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Abstract: The main aim of this paper is to consider a new risk metric that permits taking into account
the spatial interactions of data. The considered risk metric explores the spatial tail-expectation of the
data. Indeed, it is obtained by combining the ideas of expected shortfall regression with an expectile
risk model. A spatio-functional Nadaraya–Watson estimator of the studied metric risk is constructed.
The main asymptotic results of this work are the establishment of almost complete convergence under
a mixed spatial structure. The claimed asymptotic result is obtained under standard assumptions
covering the double functionality of the model as well as the data. The impact of the spatial interaction
of the data in the proposed risk metric is evaluated using simulated data. A real experiment was
conducted to measure the feasibility of the Spatio-Functional Expectile Shortfall Regression (SFESR)
in practice.
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1. Introduction

Currently, the spatial correlation of data has a potential impact on financial risk
management. Indeed, with the rapid development of internet technology, investors
are increasingly interested in international financial assets, which requires taking into
account the spatial dependence of international stock markets. Of course, unlike standard
spatial data analysis, the spatial correlation in spatio-financial time series data is not
necessarily measured by the geographic coordinates of the stock markets. This is the
principal motivation for introducing a financial risk metric to cover the spatial component
of risk management. Recall that spatial data cannot be treated as independent (see [1,2],
among others). In practice, the challenging issue of spatial data analysis comes from the
fact that points are in multi-dimensional space without linear order.

Statistical analysis of spatial data has become widely developed in the last decade.
Concerning the nonparametric approach, the first results were obtained by the author
of [3], who obtained the asymptotic normality for the density kernel estimator. The regres-
sion function was studied in [4,5], in which the authors employed an estimator from the
Nadaraya–Watson weights techniques. We refer to [6] for the nonparametric kernel esti-
mator for the variogram, considering Nadaraya–Watson weights. Ref. [7] investigated the
local linear estimation for the regression function (see also [8] for the spatial auto-regression
model) and proved the uniform convergence of the constructed estimator. Their conver-
gence rate is optimal according to the L∞-norm. In [9], we found an alternative local linear
estimator of the spatial regression, which was obtained using the least absolute deviation.
In this cited work, the authors have derived the asymptotic normality of their estimator.
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We return to [10] for estimation using the nearest neighbor method. In functional statistics,
the authors of [11] have constructed an estimator using the spatiotemporal process. They
proved the almost complete convergence (a.co.) of their estimator when the input variable
is a continuous time process. The spatial quantile regression was estimated by [12]. Their
estimator was constructed by inverting the estimator of the cumulative distribution func-
tion. For a more bibliographic discussion of spatio-functional data analysis, we refer the
reader to [13–16].

The second important component of this study is the shortfall function (ES). This is a
risk management model and was created by [17]. The principal motivation of the expected
shortfall function as a risk metric is its coherency property. The estimation of the ES
model is performed using multiple algorithms such as parametric, nonparametric, or semi-
parametric approaches. The recent advances and references on the parametric approaches
can be found in [18–20]. While the nonparametric estimation was developed by [21], we
also cite [22] for the functional Nadaraya–Watson estimator of the functional expected
shortfall regression (FESR), in which the authors studied the asymptotic properties of FESR
under the mixing assumption. The weak dependence case was treated by the authors
of [23], who almost established complete consistency of the kernel estimator of the FESR
using the quasi-associated structure. We point out that in previous studies, the expected
loss in FSER is defined through the Value at Risk (VaR)-level, the so-called FSER-VaR. In this
work, we introduce an alternative risk threshold defined by the expectile regression, the
so-called FSER-expectile. The expectile regression is an alternative risk metric based on
tail expectation, unlike the VaR function, which is based on tail frequency. For this reason,
the use of the expectile instead of the VaR function is more informative because it is more
sensitive to outliers. This feature increases its ability to fit the financial risk located in the
extreme values. In recent years, the expectile model has gained popularity in risk analysis
(see, for instance, [24–27] for more motivations for these models). Although previous
studies focus on the unconditional models, in this paper, we focus on the regression case.
This version of the expectile has been studied in multivariate statistics by many authors.
The first results date back to [28]. In the last decade, multivariate expectile regression has
been employed for many statistical issues, including additive models [29], neural network
models [30], and machine learning models [27]. However, financial risk analysis seems
to be the principal applied area of the expectile regression model. In this context, ref. [31]
proposes an estimation of the value at risk (VaR) using an expectile model. Ref. [32] presents
different approaches used to preserve the coherence properties of multivariate expectiles.
The same authors in [33] established the asymptotic behavior of the multivariate expectiles
for the Fréchet model. The treatment of the functional case was recently considered in [13],
in which the authors considered expectile regression (ER) with a functional covariate. They
constructed an estimator of the functional ER using the nonparametric kernel approach.
An alternative approach was studied by the authors of [34] using the functional parametric
ER. The authors employed a Hilbert structure using a reproducing kernel. More recent
advances in functional expectile regression can be found in [15] and the references therein.
We may return to [35–37] for more recent development in FTSA.

As discussed below, the main purpose of the present paper is to introduce a new
risk metric based on the expectile shortfall regression. The developed risk metric has
many advantages over the old shortfall model. These advantages are because the expectile
is elicitable and coherent, unlike the VaR, and additionally, it is more sensitive to the
magnitude of the tail, unlike the VaR function. Thus, the expectile shortfall with expectile
(ESE) is more efficient than the standard shortfall. In this paper, we consider a more
complex functional structure based on the spatial correlation. The spatial correlation is
more general than the standard functional time series structure. It allows for controlling the
spatial interaction of the data, which is more interactive in risk management. Furthermore,
the principal outcomes of this work are the construction of a computational estimator and
the establishment of its asymptotic properties using spatial dependence. The practical use
of this risk metric is evaluated using simulated and real data. To the best of our knowledge,
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spatial expected shortfall regression has not yet been fully explored, and this is the first
study in this direction.

This paper is organized as follows: We present our model as well as its spatial estimator
in the next section. Section 2 is dedicated to introducing the spatio-functional time series
framework. The almost complete convergence of the constructed estimator is shown in
Section 3. Section 4 is devoted to examining the easy implementation of the estimator
using simulated data. In Section 5, we apply our model to analyze the extreme values
in environmental time series data. Some concluding remarks, as well as some future
prospects, are discussed in Section 6. Finally, the proofs of the auxiliary results are given
in Appendix A.

2. Model and Estimator

Consider (Ai, Bi), i ∈ ZZN , N ≥ 1 , a stationary spatial process defined on a prob-
ability space (Ω, A, IP) and valued F × IR. F is a semi-metric space with d denoting
the corresponding semi-metric. A point i will be referred to as a site and is defined by
the components (i1, . . . , iN) ∈ ZZN . In this work, we focus on increasing domain asymp-
totic, where the underlining process, (Ai, Bi), is observed over a rectangular domain
In =

{
i = (i1, . . . , iN) ∈ ZZN , 1 ≤ ik ≤ nk, k = 1, . . . , N}, n = (n1, . . . , nN) ∈ ZZN . There-

fore, the index-vector n → ∞ means min{nk} → ∞ and | nj
nk
| < C for all j, k such that

1 ≤ j, k ≤ N and for a given constant C such that 0 < C < ∞. This kind of design is known
as an asymptotically increasing domain, which allows the area of observations to become
larger without large distances between the sites. Moreover, for n = (n1, . . . , nN) ∈ ZZN , we
set n = ∏N

i=1 ni. The spectral structure of the functional random field (Ai, Bi), i ∈ ZZN , is
controlled through the following mixing condition:

There exists a function ψ(t) ↓ 0 as t → ∞, such that
∀X , X ′

subsets of ZZN has finite cardinals
α
(
B(X ), B

(
X ′
))

= sup
B∈B(X ), C∈B(X ′)

|IP(B ∩ C)− IP(B)IP(C)|

≤ ϕ
(

Card(X ), Card(X ′
)
)

ψ
(

dist
(
X ,X ′

))
,

(1)

where B(X ) (respectively, B(X ′
)) means the Borel σ-field generated by (Ai, i ∈ X ) (respec-

tively,
(

Ai, i ∈ X ′
)

), Card(X ) (respectively, Card(X ′
)) is the cardinality of X (respectively,

X ′
), dist

(
X ,X ′

)
is the Euclidean distance between X and X ′

and ϕ : ZZ2 → IR+ is a sym-
metric positive function nondecreasing in each variable, such that ∀n, m,∈ ZZ

ϕ(n, m) ≤ C min(n, m), C > 0. (2)

∞

∑
i=1

iδψ(i) < ∞, δ > 0. (3)

Note that condition (2) can be replaced by

ϕ(n, m) ≤ C(n + m + 1)β̃ for some β̃ > 1. (4)

Both conditions (2) and (4) are used in Tran [3] and Carbon et al. [8], and are satisfied by
many spatial models (see [38] for some examples). It should be noted that if N = 1, then
(Ai, Bi) is called a strongly mixing process.

Throughout this paper, for a fixed point z ∈ F , we denote by Nz for a given neigh-
borhood of z. We assume that (Ai, Bi)’s have the same distribution as (A, B). We put
CDF(·|z′), the conditional distribution of B given A = z′, and we assume the regular
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version of this conditional distribution exists for any z′ ∈ Nz. Additionally, we suppose
that CDF(·|z) has a continuous density f (·|z) with respect to Lebesgue’s measure over IR.

Recall that the standard FESR regression is defined

for all z ∈ F , by RESp(z) = IE
[
B|B > RVaRp(z), A = z

]
,

where RVaRp is the conditional quantile of order 1 − p. Clearly, it is defined through the
tail quantile, which is frequency-tail. Alternatively, it would be more interesting to evaluate
this metric using the expectation tail. To do that, we introduce the FESR-expectile defined

for all z ∈ F , by REAp(z) = IE
[
B|B > REXPp(z), A = z

]
,

where REXPp is

the expectile regression REXPp(z) = arg min
t∈IR

{
IE
[

p(B − t)21I{(B−t)>0} | A = z
]

+ IE
[
(1 − p)(B − t)21I{(B−t)≤0} | A = z

]}
,

where 1C is the indicator function of the set C. It should be noted that the replacement
of RVaRp by REXPp is important in practice, as it permits remedying the lack of risk
insensitivity of RVaRp to the extreme values.

Now, to estimate REAp(z) using the kernel estimator, we consider F(·), a measurable
function, r = rn a positive sequence of real numbers tending to zero as n tends to infinity,
and we estimate the FESR-expectile by

R̂EAp(z) =

∑
i∈In

F
[
r−1d(z, Ai)

]
Bi1Bi>R̂EXPp(z)

∑
i∈In

F
(

r−1d(z, Ai)
) , (5)

where R̂EXPp is the kernel estimator of REXPp, defined as the solution of

Ĝ(R̂EXPp(t; z)) =
p

1 − p

with

G̃(t; z) =

− ∑
i∈In

Fni(z)(Bi − t)1I{(Bi−t)≤0}

∑
i∈In

Fni(z)(Bi − t)1I{(Bi−t)>0}
, for t ∈ IR,

where

Fni(z) =
F
[
r−1d(z, Ai)

]
∑

i∈In

F
[
r−1d(z, Ai)

] .

We refer to [13] for more discussion on the construction of the estimator R̂EXPp.

While the estimator R̂EAp is constructed using similar ideas to those used for classical
regression [39], it is clear that the choice of the parameter r is primordial in this smoothing
approach. It is crucial for the estimation of R̂EAp as well as for R̂EXPp. Motivated by the
strong relationship between the expectile and the mean squared error (MSE), the MSE-
based cross-validation criterion is an appropriate rule with which to address this issue.
The latter is common in nonparametric functional data analysis:

ropt = arg min
r ∑

i∈In

(
Bi − R̂EXP0.5(Ai)

)2
. (6)
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The popularity of this approach comes from its easy implementation in real data analysis,
using the fact that the conditional mean IE[Y|X] is associated with R̂EXPp with p = 0.5.

3. Main Asymptotic Result

Before stating the asymptotic properties of the estimator R̂EAp, we need to introduce
some notations and assumptions. Firstly, we set Cz or C′

z as some strictly positive generic
constants, and for all t ∈ IR, we define ES(t, z) = IE[B1B>t| A = z]. Now, to formulate our
main results, we will use the hypotheses listed below:

(P1) P(A ∈ B(z, r)) = ϕ(z, r) > 0 where B(z, r) = {x′ ∈ F : d(z′, z) < r}.

(P2) ∃δ > 0, ∀(t1, t2) ∈ [REXPp(z)− δ, REXPp(z) + δ], ∀(z1, z2) ∈ N2
x ,

|ES(t1, z1)− ES(t2, z2)| ≤ Cx

(
db(z1, z2) + |t1 − t2|b

)
, b > 0.

(P3) The sequence (Ai, Bi)i∈In such that

∀i ̸= j, 0 < sup
i ̸=j

IP
[
(Ai, Aj) ∈ B(x, r)× B(x, r)

]
≤ C1(ϕ(z, r))(a+1)/a,

for some 1 < a < δN−1.
∀t ∈ [θx − δ, θx + δ], IE

[
BiBj|Ai, Aj

]
≤ C < ∞,

IE
[
|B|2|X

]
< C < ∞ and IE

[
|B|p

]
< C < ∞, p > 1

(P4) F is a function with support (0, 1) such that
0 < C1I(0,1) < F(t) < C′1I(0,1) < ∞.

(P5) There exists η0 > 0, such that,

Cn
(b−1)N−bδ

bδ +η0 ≤ ϕ(z, r)

Comments on the hypotheses.
Hypothesis (P1) is checked for several continuous time processes (see, for instance, [40]
for a general Gaussian process). The local dependency in the first part (P3) allows us to
obtain the same convergence rate as in the i.i.d. case. These hypotheses could be weakened,
but the convergence rate would be perturbed by the presence of covariance terms (see
Liebscher [41]). (P3) is a mild regularity hypothesis imposed to evaluate the bias term. The
assumptions (P4)–(P5) are technical conditions for simplifying the proofs.

Now, we obtain the convergence rate of the almost complete convergence (a.co.)
of the estimator R̂EAp(z) to REAp(z). This stochastic convergence is stronger than the
convergence in probability and almost sure convergence.

Theorem 1. Under the suppositions (P1)–(P5), we have

∣∣∣R̂EAp(z)− REAp(z)
∣∣∣ = O

(
rb
)
+ O

((
ln n

n ϕ(z, r)

)1/2
)

a.co. as n → ∞. (7)

4. Simulated Data

In this section, we aim to evaluate the impact of the spatial dependency on the finite-
sample performance of the spatio-functional expectile shortfall estimator. In order to
highlight the main feature of our procedure, we compare its sensitivity to the volatility of
the data in two situations (homoscedastic and heteroscedastic cases). For this purpose, we
generate the data from the following regression relationship
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Model M1 : Yi =
∫ 1

0 5cos((4 − Ai(t))2π)dt + ϵi, i = (i1, i2) N = 2

Model M2 : Yi =
∫ 1

0 1.5exp(Ai(t))dt +
(∫

(5 log((4 − Ai(t))2))dt
)
ϵi.

where ϵi is a Gaussian random field that has an exponential covariogram function,

C(u) = σ2e
−u
ϕ u ∈ [0, ∞). (8)

Now, in order to fit the financial risk management context, we draw the spatio-functional
input variables using a spatial ARCH process. This consideration allows us to simulate the
spatial interaction in the co-movement of stock markets. Indeed, let Rt,i, the log-return of
a financial asset at time t on the stock market i, be generated by a spatial ARCH process

Rt,i = Σt,iZt,i,

where Zt,i is a sequence of random variables that are independent in t and identically dis-
tributed with zero mean, unit variance, and constant covariance matrix C. The conditional
variance Σt,i is defined by

Σ2
t,i = α′ + ρ ∑

j
wi,jP2

t−1,j,

where wi,i is a known Spatial Weight Matrix (SWM). In fact, this kind of spatio-functional
process is obtained using the routine code sim.spARCH in the R-package spGARCH. A sample
of the functional co-variate is plotted in Figure 1.

Time

0 10 20 30 40 50

−3
−2

−1
0

1
2

3
4

Figure 1. The ARCH process for α′ = 0.05 and ρ = 0.8.

Recall that the principal feature of the FESR-expectile is its high sensitivity to the
outliers. To measure the impact of this characteristic, we use the routine code ODM in
the R-Package OutlierDM to detect the number of outliers in each model. It appears that
the first model contains 4% versus 28% for the second one. On the other hand, the spatial-
heterogeneity of the data constitutes a second principal issue of our study. The latter is
controlled through the parameters σ, ϕ and the spatial weight matrix wi,i. So, we calculate

MSE(p) = n−1 ∑
i∈In

(
Bi − R̂EAp(Ai)

)2
1I

Bi>R̂EAp(Ai)

for various values of the mentioned parameters.
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Now, for this empirical study, we choose the smoothing parameter r via the local mean
square cross-validation method as in (6). In the sense that the optimization of the mean
square rule is performed over a discrete set defined by the kth-distance from the location
point. The integer number k is obtained from {5, 10, 15, 20, 25, 30, . . . 50}. For the kernel F,
we use the β-kernel. Finally, the metric is chosen according to the nature of the functional
variable and its smoothing property. It appears that the principal component (pca) metric
is more suitable for this type of discontinuous functional regressor.

The simulation results are given in Table 1.

Table 1. Comparison results.

Model n1 n2 σ ϕ SWM MSE (0.01) MSE (0.05) MSE (0.5) MSE (0.90)

M1

20 50 0.09 0.03 Queen 0.023 0.018 0.014 0.026
50 30 0.09 0.03 Bishop 0.034 0.027 0.018 0.032
20 30 0.79 0.93 Bishop 0.042 0.032 0.026 0.045
20 50 0.09 0.03 Rook 0.042 0.020 0.018 0.037
50 30 0.79 0.03 Rook 0.021 0.016 0.022 0.031

M2

20 50 0.09 0.03 Queen 0.045 0.036 0.028 0.044
50 30 0.09 0.03 Bishop 0.071 0.053 0.026 0.059
20 30 0.75 0.93 Bishop 0.096 0.052 0.048 0.105
20 50 0.09 0.03 Rook 0.086 0.054 0.032 0.049
50 30 0.79 0.03 Rook 0.039 0.025 0.047 0.055

We observe that the behavior of the estimator R̂EAp is strongly affected by the different
parameters of this study, such as the rate of the outliers and the spatial dependency degree.
The high variability of the error between these different situations highlights the importance
of the FESR- expectile as a risk-metric. In particular, the MSE varies between 0.018 and
0.045 with respect to the spatial level, while the horizontal variability, which describes the
sensitivity to the outliers rate, ranges between 0.018 and 0.095.These results incorporate the
theoretical study, where the convergence rate is strongly affected by the local dependency
of the spatio-functional data. In the sense that the computational part proves that the
performance of the estimator is strongly impacted by the degree of spatial correlation of
the data. Such a conclusion highlights the importance of the expectile-based-shortfall. The
latter is very sensitive to the variability or deviation of the data, allowing more reliability
in risk detection. This feature makes the expectile-based-shortfall more appropriate as a
risk metric than the standard expected shortfall. We point out that the standard expected
shortfall is based on the quantile, which is a robust model with low sensitivity to the
variability in the risk analysis, because the risk is often located in the extremes. Such
a characteristic is not beneficial in risk analysis. Finally, we can say that the estimator
R̂EAp is very easy to implement and has good performance according to the nature of the
treated data.

5. Real Data Application

After demonstrating the straightforward implementation of the estimator in the last
section, we now focus on the applicability of our model to real spatial time series data.
More specifically, we compare the performance of the new FESR-expectile R̂EAp to the
classical one

R̃ESp(s) =
∑i∈In F(r−1d(z, Ai)

(
aG(a−1(R̂VaRp(z)− Bi)) + Bi

(
1 − H(a−1

(
R̂VaRp(z)− Bi)

)))
p ∑i∈In F(r−1d(z, Ai))

,

where G(s) =
∫ ∞

s uF(u) and H(s) =
∫ s
−in f ty F(u)du. In the previous section, we evaluated

the impact of spatial correlation using the ARCH model, which is well-solicited as an
appropriate method for fitting the financial time series data. Alternatively, in this part,
we employ the FESR-expectile model for another area, specifically in the environmental
domain. This application emphasizes the importance and versatility of the FESR model.



Axioms 2024, 13, 678 8 of 22

The environmental domain is a particularly relevant area for risk management, as air
quality significantly affects the quality of life. Moreover, the extreme values models have
usually been employed to model the risk in this area. Here, we aim to compare the effi-
ciency of the FESR- expectile R̂EAp with the FESR-VaR R̃ESp in terms of risk prevention
in air quality domain. For this goal, we analyze the air quality data used by [42], which
concerns the ozone concentration in Beijing. These data are available on the website
https://dataverse.harvard.edu/dataverse/beijing-air (accessed on 8 August 2024). Fur-
thermore, there are many indices of air quality, such as Ozone (O3), Particulate Matter
(PM2.5 and PM10), Nitrogen Dioxide (NO2), Carbon, and Sulfur Dioxide (SO2). However,
in this section, we concentrate on the ozone quantity (O3) and sulfur dioxide (SO2). Recall
that the (SO2) and the ultraviolet rays have a significant impact on the stratospheric ozone.
Specifically, we collect the data from 120 monitoring stations in Beijing and we define Ai
as the daily curve of SO2 at the station i (on 30 December 2016). The response variable Bi
represents the total ozone measured the day before at the same station i. The daily curves
for the sulphur dioxide are shown in Figure 2.
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0
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o
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n
tr

a
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n

5 10 15 20

0
4
0

8
0

Figure 2. The SO2 and O3 daily curves.

Now, in order to explore the spatial correlation of the data, we follow the same strategy
considered by [43]. This strategy permits us to estimate the spatial trend using the classical
regression as follows. Indeed, we define

Ãi = r1(i) + Ai and B̃i = r2(i) + Bi.

Therefore, before computing the estimators R̂EAp and R̃ESp, we start by estimating the
statistics (Âi, B̂i)i. The latter is estimated by

Âi = Ãi − r̂1(i) and B̂i = B̃i − r̂2(i),

where r̂1(.) and r̂2(.) are the kernel estimators of the functions r1 and r2 which are

m̂1(i0) =
∑i∈In F1(r−1∥i0 − i∥)Ai

∑i∈In F1(r−1∥i0 − i∥)

(
resp. m̂2(j0) =

∑j∈In F2(r−1∥j0 − j∥)Bj

∑i∈In F2(r−1∥j0 − j∥)

)
,

where F1, F2 are kernel functions. Such estimators are obtained using the routine code
npreg in the R-package np with F1 = F2 being the quadratic kernel. This step is fundamental
for spatio-functional data analysis and is referred to as the detrending step. To highlight the

https://dataverse.harvard.edu/dataverse/beijing-air
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potential impact of spatial correlation, we compare our expected shortfall to the standard
one in both cases: with or without detrending. Specifically, the estimation with detrending
is calculated by (Âi, B̂i)i, while in the other case (without detrending), we use the initial
observation (Ai, Bi)i to compute the estimators.

Furthermore, to calculate both estimators, we follow the same procedures used in the
simulation section. In other words, we use the (0, 1) quadratic kernel and the pca-metric,
along with local cross-validation for the bandwidth parameter. The efficiency of both
estimators is evaluated by computing

MSE(p) = n−1 ∑
i∈In

(
Bi − Θ̂p(Ai)

)2
1IBi>R̂EXp(Ai)

,

where Θ̂p represents R̂EAp or R̃ESp. The values of MSE() are evaluated as a function of

p. In Figures 3 and 4, we show the values of MSE of both estimators R̂EAp(black line)
and R̃ESp(red line) in both cases (with detrending and without detrending step—see
Figures 3 and 4).
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1
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M
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Figure 3. Comparison of the MSE values between FESR-expectile and FESR-VaR without detrend-

ing cases. The black line represents R̂EAp, and the red line represents R̃ESp.
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e

Figure 4. Comparison of the MSE values between FESR-expectile and FESR-VaR with detrend-

ing cases. The black line represents R̂EAp, and the red line represents R̃ESp.

The graphs show the superiority of the FESR-expectile regression over the FESR-
quantile model. This statement can be confirmed by the position of the black line, which is
under the red line in most cases. These results show that the FESR-expectile detects the
excessive level of ozone concentration more effectively, even in cases of high variability.
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This feature is not surprising. The slow variability of the VaR level is due to the robustness
of the quantile regression, which reduces its sensitivity to extreme values. Additionally,
this advantage seems to be more significant in the detrending step compared to the non-
detrending case. This statement can be confirmed using the cover test developed by
Bayer and Dimitriadis [44]. This test allows us to examine the goodness-of-fit of our
approach. The proposed test is an alternative approach to the procedure introduced by [45]
for forecasting. Since the risk prediction differs significantly from standard prediction, we
have opted to examine the feasibility of our risk-metric using the Bayer–Dimitriadis test.
Specifically, we compare both functional approaches R̃ESp and R̂EAp using the routine
code esr-backtest from the R-package esrback. We have employed this code with α = 0.05.
Unsurprisingly, the obtained results confirm that both models are significantly good for
this risk management issue. Typically, the cover-test gives a p-value of R̂EAp equal to 0.001,

compared to 0.004 for the model R̃ESp.

6. Conclusions and Prospects

In this contribution, we have considered the nonparametric estimation of the FESR-
regression-expectile under the spatial structure. We have constructed the functional version
of the kernel estimator of this model as a risk-metric. This study covers a more gen-
eral case of the functional random field. In the theoretical part, we have established the
Borell–Contelli convergence under strong spatial mixing assumptions. Such theoretical
development provides indispensable mathematical support for the use of the newly devel-
oped risk-metric. Additionally, the obtained asymptotic result was derived under general
conditions and with the precision of the pointwise convergence rate. The computational
part shows the applicability of the estimator and its very easy implementation in practice.
Additionally, we applied the new model to an environmental spatio-functional random
process. The result confirms the superiority of the FESR-expectile over FESR-VaR. On the
other hand, the importance of this contribution can be viewed through several open future
directions. For instance, we will address more dependent cases, such as the quasi-associated
spatio-functional time series. This situation allows us to control the co-movement of differ-
ent stock exchanges using weak dependence. The second issue is determining the uniform
UNN convergence of the estimator, which will help in resolving the smoothing parameter
selection. Furthermore, we can also estimate the model using either the additive or the
linear case.
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Proof of the Theorem 1. We start by writing, for all t ∈ IR,

ÊS(t, z) =
∑

i∈In

F
[
r−1d(z, Ai)

]
Bi1Bi>t

∑
i∈In

F
[
r−1d(z, Ai)

] .

Thus,

ÊS(R̂EXPp(z), z) = R̂EAp(z), and ES(REXPp(z), z) = REAp(z).

So,
R̂EAp(z)− REAp(z) = ÊS(R̂EXPp(z), z)− ES(R̂EXPp(z), z)

+ES(R̂EXPp(z), z)− ES(REXPp(z), z).

Then,
|R̂EAp(z)− REAp(z)| ≤ sup

t∈[REXPp(z)−δ, REXPp(z)+δ]

|ÊS(t, z)− ES(t, z)|

+C|R̂EXPp(z)− REXPp(z)|.

So, the convergence rate in Theorem 1 is consequence of

sup
t∈[REXPp(z)−δ, REXPp(z)+δ]

|ÊS(t, z)− ES(t, z)| = O
(

rb
)
+ O

((
ln n

n ϕ(z, r)

)1/2
)

a.co. (A1)

and

|R̂EXPp(z)− REXPp(z)| = O
(

rb
)
+ O

((
ln n

n ϕ(z, r)

)1/2
)

a.co. (A2)

As (A2) is proved in [13], it suffices to establish (A1). For this, we have IE
[

ÊSD(z)
]
= 1 and

we write, for t ∈ IR

ÊS(t, z)− ÊS(t, z) =
1

ÊSD(z)

[(
ÊSN(t, z)− IE

[
ÊSN(t, z)

])

−
(

ÊS(t, z))− IE
[

ÊSN(t, z)
])]

− ÊSN(t, z)
ÊSD(z)

[
ÊSD(z)− IE

[
ÊSD(z)

]]
.

Finally, the proof is a consequence of Lemmas A1–A3.

Lemma A1. Under the suppositions (P1) and (P3)–(P5), we have

ÊSD(z)− IE
[

ÊSD(z)
]
= O

(
ln n

n ϕ(z, r)

)1/2
a.co.

Additionally,

∑
n

IP
(

ÊSD(z) <
1
2

)
< ∞.

Proof of Lemma A1. To prove this lemma, we use the classical spatial block decomposition
(see [3]). Set

ÊSD(z) =
1
n ∑

i∈In

F
[
r−1d(z, Ai)

]
IE[F[r−1d(z, Ai)]]

.
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We put Fi = F
[
r−1d(z, Ai)

]
and Di = Fi − IE[Fi]

ÊSD(z)− 1 =
1

nIE[F1]
∑

i∈In

Di.

So, we consider a sequence pn and decompose the sum into 2N partial sums of random
variables as follows:

Y(1, n, x, j) =
2jk pn+pn

∑
ik=2jk pn+1 k=1,...,N

Di,

Y(2, n, x, j) =
2jk pn+pn

∑
ik=2jk pn+1 k=1,...,N−1

(jN+1)pn

∑
iN=2jN pn+pn+1

Di,

Y(3, n, x, j) =
2jk pn+pn

∑
ik=2jk pn+1 k=1,...,N−2

2(jN−1+1)pn

∑
iN−1=2jN−1 pn+pn+1

2jN pn+pn

∑
iN=2jN pn+1

Di,

Y(4, n, x, j) =
2jk pn

∑
ik=2jk pn+1 k=1,...,N−2

2(jN−1+1)pn

∑
iN−1=2jN−1 pn+pn+1

2(jN+1)pn

∑
iN=2jN pn+pn+1

Di,

and so on. Finally

Y(2N−1, n, x, j) =
2(jk+1)pn

∑
ik=2jk pn+pn+1 k=1,...,N−1

2jN pn+pn

∑
iN=2jN pn+1

Di,

Y(2N , n, x, j) =
2(jk+1)pn

∑
ik=2jk pn+pn+1 k=1,...,N

Di.

Setting
J = {0, . . . , r1 − 1} × · · · × {0, . . . , rN − 1}, where ri = 2ni p−1

n , i = 1, . . . , N and we
denote by

T(n, x, i) = ∑
j∈J

Y(i, n, x, j).

Now, we write,

|ÊSD(z)− IE[ÊSD(z)]| =
1

nIE[F1]

2N

∑
i=1

T(n, x, i).

As regards this last inequality, we have ∀ η > 0

IP
(
|ÊSD(z)− IE[ÊSD(z)]| ≥ η

)
≤ 2N max

i=1,...
IP(T(n, x, i) ≥ ηnIE[F1]).

Finally,
IP(T(n, x, i) ≥ ηnIE[F1]), for all i = 1, . . . , 2N .
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We enumerate the M = ∏N
k=1 rk = 2−Nnp−N

n ≤ np−N
n random variables Y(1, n, x, j);

j ∈ J in the arbitrary way X1, . . . XM. Thus, for each Xj there exists a certain jj in J
such that

Xj = ∑
i∈I(1,n,x,jj)

Di,

where I(1, n, x, jj) =
{

i : 2jkj
pn + 1 ≤ ik ≤ 2jkj

pn + pn ; k = 1, . . . N
}

. Observe that these

sets contain pN
n sites and are far apart by the distance of pN

n .
Now, we apply Lemma [8]. It permits the approximation of X1,X2, . . ., XM by some

independent random variables X∗
1 , . . . X∗

M, which have the same low as Xj=1,...M, and
such that

r

∑
j=1

IE|Xj − X∗
j | ≤ 2CMpN

n ϕ((M − 1)pN
n , pN

n )ψ(pn).

So, we have to evaluate IP(T(n, x, 1) ≥ η). For that, we employ Bernstein and Markov
inequalities that

IP(T(n, x, i) ≥ ηnIE[F1]) ≤ B1 + B2

where

B1 = IP

(∣∣∣∣∣ M

∑
j=1

X∗
j

∣∣∣∣∣ ≥ MηnIE[F1]

2M

)
≤ 2 exp

(
− (ηnIE[F1])

2

MVar
[
X∗

1
]
+ CpN

n ηnIE[F1]

)

and

B2 = IP

(
M

∑
j=1

|Xj − X∗
j | ≥

ηnIE[F1]

2

)

≤ 1
ηnIE[F1]

M

∑
j=1

IE|Xj − X∗
j |

≤ 2MpN
n (ηnIE[F1])

−1ϕ((M − 1)pN
n , pN

n )ψ(pn).

Since n = 2N MpN
n and ϕ((M − 1)pN

n , pN
n ) ≤ pN

n , we get for η = η0

√
ln n

n ϕ(z,r)

B2 ≤ npN
n (ln n)−1/2(nϕ(z, r))−1/2 φ(pn).

As pn = C
(

nϕ(z,r)
ln n

)1/2N
, we write

B2 ≤ n ψ(pn). (A3)

Consequently, from (P5), we have

Σnn ψ(pn) < ∞.

Let us focus now on B1. Indeed,

Var[X∗
1 ] = Var

[
Σi∈I(1,n,x,1)Di

]
= Σi,j∈I(1,n,x,1)

∣∣Cov(Di, Dj)
∣∣.

Let Qn = Σi∈I(1,n,x,1)Var[Di] and Rn = Σi ̸=j∈I(1,n,x,1)
∣∣Cov(Di, Dj)

∣∣. By Assumptions
(P1) and (P2), we have

Var[Di] ≤ C((ϕ(z, r))(a+1)/a + (ϕ(z, r))2);
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therefore,

Qn = O
(

pN
n ϕ(z, r)

)
.

Concerning Rn, we introduce

S1 = {i, j ∈ I(1, n, x, 1) : 0 < ∥i − j∥ ≤ cn},

S2 = {i, j ∈ I(1, n, x, 1) : ∥i − j∥ > cn},

where cn is a real sequence that converges to +∞. Split this sum over subsets in S1 and S2

Rn = Σ(i,j)∈S1

∣∣Cov
(

Di, Dj
)∣∣+ Σ(i,j)∈S2

∣∣Cov
(

Di, Dj
)∣∣

= R1
n +R2

n.

First,

R1
n = Σ(i,j)∈S1

∣∣IE[FiFj
]
− IE[Fi]IE

[
Fj
]∣∣

≤ CpN
n cN

n ϕ(z, r)
(
(ϕ(z, r))1/a + ϕ(z, r)

)
≤ CpN

n cN
n (ϕ(z, r))(a+1)/a.

On the other hand, we have

R2
n = Σ(i,j)∈S2

∣∣Cov
(

Di, Dj
)∣∣.

We deduce, from Lemma 4.1 in [8] that∣∣Cov
(

Di, Dj
)∣∣ ≤ Cψ(∥i − j∥),

thus

R2
n ≤ CΣ(i,j)∈S2

ψ(∥i − j∥) ≤ CpN
n Σi:∥i∥≥cn ψ(∥i∥)

≤ CpN
n c−Na

n Σi:∥i∥≥cn∥i∥Naψ(∥i∥).

Let cn = (ϕ(z, r))−1/Na, then

R2
n ≤ CpN

n c−Na
n Σi:∥i∥≥cn∥i∥Naψ(∥i∥)

≤ CpN
n ϕ(z, r)Σi:∥i∥≥cn∥i∥Naψ(∥i∥).

Because of (P2)
R2

n ≤ CpN
n ϕ(z, r).

Furthermore,
R1

n ≤ CpN
n ϕ(z, r).

Hence,

Var[X∗
1 ] = O

(
pN

n ϕ(z, r)
)

.

This last gives

B1 ≤ exp(−C(η0) ln n).
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Consequently, a good choice of η0 gives the claimed result of the lemma. Additionally,

ΣnIP
(∣∣∣ÊSD(z)

∣∣∣ ≤ 1/2
)

≤ ΣnIP
(∣∣∣ÊSD(z)− IE

[
ÊSD(z)

]∣∣∣ > 1/2
)
< ∞.

Lemma A2. Under the supposition (P1)–(P2) and (P4)–(P5), we have

sup
t∈[REXPp(z)−δ, REXPp(z)+δ]

∣∣∣ES(t, z)− IE
[

ÊSN(t, z)
]∣∣∣ = O

(
rb
)

.

Proof of Lemma A2. Writing

ES(t, x)− IE
[

ÊSN(t, z)
]
=

1
IE[F1(z)]

IE
[

F1(z)1IB(z,r)(z1)(ES(t, x)− ES(t, A1))
]
.

By (P2), we get
1IB(z,r)(A1)|ES(t, x)− ES(t, A1)| ≤ Crb.

Thus,
sup

t∈[REXPp(z)−δ, REXPp(z)+δ]

|ES(t, x)− IE
[

ÊSN(t, z)
]
| ≤ Crb,

which gives

sup
t∈[REXPp(z)−δ, REXPp(z)+δ]

|ES(t, x)− IE
[

ÊSN(t, z)
]
| = O(rb)

Lemma A3. Under the suppositions (P1)–(P5), we have

sup
t∈[REXPp(z)−δ, REXPp(z)+δ]

∣∣∣ÊSN(t, z)− IE
[

ÊSN(t, z)
]∣∣∣ = O(

(
ln n

n ϕ(z, r)

)1/2
, a.co.

Proof of Lemma A3. Since [REXPp(z)− δ, REXPp(z) + δ] then by the compactness fea-
ture we get

[REXPp(z)− δ, REXPp(z) + δ] ⊂
ln⋃

j=1

]Bj − dn, Bj + dn[ (A4)

for dn = O
(

1√
nb

)
and ln = O

(√
nb
)

. The two functions IE[ÊSN(·, z)] and ÊSN(·, z) are

increasing. Thus, for 1 ≤ j ≤ ln,

IEÊSN((Bj − dn, z) ≤ sup
t∈]Bj−dn ,Bj+dn [

IEÊSN(t, z) ≤ IEÊSN(Bj + dn, z)

ÊSN(t, z)Bj − dn, z) ≤ sup
t∈]Bj−dn ,Bj+dn [

ÊSN(t, z) ≤ ÊSN(Bj + dn, t). (A5)

Now, by (P2)
∀t1, t2 ∈ REXPp(z)− δ, REXPp(z) + δ,

we have ∣∣∣IEÊSN(t1, z)− IEÊSN(t2, z)
∣∣∣ ≤ C|t1 − t2|b.
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Hence,
sup

t∈[REXPp(z)−δ, REXPp(z)+δ]

∣∣∣ÊSN(t, z)− IEÊSN(t, z)
∣∣∣

≤ max
1≤j≤ln

max
z∈{Bj−dn ,Bj+dn}

∣∣∣ÊSN(z, z)− IEÊSN(z, z)
∣∣∣+ Cdb

n.

Clearly,

db
n = n−1/2 = o

(
ln n

n ϕ(z, r)

)1/2
.

Therefore, it suffices that

max
1≤j≤ln

max
z∈{Bj−dn ,Bj+dn}

∣∣∣ÊSN(z, z)− IEÊSN(z, z)
∣∣∣ = O

(
ln n

n ϕ(z, r)

)1/2
, a.co.

Then, ∀η > 0,

IP

(
max

1≤j≤ln
max

z∈{Bj−dn ,Bj+dn}

∣∣∣ÊSN(z, z)− IEÊSN(z, z)
∣∣∣ > η

√
ln n

n ϕ(z, r)

)

≤ 2ln max
1≤j≤ln

max
z∈{Bj−dn ,Bj+dn}

IP

(∣∣∣ÊSN(z, z)− IEÊSN(z, z)
∣∣∣ > η

√
ln n

n ϕ(z, r)

)
.

It remains to prove

IP

(∣∣∣ÊSN(z, z)− IEÊSN(z, z)
∣∣∣ > η

√
ln n

n ϕ(z, r)

)
.

Indeed,

F̃i =
1

IE[F1]

[
FiBi1I{Bi≤z} − IE

[
FiBi1I{B1≤z}

]]
.

We write ∀ ε > 0

IP
[
|ÊSN(z, z)− IEÊSN(z, z)| > ε

]
= IP

(
max
z∈Gn

∣∣∣ÊSN(z, z)− IE
[

ÊSN(z, z)
]∣∣∣ > ε

)
≤ ∑

z∈Gn

IP
(∣∣∣ÊSN(z, z)− IE

[
ÊSN(z, z)

]∣∣∣ > ε
)

. (A6)

Since B is not necessarily bounded, we employ a truncation method by introducing

ÊS
∗
N(z, t) =

1
nIE[F(h−1d(z, A1))]

∑
i∈In

F(r−1d(z, Ai))B∗
i

with B∗ = B1I(B<γn) with γn = na/p. Thus, the result is a consequence of

dn max
z∈Gn

∣∣∣IE[ÊS
∗
N(z, z)]− IE[ÊSN(z, z)]

∣∣∣ = Oa.co.

(
ln n

n ϕ(z, r)

)1/2
, (A7)

dn max
z∈Gn

∣∣∣ÊS
∗
N(z, z)− ÊSN(z, z)

∣∣∣ = Oa.co.

(
ln n

n ϕ(z, r)

)1/2
(A8)

and

dn max
z∈Gn

∣∣∣ÊS
∗
N(z, z)− IE[ÊS

∗
N(z, z)]

∣∣∣ = Oa.co.

(
ln n

n ϕ(z, r)

)1/2
. (A9)
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For (A7) we write , ∀ z ∈ Gn∣∣∣IE[ÊS
∗
N(z, z)]− IE[ÊSN(z, z)]

∣∣∣ ≤ C
1

ϕ(z, r)
IE
[
|B|1IB≥γn}F(r−1d(z, X))

]
.

By the inequality of Holder , for α and β such that 1
α + 1

β = 1, and α = p
2

∀z ∈ Gn

IE
[
|B|1I{B≥γn}F(r−1d(z, A1))

]
≤ IE1/α

[
|Bα|1I{B≥γn}

]
IE1/β

[
Fβ(r−1d(z, A1))

]
≤ γ−1

n IE1/α
[∣∣∣B2α

∣∣∣]IE1/β
[
Fβ(r−1d(z, A1))

]
≤ γ−1

n IE1/α[|Bp|]IE1/β
[
Fβ(r−1d(z, A1))

]
≤ Cγ−1

n ϕ1/β(z, r).

Thus,
dn max

z∈Gn

∣∣∣ÊS
∗
N(z, z)− IE[ÊS

∗
N(z, z)]

∣∣∣ ≤ n1/2−a/pϕ(1−β)/β.

Finally, (A7) is because a > p.
Now, for (A8) we use the Markov’s inequality to show that ∀z ∈ Gn, ∀ϵ > 0

IP
(∣∣∣ÊS

∗
N(z, z)− ÊSN(z, z)

∣∣∣ > ϵ
)

≤ ∑
i∈In

IP
(

Bi > na/p
)

≤ nIP
(

B > na/p
)

≤ n1−aIE[Bp].

Choosing ϵ = ϵ0

(√(
ln n

n ϕ(z,r)

))
and using a > 5/2,

dn max
z∈Gn

IP

(
|ÊSN(z, z)− ÊS

∗
N(z, z)| > ϵ0

(√(
ln n

n ϕ(z, r)

)))
≤ n3/2−a < Cn−1−ν.

Now for (A9), define z ∈ Gn,

Di = FiB∗
i − IE[F1B∗

i ].

Therefore, ∀ ε > 0

IP
{∣∣∣ÊS

∗
N(z, z)− IE

[
ÊS

∗
N(z, z)

]∣∣∣ > ε
}

= IP

{∣∣∣∣∣ 1
nIE[F1]

∑
i∈In

Di

∣∣∣∣∣ > ε

}

≤ IP

{∣∣∣∣∣ ∑
i∈In

Di

∣∣∣∣∣ > εnIE[F1]

}
.

Using the spatial blocks decomposition to write

ÊS
∗
N(z, z)− IE

[
ÊS

∗
N(z, z)

]
=

1
n̂IE[F1(x)]

2N

∑
i=1

T(n, i), (A10)

with
T(n, i) = ∑

j∈J
Λ(i, n, j)
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with

where J = {0, . . . , r1 − 1} × · · · × {0, . . . , rN − 1}; ri = 2ni p−1
n , i = 1, . . . , N.

and

Λ(1, n, j) =
2jk pn+pn

∑
ik=2jk pn+1

k=1,...,N

Di,

Λ(2, n, j) =
2jk pn+pn

∑
ik=2jk pn+1
k=1,...,N−1

(jN+1)pn

∑
iN=2jN pn+pn+1

Di,

Λ(3, n, j) =
2jk pn+pn

∑
ik=2jk pn+1
k=1,...,N−2

2(jN−1+1)pn

∑
iN−1=2jN−1 pn+pn+1

2jN pn+pn

∑
iN=2jN pn+1

Di,

Λ(4, n, j) =
2jk pn

∑
ik=2jk pn+1
k=1,...,N−2

2(jN−1+1)pn

∑
iN−1=2jN−1 pn+pn+1

2(jN+1)pn

∑
iN=2jN pn+pn+1

Di,

...

Finally

Λ(2N , n, j) =
2(jk+1)pn

∑
ik=2jk pn+pn+1

k=1,...,N

Di

Clearly, T(n, 1) is the sum of the random variables Di over big blocks, whereas the
other terms T(n, i), 2 ≤ i ≤ 2N are sums over small blocks.

Furthermore, from (A10), we get, for all η > 0,

IP
(
|ÊS

∗
N(z, z)− IE

[
ÊS

∗
N(z, z)

]
| ≥ η

)
≤ 2N max

i=1,...2N
IP(T(n, i) ≥ ηn̂IE[F1(x)]).

So, the required result is based on the evaluation of the quantities

IP(T(n, i) ≥ ηn̂IE[F1(x)]), for all i = 1, . . . , 2N .

For the sake of shortness, we treat only the case i = 1. The other case can be treated in the
same manner. For the rest of the proof, we enumerate the M = ∏N

k=1 rk = 2−Nn̂p−N
n ≤ n̂p−N

n
random variables Λ(1, n, j); j ∈ J in the arbitrary way Z1, . . .ZM. Thus, for each Zj, there
exists a certain j in J such that

Zj = ∑
i∈I(1,n,j)

Di,

where I(1, n, j) = {i : 2jkpn + 1 ≤ ik ≤ 2jkpn + pn ; k = 1, . . . N}. Clearly the subsets I(1, n, j)
contain pN

n sites and are far apart by a distance of pn at least. So, under (P4) and (P5),

F(r−1
n d(x, Ai))B∗

i ≤ Cγn.

So, according to the Lemma of [8] Carbon et al. (2007 ) we obtain M independent random
variables Z∗

1 , . . .Z∗
M having the same low as Zj=1,...M and such that

r

∑
j=1

IE|Zj −Z∗
j | ≤ 2Cγn MpN

n ϕ(M − 1)pN
n , pN

n )ϕ(pn). (A11)
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Therefore,
IP(T(n, i) ≥ ηn̂IE[F1(x)]) ≤ B1(n) + B2(n),

where

B1(n) = IP

(∣∣∣∣∣ M

∑
j=1

Z∗
j

∣∣∣∣∣ ≥ Mηn̂IE[F1(x)]
2M

)

B2(n) = IP

(
M

∑
j=1

|Zj −Z∗
j | ≥

ηn̂IE[F1(x)]
2

)
.

Concerning B2(n), we write

B2(n) ≤ 2Mγn pN
n (ηn̂IE[F1(x)])−1ϕ((M − 1)pN

n , pN
n )ψ(pn).

Now, since IE[F1(x)] ≤ Cϕ(z, r), n̂ = 2N MpN
n and ϕ((M − 1)pN

n , pN
n ) ≤ pN

n , we obtain for

η = η0

√
ln n̂

n̂ ϕ(z, r)

B2(n) ≤ n̂γn pN
n (ln n̂)−1/2(n̂ϕ(z, r))−1/2ψ(pn).

Therefore, for pn pn = C
(

n̂ϕ(z, r)
ln n̂γ2

n

)1/2N

B2(n) ≤ n̂ ψ(pn).

We conclude
∑
n

B2(n) < ∞.

Next, for B1,

B1(n) ≤ 2 exp

(
− (ηn̂IE[F1(x)])2

MVar
[
Z∗

1
]
+ Cηγn pN

n n̂IE[F1(x)]

)
. (A12)

Furthermore,

Var[Z∗
1 ] = Var

 ∑
i∈I(1,n,1)

Di

.

As IE
[

Bp
i |Ai

]
< ∞, for p > 2, then

Var
[
Dk

i

]
≤ CIE

[
F2

i B∗2
i
]
≤ CIE

[
F2

i B2
i
]

≤ CIE
[
F2

i IE
[
B2

i |Ai
]]

≤ CIE
[
F2

i
]
≤ Cϕ(z, r),

since IE
[
|BiBj||Ai Aj

]
< ∞ we get

for all i ̸= j Cov(Di,Dj) ≤ CIE
[

Fi|B∗
i |Fj|B∗

j |
]

≤ CIE
[
FiFj|BiBj|

]
≤ CIE

[
FiFjIE

[
|BiBj||Ai Aj

]]
≤ CIE

[
FiFj

]
≤ C(ϕ(z, r))(a+1)/a(h).
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Furthermore, as IE
[

Bp
i |Ai

]
< ∞

for all i ̸= j Cov(Di,Dj) ≤ ∥Di∥2
pψ1−2/p(∥i − j∥)

≤ C∥FiB∗
i ∥2

pψ1−2/p(∥i − j∥)
≤ C∥FiBi∥2

pψ1−2/p(∥i − j∥)
≤ C∥Fi∥2

pψ1−2/p(∥i − j∥)
≤ C(ϕ(z, r))2/p(h)ψ1−2/p(∥i − j∥)).

Observe that
∑

i∈I(1,n,1)
Var[Di] = O

(
pN

n ϕ(z, r)
)

.

For a real sequence dn tends to +∞ we write

∑
i ̸=j∈I(1,n,1)

∣∣Cov(Di,Dj)
∣∣ ≤ ∑

{i,j∈I(1,n,1) ∥i−j∥≤dn}

∣∣Cov(Di,Dj)
∣∣

+ ∑
{i,j∈I(1,n,1) ∥i−j∥>dn}

∣∣Cov(Di,Dj)
∣∣

≤ CpN
n ϕ(z, r)

(
dN

n (ϕ(z, r))1/a

+d−Na
n (ϕ(z, r))2/p−1(h)∑i:∥i∥≥dn∥i∥Naψ1−2/p(∥i∥)

)
.

Choosing dn = (ϕ(z, r))2/Np(a+1)−1/Na to

∑
i ̸=j∈I(1,n,1)

∣∣Cov(Di,Dj)
∣∣ ≤ CpN

n (ϕ(z, r))

So,

Var

 ∑
i∈I(1,n,1)

Di

 = O
(

pN
n (ϕ(z, r))

)
.

We replace Var
[
Z∗

1
]
= O

(
pN

n (ϕ(z, r))
)

in (A12)

B1(n) ≤ exp(−C(η0) ln n̂)

Finally, a good choice of η0 gives
∑
n

B1(n) < ∞.

which completes the proof of the lemma.
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