iPhyDSDB: Phytoplasma Disease and Symptom Database
<p>Diagram presenting the architecture, key features, and workflow involved in the construction of the Phytoplasma Disease and Symptom Database (<span class="html-italic">i</span>PhyDSDB) and website development.</p> "> Figure 2
<p>Phytoplasma infection-induced floral reversions that affect reproductive growth in plants. (<b>A</b>,<b>B</b>), virescence (<b>A</b>) and phyllody (<b>B</b>) in periwinkles. (<b>C</b>,<b>D</b>), big bud (<b>C</b>) and phyllody (<b>D</b>) symptoms in tomato plants. (<b>E</b>), phyllody symptoms in strawberry plants. This particular phyllody occurred in the infected carpel, also called carpel phylloid. (<b>F</b>), cauliflower-like inflorescence (CLI) in phytoplasma-infected tomato plants. Such inflorescence fails to produce normal flowers and set fruits. (<b>G</b>), multiple symptoms (virescence, phyllody, and big bud) occurred in the same periwinkle plant. Note: (<b>E</b>) is attributed to [<a href="#B23-biology-13-00657" class="html-bibr">23</a>]. Reproduced according to the terms of the Creative Commons Attribution License.</p> "> Figure 3
<p>Phytoplasma infection-induced abnormalities in plants. (<b>A</b>,<b>B</b>), witches’-broom symptoms caused by different phytoplasmas in periwinkles. (<b>C</b>), phytoplasma-induced stem fasciation in cucumbers. (<b>D</b>), healthy tomato fruit and seeds for comparison. E, vivipary symptom in tomato, where seeds germinated inside the fruit. (<b>F</b>), a close-up image of a yellow box in (<b>E</b>). (<b>G</b>), vivipary symptom in mung bean, where seeds germinated inside the bean pods. Note: (<b>C</b>) is attributed to [<a href="#B24-biology-13-00657" class="html-bibr">24</a>]; reproduced according to the terms of the Creative Commons Attribution License. (<b>G</b>) is attributed to the [<a href="#B25-biology-13-00657" class="html-bibr">25</a>] and is used with permission from the Journal (<a href="https://ww.tandfonline.com" target="_blank">https://ww.tandfonline.com</a>, Taylor & Francis Ltd.).</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Information on Plant Hosts of Phytoplasmas and Their Associated Symptoms
2.2. Phytoplasma Disease and Symptom Database Construction and Website Development
3. Results
3.1. Plant Host Range of Phytoplasmas
3.2. Phytoplasma-Induced Symptoms
3.3. Typical Symptoms Induced by Phytoplasma Infections
3.4. Other Symptoms Induced by Phytoplasma Infections
3.5. Symptomatic Complexity Is Caused by Phytoplasma-Induced Meristem Fate Changes
3.6. Phytoplasma Disease and Symptom Database (iPhyDSDB)
3.7. iPhyDSDB Website
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hogenhout, S.A.; Oshima, K.; Ammar, E.D.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria that manipulate plants and insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Davis, R.E.; Gundersen-Rindal, D.E. Phytoplasma: Phytopathogenic mollicutes. Annu. Rev. Microbiol. 2000, 54, 221–255. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhao, Y. Phytoplasma taxonomy: Nomenclature, classification, and identification. Biology 2022, 11, 1119. [Google Scholar] [CrossRef]
- Weintraub, P.G.; Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; MacLean, A.M.; Sugio, A.; Maqbool, A.; Busscher, M.; Cho, S.T.; Kamoun, S.; Kuo, C.H.; Immink, R.G.; Hogenhout, S.A. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell 2021, 184, 5201–5214. [Google Scholar] [CrossRef]
- Sugio, A.; MacLean, A.M.; Grieve, V.M.; Hogenhout, S.A. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. USA 2011, 108, 1254–1263. [Google Scholar] [CrossRef]
- MacLean, A.M.; Sugio, A.; Makarova, O.V.; Findlay, K.C.; Grieve, V.M.; Tóth, R.; Nicolaisen, M.; Hogenhout, S.A. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 2011, 157, 831–841. [Google Scholar] [CrossRef]
- Wei, W.; Davis, R.E.; Nuss, D.L.; Zhao, Y. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture. Proc. Natl. Acad. Sci. USA 2013, 110, 19149–19154. [Google Scholar] [CrossRef]
- Wei, W.; Davis, R.E.; Bauchan, G.R.; Zhao, Y. New symptoms identified in phytoplasma-infected plants reveal extra stages of pathogen-induced meristem fate-derailment. Mol. Plant-Microbe Interact. 2019, 32, 1314–1323. [Google Scholar] [CrossRef]
- Wei, W.; Zhao, Y.; Davis, R.E. Phytoplasma inoculum titre and inoculation timing influence symptom development in newly infected plants. Phytopathogenic Mollicutes 2019, 9, 115–116. [Google Scholar] [CrossRef]
- Wei, W.; Inaba, J.; Zhao, Y.; Mowery, J.D.; Hammond, R. Phytoplasma infection blocks starch breakdown and triggers chloroplast degradation, leading to premature leaf senescence, sucrose reallocation, and spatiotemporal redistribution of phytohormones. Int. J. Mol. Sci. 2022, 23, 1810. [Google Scholar] [CrossRef]
- Zwolińska, A.; Krawczyk, K.; Borodynko-Filas, N.; Pospieszny, H. Non-crop sources of Rapeseed Phyllody phytoplasma (‘Candidatus Phytoplasma asteris’: 16SrI-B and 16SrI-(B/L) L), and closely related strains. Crop Prot. 2019, 119, 59–68. [Google Scholar] [CrossRef]
- Marcone, C.; Valiunas, D.; Salehi, M.; Mondal, S.; Sundararaj, R. Phytoplasma diseases of trees. For. Microbiol. 2023, 3, 99–120. [Google Scholar]
- Wu, Y.; Zhang, F.; Yang, K.; Fang, S.; Bu, D.; Li, H.; Sun, L.; Hu, H.; Gao, K.; Wang, W.; et al. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019, 47, D1110–D1117. [Google Scholar] [CrossRef]
- Sharma, N.; Krishnan, P.; Kumar, R.; Ramoji, S.; Chetupalli, S.R.; Ghosh, P.K.; Ganapathy, S. Coswara—A database of breathing, cough, and voice sounds for COVID-19 diagnosis. arXiv 2020, arXiv:2005.10548. [Google Scholar]
- PlantVillage Dataset. Available online: https://www.kaggle.com/datasets/emmarex/plantdisease (accessed on 10 September 2023).
- Namba, S. Phytoplasmas: A century of pioneering research. J. Gen. Plant Pathol. 2011, 77, 345–349. [Google Scholar] [CrossRef]
- Rao, G.P.; Rao, A.; Kumar, M.; Ranebennur, H.; Mitra, S.; Singh, A.K. Identification of phytoplasma in six fruit crops in India. Eur. J. Plant Pathol. 2020, 156, 1197–1206. [Google Scholar] [CrossRef]
- Kastal’eva, T.B.; Bogoutdinov, D.Z.; Bottner-Parker, K.D.; Girsova, N.V.; Lee, I.M. Diverse phytoplasmas associated with diseases in various crops in Russia–pathogens and vectors. Agric. Biol. 2016, 51, 367–375. [Google Scholar] [CrossRef]
- Rao, G.P. Our understanding about phytoplasma research scenario in India. Indian Phytopathol. 2021, 74, 371–401. [Google Scholar] [CrossRef]
- Inaba, J.; Wei, W. Phytoplasma Infection-Induced Vegetative and Reproductive Abnormalities in Host Plants; Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture: Beltsville, MD, USA, 2024; Unpublished work.
- Çarpar, H.; Sertkaya, G. Investigation on phytoplasma diseases, their potential insect vectors and other hosts in pepper (Capsicum annuum L.) growing areas of Hatay-Turkey. Mustafa Kemal Üniversitesi Tarım Bilim. Derg. 2022, 27, 241–252. [Google Scholar] [CrossRef]
- Pérez-López, E. Strawberry green petal disease: Beautiful symptoms, devastating disease. Rev. Biol. Trop. 2019. [Google Scholar]
- Wang, X.; Hu, Q.; Wang, J.; Lou, L.; Xu, X.; Chen, X. Comparative Biochemical and Transcriptomic Analyses Provide New Insights into Phytoplasma Infection Responses in Cucumber. Genes 2022, 13, 1903. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, K.P.; Sarwar, G.; Abbas, G.; Asghar, M.J.; Sarwar, N.; Hamed, M. Mungbean phyllody disease in Pakistan: Symptomatology, transmission, varietal response and effects on yield characteristics. Int. J. Pest Manag. 2012, 58, 139–145. [Google Scholar] [CrossRef]
- Iliev, I.; Kitin, P. Origin, morphology, and anatomy of fasciation in plants cultured in vivo and in vitro. Plant Growth Regul. 2011, 63, 115–129. [Google Scholar] [CrossRef]
- Mitra, S.; Debnath, P.; Bahadur, A.; Chandra Das, S.; Yadav, A.; Rao, G.P. First report on ‘Candidatus Phytoplasma asteris’(16SrI-B subgroup) strain associated with pineapple shoot proliferation and witches’-broom symptoms in Tripura, India. Plant Dis. 2019, 103, 2941. [Google Scholar] [CrossRef]
- Silva, F.N.; Queiroz, R.B.; Souza, A.N.; Al-Sadi, A.M.; Siqueira, D.L.; Elliot, S.L.; Carvalho, C.M. First report of a 16SrII-C phytoplasma associated with asymptomatic acid lime (Citrus aurantifolia) in Brazil. Plant Dis. 2014, 98, 1577. [Google Scholar] [CrossRef]
- Mpunami, A.; Pilet, F.; Fabre, S.; Kullaya, A.; Dickinson, M.; Dollet, M. Spatial distribution of the different strains of the distinct coconut lethal yellowing-type phytoplasma species associated with the syndrome in Tanzania. Trop. Plant Pathol. 2021, 46, 207–217. [Google Scholar] [CrossRef]
- Harrison, N.A.; Jones, P. Disease caused by a phytoplasma: Lethal yellowing. Compend. Ornam. Palm Dis. Disord. 2004, 39–41. [Google Scholar]
- Al-Yahyai, R.; Al-Subhi, A.; Al-Sabahi, J.; Al-Said, F.; Al-Wahaibi, K.; Al-Sadi, A.M. Chemical composition of acid lime leaves infected with Candidatus Phytoplasma aurantifolia. Agric. Sci. 2014, 5, 41949. [Google Scholar]
- Quiroga, N.; Gamboa, C.; Medina, G.; Contaldo, N.; Torres, F.; Bertaccini, A.; Zamorano, A.; Fiore, N. Survey for ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ in Citrus in Chile. Pathogens 2021, 11, 48. [Google Scholar] [CrossRef]
- Inaba, J.; Shao, J.; Trivellone, V.; Zhao, Y.; Dietrich, C.H.; Bottner-Parker, K.D.; Ivanauskas, A.; Wei, W. Guilt by Association: DNA Barcoding-Based Identification of Potential Plant Hosts of Phytoplasmas from Their Insect Carriers. Phytopathology® 2023, 113, 413–422. [Google Scholar] [CrossRef]
- Staudacher, K.; Wallinger, C.; Schallhart, N.; Traugott, M. Detecting ingested plant DNA in soil-living insect larvae. Soil Biol. Biochem. 2011, 43, 346–350. [Google Scholar] [CrossRef]
- Jurado-Rivera, J.A.; Vogler, A.P.; Reid, C.A.; Petitpierre, E.; Gómez-Zurita, J. DNA barcoding insect–host plant associations. Proc. R. Soc. B Biol. Sci. 2009, 276, 639–648. [Google Scholar] [CrossRef]
Plant Growth Disorder | Brief Description of the Disorder | Meristem Activity | Reference |
---|---|---|---|
Virescence | Abnormal greening of flower petals or other floral structures | Premature termination of floral meristem (FM) | [9] |
Phyllody | Floral parts, such as petals, stamens, and carpels, transform into leaf-like structures | Premature termination of FM | [8,9] |
Cauliflower-like inflorescence (CLI) | Abnormal, cauliflower-like growths on the plant’s inflorescence structures | Repetitive initiation of inflorescence meristems in place of floral meristems. The formation and development of FM had been suppressed at this stage. Although floral organ primordia may sometimes be visible, they hardly progress to further development. | [8,9] |
Witches’-broom | Abnormal proliferation of shoots, resulting in a dense cluster of small branches resembling a broom | Repetitive initiation of lateral vegetive meristem from each leaf axil. | [8,9] |
Vivipary | Precocious seed germination while still attached to the mother plant | Premature activation of the embryonic apical meristems without dormancy; affects the developmental programming of the seedling. | [9] |
Stem fasciation | Abnormal growth is characterized by flattening, swelling, fusion, or elongation of the stem | Disrupted meristem cell organization and enhanced activity of apical meristem * | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Shao, J.; Zhao, Y.; Inaba, J.; Ivanauskas, A.; Bottner-Parker, K.D.; Costanzo, S.; Kim, B.M.; Flowers, K.; Escobar, J. iPhyDSDB: Phytoplasma Disease and Symptom Database. Biology 2024, 13, 657. https://doi.org/10.3390/biology13090657
Wei W, Shao J, Zhao Y, Inaba J, Ivanauskas A, Bottner-Parker KD, Costanzo S, Kim BM, Flowers K, Escobar J. iPhyDSDB: Phytoplasma Disease and Symptom Database. Biology. 2024; 13(9):657. https://doi.org/10.3390/biology13090657
Chicago/Turabian StyleWei, Wei, Jonathan Shao, Yan Zhao, Junichi Inaba, Algirdas Ivanauskas, Kristi D. Bottner-Parker, Stefano Costanzo, Bo Min Kim, Kailin Flowers, and Jazmin Escobar. 2024. "iPhyDSDB: Phytoplasma Disease and Symptom Database" Biology 13, no. 9: 657. https://doi.org/10.3390/biology13090657
APA StyleWei, W., Shao, J., Zhao, Y., Inaba, J., Ivanauskas, A., Bottner-Parker, K. D., Costanzo, S., Kim, B. M., Flowers, K., & Escobar, J. (2024). iPhyDSDB: Phytoplasma Disease and Symptom Database. Biology, 13(9), 657. https://doi.org/10.3390/biology13090657