, 13, 6096–6106. [Google Scholar] [CrossRef]
- Rousseau, J.C.; Sornay-Rendu, E.; Bertholon, C.; Garnero, P.; Chapurlat, R. Serum periostin is associated with prevalent knee osteoarthritis and disease incidence/progression in women: The OFELY study. Osteoarthr. Cartil. 2015, 23, 1736–1742. [Google Scholar] [CrossRef]
- Tajika, Y.; Moue, T.; Ishikawa, S.; Asano, K.; Okumo, T.; Takagi, H.; Hisamitsu, T. Influence of Periostin on Synoviocytes in Knee Osteoarthritis. In Vivo 2017, 31, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Attur, M.; Duan, X.; Cai, L.; Han, T.; Zhang, W.; Tycksen, E.D.; Samuels, J.; Brophy, R.H.; Abramson, S.B.; Rai, M.F. Periostin loss-of-function protects mice from post-traumatic and age-related osteoarthritis. Arthritis Res. Ther. 2021, 23, 104. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, M.; Shiraishi, H.; Ohta, S.; Suzuki, S.; Arima, K.; Aoki, S.; Toda, S.; Inagaki, N.; Kurihara, Y.; Hayashida, S.; et al. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J. Clin. Investig. 2012, 122, 2590–2600. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Kii, I.; Kashima, T.G.; Kikuchi, Y.; Ohazama, A.; Shimazaki, M.; Fukayama, M.; Kudo, A. Delayed re-epithelialization in periostin-deficient mice during cutaneous wound healing. PLoS ONE 2011, 6, e18410. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Arima, K.; Masuoka, M.; Ohta, S.; Shiraishi, H.; Ontsuka, K.; Suzuki, S.; Inamitsu, M.; Yamamoto, K.I.; Simmons, O.; et al. Periostin controls keratinocyte proliferation and differentiation by interacting with the paracrine IL-1α/IL-6 loop. J. Investig. Dermatol. 2014, 134, 1295–1304. [Google Scholar] [CrossRef]
- Prakoura, N.; Kavvadas, P.; Kormann, R.; Dussaule, J.C.; Chadjichristos, C.E.; Chatziantoniou, C. NFκB-Induced Periostin Activates Integrin-β3 Signaling to Promote Renal Injury in GN. J. Am. Soc. Nephrol. 2017, 28, 1475–1490. [Google Scholar] [CrossRef]
- Trundle, J.; Cernisova, V.; Boulinguiez, A.; Lu-Nguyen, N.; Malerba, A.; Popplewell, L. Expression of the Pro-Fibrotic Marker Periostin in a Mouse Model of Duchenne Muscular Dystrophy. Biomedicines 2024, 12, 216. [Google Scholar] [CrossRef]
- Trundle, J.; Lu-Nguyen, N.; Malerba, A.; Popplewell, L. Targeted Antisense Oligonucleotide-Mediated Skipping of Murine Postn Exon 17 Partially Addresses Fibrosis in D2.mdx Mice. Int. J. Mol. Sci. 2024, 25, 6113. [Google Scholar] [CrossRef]
Genes | Primer Sequence |
---|---|
POSTN | F: 5′-TCTGTTTTAGACCCTTTTTCATTGTCCTTCT-3’ R: 5′-CTGCCATTTATGCTTAATTCCTTATTCTTGTG-3’ |
ACAN | F: 5′-TGAGTCCTCAAGCCTCCTGT-3’ R: 5′-CCTCTGTCTCCTTGCAGGTC-3’ |
COL2A1 | F: 5′-ATGACAATCTGGCTCCCAAC-3’ R: 5′-CTTCAGGGCAGTGTACGTGA-3’ |
SOX9 | F: 5′-TTCATGAAGATGACCGACGA-3’ R: 5′-CGCTCTCCTTCTTCAGATCG-3’ |
ADAMTS4 | F: 5′-TCCTGCAACACTGAGGACT-3’ R: 5′-GGTGAGTTTGCACTGGTCC-3’ |
ADAMTS5 | F: 5′-ACAAGGACAAGAGCCTGGAA-3’ R: 5′-ATCGTCTTCAATCACAGCACA-3’ |
MMP3 | F: 5′-GGCAGTTTGCTCAGCCTATC-3’ R: 5′-GAGTGTCGGAGTCCAGCTT-3’ |
MMP13 | F: 5′-TAAGGAGCATGGCGACTTC-3’ R: 5′-GGTCCTTGGAGTGGTCAAG-3’ |
TNFA | F: 5′-ACCACGCTCTTCTGCCT-3’ R: 5′-TACAACATGGGCTACAGGCTT-3’ |
GAPDH | F: 5′-GCTCTCCAGAACATCATCCCTGCC-3’ R: 5′-CGTTGTCATACCAGGAAATGAGCTT-3’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, S.Y.; Grant, M.P.; Epure, L.M.; Alad, M.; Lerouge, S.; Huk, O.L.; Bergeron, S.G.; Zukor, D.J.; Merle, G.; Im, H.-J.; et al. Advances in the Regulation of Periostin for Osteoarthritic Cartilage Repair Applications. Biomolecules 2024, 14, 1469. https://doi.org/10.3390/biom14111469
Shih SY, Grant MP, Epure LM, Alad M, Lerouge S, Huk OL, Bergeron SG, Zukor DJ, Merle G, Im H-J, et al. Advances in the Regulation of Periostin for Osteoarthritic Cartilage Repair Applications. Biomolecules. 2024; 14(11):1469. https://doi.org/10.3390/biom14111469
Chicago/Turabian StyleShih, Sunny Y., Michael P. Grant, Laura M. Epure, Muskan Alad, Sophie Lerouge, Olga L. Huk, Stephane G. Bergeron, David J. Zukor, Géraldine Merle, Hee-Jeong Im, and et al. 2024. "Advances in the Regulation of Periostin for Osteoarthritic Cartilage Repair Applications" Biomolecules 14, no. 11: 1469. https://doi.org/10.3390/biom14111469
APA StyleShih, S. Y., Grant, M. P., Epure, L. M., Alad, M., Lerouge, S., Huk, O. L., Bergeron, S. G., Zukor, D. J., Merle, G., Im, H.-J., Antoniou, J., & Mwale, F. (2024). Advances in the Regulation of Periostin for Osteoarthritic Cartilage Repair Applications. Biomolecules, 14(11), 1469. https://doi.org/10.3390/biom14111469