Spatio-Functional Nadaraya–Watson Estimator of the Expectile Shortfall Regression
<p>The ARCH process for <math display="inline"><semantics> <mrow> <msup> <mi>α</mi> <mo>′</mo> </msup> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The SO<sub>2</sub> and O<sub>3</sub> daily curves.</p> "> Figure 3
<p>Comparison of the <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <mi>E</mi> </mrow> </semantics></math> values between FESR-expectile and FESR-VaR without detrending cases. The black line represents <math display="inline"><semantics> <mover accent="true"> <mrow> <mi>R</mi> <mi>E</mi> <msub> <mi>A</mi> <mi>p</mi> </msub> </mrow> <mo>^</mo> </mover> </semantics></math>, and the red line represents <math display="inline"><semantics> <mover accent="true"> <mrow> <mi>R</mi> <mi>E</mi> <msub> <mi>S</mi> <mi>p</mi> </msub> </mrow> <mo>˜</mo> </mover> </semantics></math>.</p> "> Figure 4
<p>Comparison of the <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>S</mi> <mi>E</mi> </mrow> </semantics></math> values between FESR-expectile and FESR-VaR with detrending cases. The black line represents <math display="inline"><semantics> <mover accent="true"> <mrow> <mi>R</mi> <mi>E</mi> <msub> <mi>A</mi> <mi>p</mi> </msub> </mrow> <mo>^</mo> </mover> </semantics></math>, and the red line represents <math display="inline"><semantics> <mover accent="true"> <mrow> <mi>R</mi> <mi>E</mi> <msub> <mi>S</mi> <mi>p</mi> </msub> </mrow> <mo>˜</mo> </mover> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Model and Estimator
3. Main Asymptotic Result
- (P1)
- where .
- (P2)
- , ,
- (P3)
- The sequence such that
- (P4)
- is a function with support such that< F(t) < C ′< ∞.
- (P5)
- There exists , such that,
- Comments on the hypotheses.
- Hypothesis (P1) is checked for several continuous time processes (see, for instance, [40] for a general Gaussian process). The local dependency in the first part (P3) allows us to obtain the same convergence rate as in the i.i.d. case. These hypotheses could be weakened, but the convergence rate would be perturbed by the presence of covariance terms (see Liebscher [41]). (P3) is a mild regularity hypothesis imposed to evaluate the bias term. The assumptions (P4)–(P5) are technical conditions for simplifying the proofs.
4. Simulated Data
5. Real Data Application
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cressie, N.A. Statistics for Spatial Data; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Diggle, P.; Ribeiro, P.J. Model-Based Geostatistics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Tran, L.T. Kernel density estimation on random fields. J. Multivar. Anal. 1990, 34, 37–53. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, X. Spatial kernel regression: Weak consistency. Statist. Probab. Lett. 2004, 68, 125–136. [Google Scholar] [CrossRef]
- Biau, G.; Cadre, B. Nonparametric spatial prediction. Stat. Inference Stoch. Process. 2004, 7, 327–349. [Google Scholar] [CrossRef]
- García-Soidán, P.H.; Febrero-Bande, M.; González-Manteiga, W. Nonparametric kernel estimation of an isotropic variogram. J. Stat. Plan. Inference 2004, 121, 65–92. [Google Scholar] [CrossRef]
- Hallin, M.; Lu, Z.; Tran, L.T. Local linear spatial regression. Ann. Stat. 2004, 32, 2469–2500. [Google Scholar] [CrossRef]
- Carbon, M.; Francq, C.; Tran, L.T. Kernel regression estimation for random fields. J. Stat. Plan. Inference 2007, 137, 778–798. [Google Scholar] [CrossRef]
- Xu, R.; Wang, J. L1-estimation for spatial nonparametric regression. J. Nonparametr. Stat. 2008, 20, 523–537. [Google Scholar] [CrossRef]
- Li, J.; Tran, L.T. Nonparametric estimation of conditional expectation. J. Stat. Plan. Inference 2009, 139, 164–175. [Google Scholar] [CrossRef]
- Dabo-Niang, S.; Yao, A.F. Kernel regression estimation for continuous spatial processes. Math. Meth. Stat. 2007, 16, 298–317. [Google Scholar] [CrossRef]
- Laksaci, A.; Maref, F. Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes. C. R. Math. 2009, 347, 1075–1080. [Google Scholar] [CrossRef]
- Mohammedi, M.; Bouzebda, S.; Laksaci, A. The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data. J. Multivar. Anal. 2021, 181, 104673. [Google Scholar] [CrossRef]
- Aneiros, G.; Cao, R.; Fraiman, R.; Genest, C.; Vieu, P. Recent advances in functional data analysis and high-dimensional statistics. J. Multivar. Anal. 2019, 170, 3–9. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Bouzebda, S.; Kaid, Z.; Laksaci, A. The local linear functional kNN estimator of the conditional expectile: Uniform consistency in number of neighbors. Metrika 2024, 1–29. [Google Scholar] [CrossRef]
- Litimein, O.; Laksaci, A.; Ait-Hennani, L.; Mechab, B.; Rachdi, M. Asymptotic normality of the local linear estimator of the functional expectile regression. J. Multivar. Anal. 2024, 202, 105281. [Google Scholar] [CrossRef]
- Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Coherent measures of risk. Math. Financ. 1999, 9, 203–228. [Google Scholar] [CrossRef]
- Righi, M.B.; Ceretta, P.S. A comparison of expected shortfall estimation models. J. Econ. Bus. 2015, 78, 14–47. [Google Scholar] [CrossRef]
- Lazar, E.; Pan, J.; Wang, S. On the estimation of Value-at-Risk and Expected Shortfall at extreme levels. J. Commod. Mark. 2024, 34, 100391. [Google Scholar] [CrossRef]
- Moutanabbir, K.; Bouaddi, M. A new non-parametric estimation of the expected shortfall for dependent financial losses. J. Stat. Plan. Inference 2024, 232, 106151. [Google Scholar] [CrossRef]
- Scaillet, O. Nonparametric estimation and sensitivity analysis of expected shortfall. Math. Financ. Int. J. Math. Stat. Financ. Econ. 2004, 14, 115–129. [Google Scholar] [CrossRef]
- Ferraty, F.; Quintela-Del-Río, A. Conditional VAR and expected shortfall: A new functional approach. Econom. Rev. 2016, 35, 263–292. [Google Scholar] [CrossRef]
- Ait-Hennani, L.; Kaid, Z.; Laksaci, A.; Rachdi, M. Nonparametric estimation of the expected shortfall regression for quasi-associated functional data. Mathematics 2022, 10, 4508. [Google Scholar] [CrossRef]
- Waltrup, L.S.; Sobotka, F.; Kneib, T.; Kauermann, G. Expectile and quantile regression—David and Goliath? Stat. Model. 2015, 15, 433–456. [Google Scholar] [CrossRef]
- Bellini, F.; Di Bernardino, E.D. Risk management with expectiles. Eur. J. Financ. 2017, 23, 487–506. [Google Scholar] [CrossRef]
- Bellini, F.; Negri, I.; Pyatkova, M. Backtesting VaR and expectiles with realized scores. Stat. Methods Appl. 2019, 28, 119–142. [Google Scholar] [CrossRef]
- Farooq, M.; Steinwart, I. Learning rates for kernel-based expectile regression. Mach. Learn. 2019, 108, 203–227. [Google Scholar] [CrossRef]
- Efron, B. Regression percentiles using asymmetric squared error loss. Stat. Sin. 1991, 1, 93–125. [Google Scholar]
- Sobotka, F.; Kneib, T. Geoadditive expectile regression. Comput. Stat. Data Anal. 2012, 56, 755–767. [Google Scholar] [CrossRef]
- Jiang, C.; Jiang, M.; Xu, Q.; Huang, X. Expectile regression neural network model with applications. Neurocomputing 2017, 247, 73–86. [Google Scholar] [CrossRef]
- Daouia, A.; Girard, S.; Stupfler, G. Estimation of tail risk based on extreme expectiles. J. R. Stat. Soc. Ser. B Stat. Methodol. 2018, 80, 263–292. [Google Scholar] [CrossRef]
- Maume-Deschamps, V.; Rullière, D.; Said, K. Multivariate extensions of expectiles risk measures. Depend. Model. 2017, 5, 20–44. [Google Scholar] [CrossRef]
- Maume-Deschamps, V.; Rullière, D.; Said, K. Asymptotics multivariate expectiles. arXiv 2018, arXiv:1704.07152v2. [Google Scholar]
- Girard, S.; Stupfler, G.; Usseglio-Carleve, A. Functional estimation of extreme conditional expectiles. Econom. Stat. 2022, 21, 131–158. [Google Scholar] [CrossRef]
- Goia, A.; Vieu, P. An introduction to recent advances in high/infinite dimensional statistics. J. Multivar. Anal. 2016, 170, 1–6. [Google Scholar] [CrossRef]
- Yu, D.; Pietrosanu, M.; Mizera, I.; Jiang, B.; Kong, L.; Tu, W. Functional Linear Partial Quantile Regression with Guaranteed Convergence for Neuroimaging Data Analysis. Stat. Biosci. 2024, 1–17. [Google Scholar] [CrossRef]
- Di Bernardino, E.; Laloe, T.; Pakzad, C. Estimation of extreme multivariate expectiles with functional covariates. J. Multivar. Anal. 2024, 202, 105292. [Google Scholar] [CrossRef]
- Guyon, X. Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. In Proceedings of the Sixth Franco-Belgian Meeting of Statisticians, Bruxelles, Belguim, 14–15 November 1987. [Google Scholar]
- Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice; Springer Series in Statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Li, W.V.; Shao, Q.M. Gaussian processes: Inequalities, small ball probabilities and applications. Hanbook Stat. 2001, 19, 533–597. [Google Scholar]
- Liebscher, E. Estimation of the density and the regression function under mixing conditions. Stat. Decis. 2001, 19, 9–26. [Google Scholar] [CrossRef]
- Rachdi, M.; Laksaci, A.; Al-Kandari, N.M. Expectile regression for spatial functional data analysis (sFDA). Metrika 2022, 85, 627–655. [Google Scholar] [CrossRef]
- Hallin, M.; Lu, Z.; Yu, K. Local linear spatial quantile regression. Bernoulli 2009, 15, 659–686. [Google Scholar] [CrossRef]
- Bayer, S.; Dimitriadis, T. Regression-Based Expected Shortfall Backtesting. J. Financ. Econom. 2022, 20, 437–471. [Google Scholar] [CrossRef]
- Hassani, H.; Silva, E.S. A Kolmogorov-Smirnov based test for comparing the predictive accuracy of two sets of forecasts. Econometrics 2015, 3, 590–609. [Google Scholar] [CrossRef]
Model | n1 | n2 | SWM | MSE (0.01) | MSE (0.05) | MSE (0.5) | MSE (0.90) | ||
---|---|---|---|---|---|---|---|---|---|
M1 | 20 | 50 | 0.09 | 0.03 | Queen | 0.023 | 0.018 | 0.014 | 0.026 |
50 | 30 | 0.09 | 0.03 | Bishop | 0.034 | 0.027 | 0.018 | 0.032 | |
20 | 30 | 0.79 | 0.93 | Bishop | 0.042 | 0.032 | 0.026 | 0.045 | |
20 | 50 | 0.09 | 0.03 | Rook | 0.042 | 0.020 | 0.018 | 0.037 | |
50 | 30 | 0.79 | 0.03 | Rook | 0.021 | 0.016 | 0.022 | 0.031 | |
M2 | 20 | 50 | 0.09 | 0.03 | Queen | 0.045 | 0.036 | 0.028 | 0.044 |
50 | 30 | 0.09 | 0.03 | Bishop | 0.071 | 0.053 | 0.026 | 0.059 | |
20 | 30 | 0.75 | 0.93 | Bishop | 0.096 | 0.052 | 0.048 | 0.105 | |
20 | 50 | 0.09 | 0.03 | Rook | 0.086 | 0.054 | 0.032 | 0.049 | |
50 | 30 | 0.79 | 0.03 | Rook | 0.039 | 0.025 | 0.047 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamari, M.B.; Almulhim, F.A.; Kaid, Z.; Laksaci, A. Spatio-Functional Nadaraya–Watson Estimator of the Expectile Shortfall Regression. Axioms 2024, 13, 678. https://doi.org/10.3390/axioms13100678
Alamari MB, Almulhim FA, Kaid Z, Laksaci A. Spatio-Functional Nadaraya–Watson Estimator of the Expectile Shortfall Regression. Axioms. 2024; 13(10):678. https://doi.org/10.3390/axioms13100678
Chicago/Turabian StyleAlamari, Mohammed B., Fatimah A. Almulhim, Zoulikha Kaid, and Ali Laksaci. 2024. "Spatio-Functional Nadaraya–Watson Estimator of the Expectile Shortfall Regression" Axioms 13, no. 10: 678. https://doi.org/10.3390/axioms13100678
APA StyleAlamari, M. B., Almulhim, F. A., Kaid, Z., & Laksaci, A. (2024). Spatio-Functional Nadaraya–Watson Estimator of the Expectile Shortfall Regression. Axioms, 13(10), 678. https://doi.org/10.3390/axioms13100678