Study of Time-Fractional Nonlinear Model Governing Unsteady Flow of Polytropic Gas
<p>Solutions for <math display="inline"><semantics> <mrow> <msub> <mo>℘</mo> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>a</b>) Behavior of computed results from <math display="inline"><semantics> <msub> <mrow/> <mi>O</mi> </msub> </semantics></math>HA<math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>TM at 10th iteration with exact results; (<b>b</b>) logarithmic plots of relative errors in <math display="inline"><semantics> <mi>κ</mi> </semantics></math>th iterative results <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>κ</mi> <mo>=</mo> <mn>6</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics></math> for (<b>c</b>,<b>e</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, (<b>d</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; at <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and optimal value of <span class="html-italic">ℏ</span>, for <math display="inline"><semantics> <msub> <mo>℘</mo> <mn>1</mn> </msub> </semantics></math> obtained from <math display="inline"><semantics> <msub> <mrow/> <mi>O</mi> </msub> </semantics></math>HA<math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>TM (<b>c</b>,<b>d</b>), <math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>-VITM (<b>e</b>,<b>f</b>) respectively.</p> "> Figure 2
<p>Solutions for <math display="inline"><semantics> <mrow> <msub> <mo>℘</mo> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>a</b>) Behavior of computed results from <math display="inline"><semantics> <msub> <mrow/> <mi>O</mi> </msub> </semantics></math>HA<math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>TM at 10th iteration with exact results; (<b>b</b>) logarithmic plots of relative errors in <math display="inline"><semantics> <mi>κ</mi> </semantics></math>th iterative results <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>κ</mi> <mo>=</mo> <mn>6</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics></math> for (<b>c</b>,<b>e</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, (<b>d</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; at <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and optimal value of <span class="html-italic">ℏ</span>, for <math display="inline"><semantics> <msub> <mo>℘</mo> <mn>2</mn> </msub> </semantics></math> obtained from <math display="inline"><semantics> <msub> <mrow/> <mi>O</mi> </msub> </semantics></math>HA<math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>TM (<b>c</b>,<b>d</b>), <math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>-VITM (<b>e</b>,<b>f</b>) respectively.</p> "> Figure 3
<p>Solutions for <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>τ</mi> <mo>)</mo> </mrow> </semantics></math>. (<b>a</b>) Behavior of computed results from <math display="inline"><semantics> <msub> <mrow/> <mi>O</mi> </msub> </semantics></math>HA<math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>TM at 10th iteration with exact results; (<b>b</b>) logarithmic plots of relative errors in <math display="inline"><semantics> <mi>κ</mi> </semantics></math>th iterative results <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>κ</mi> <mo>=</mo> <mn>6</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics></math> for (<b>c</b>,<b>e</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, (<b>d</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; at <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and optimal value of <span class="html-italic">ℏ</span>, for <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> obtained from <math display="inline"><semantics> <msub> <mrow/> <mi>O</mi> </msub> </semantics></math>HA<math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>TM (<b>c</b>,<b>d</b>), <math display="inline"><semantics> <mi mathvariant="double-struck">J</mi> </semantics></math>-VITM (<b>e</b>,<b>f</b>), respectively.</p> ">
Abstract
:1. Introduction
- and
2. Basic Concepts
- (prior-etimate), and
- and
- (posterior-estimate).
-Transform and Its Properties
- (a)
- (b)
- (c)
- (d)
- , whereis the convolution of g and ψ.
- (i)
- (ii)
3. Procedure of Variational Iteration Technique (VIT)
3.1. Procedure of -VITM for NFPDEs
- and
3.2. Convergence and Stability Analysis of -VITM
- (a)
- (b)
- .
- (a)
- with (initial value) is convergent.
- (b)
- A unique fixed point exist for in .
- (c)
- In κth order iterative results, the error bounds as derived as
- (Prior-estimate of error),
- and
- (posterior-error estimate)
4. Basic Procedure of HATM
- For ,
- and ,
- (a)
- (b)
- the maximum absolute error in is
- (c)
Evaluation of Optimal Value of the Convergence Control Parameter (ℏ)
5. Validation of Technique
5.1. Validation of -VITM
5.2. Validation of HATM
5.3. Result and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Srivastava, H.M.; Trujillo, J.J.; Kilbas, A.A. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Atangana, A. Blind in a commutative world: Simple illustrations with functions and chaotic attractors. Chaos Solitons Fractals 2018, 114, 347–363. [Google Scholar] [CrossRef]
- Atangana, A. Fractle-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 2017, 102, 396–406. [Google Scholar] [CrossRef]
- Altizer, S.M.; Oberhauser, K.S. Effects of the protozoan parasite ophryocystis elektroscirrha on the fitness of monarch butterflies (danaus plexippus). J. Invertebr. Pathol. 1999, 74, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Ullah, A.; Al-Mdallal, Q.M.; Khan, H.; Shah, K.; Khan, A. Fractional order mathematical modelling of covid-19 transmission. Chaos Solitons Fractals 2020, 139, 396–406. [Google Scholar] [CrossRef]
- Gupta, S. Numerical simulation of time-fractional black-scholes equation using fractional variational iteration method. J. Comput. Math. Sci. 2019, 9, 1101–1110. [Google Scholar] [CrossRef]
- Liao, S. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Song, L.; Xu, S.; Yang, J. Dynamical models of happiness with fractional order. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 616–628. [Google Scholar] [CrossRef]
- Moradpour, H.; Abri, A. Thermodynamic behavior and stability of polytropic gas. Int. J. Mod. Phys. D 2016, 12, 1650014. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.J. Beyond Perturbation: Introduction to Homotopy Analysis Method; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Liao, S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simulat. 2010, 15, 2003–2016. [Google Scholar] [CrossRef]
- Liao, S. The Proposed Homotopy Analysis Techniques for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. [Google Scholar]
- Prakasha, D.G.; Veeresha, P.; Baskonus, H.M. An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas. Pramana J. Phys. 2019, 93, 75. [Google Scholar]
- Dalsgard, J.C. Lecture Notes on Stellar Structure and Evolution; Aarhus University Press: Aarhus, Denmark, 2004. [Google Scholar]
- Matinfar, M.; Nodeh, S.J. Application of he’s variational iteration method for solving the equation governing the unsteady flow of a polytropic gas. J. Math. Ext. 2009, 3, 61–67. [Google Scholar]
- Matinfar, M.; Saeidy, M. Homotopy analysis method for solving the equation governing the unsteady flow of a polytropic gas. World Appl. Sci. J. 2010, 9, 980–983. [Google Scholar]
- Billingham, J. Dynamics of a strongly nonlocal reaction-diffusion population model. Nonlinearity 2003, 17, 313. [Google Scholar] [CrossRef]
- Cherif, M.A.; Ziane, D.; Belghaba, K. Fractional natural decomposition method for solving fractional system of nonlinear equations of unsteady flow of a polytropic gas. Nonlinear Std. 2018, 25, 753–764. [Google Scholar]
- Adel, W.; Srinivasa, K. A new clique polynomial approach for fractional differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2022. [Google Scholar] [CrossRef]
- Yadav, L.K.; Agarwal, G.; Suthar, D.L.; Purohit, S.D. Time-fractional partial differential equations: A novel technique for analytical and numerical solutions. Arab. J. Basic Appl. Sci. 2022, 29, 86–98. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M. An analytical system to solve the system of nonlinear fractional differential equations. Mathematics 2019, 7, 505. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.K.; Singh, B.K. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using frdtm. R. Soc. Open Sci. 2015, 2, 140511. [Google Scholar]
- Saleh, R.; Kassem, M.; Mabrauk, S.M. Exact solutions of nonlinear fractional order partial differential equations via singular manifold method. Chin. J. Phys. 2019, 61, 290–300. [Google Scholar] [CrossRef]
- Weiguo, R. Comments on whether nonlinear fractional partila differential equations have soliton solutions. Partial. Differ. Equ. Appl. Math. 2022, 5, 100396. [Google Scholar]
- Ali, H.M.; Ahmad, H.; Askar, S.; Ameen, I.G. Efficient apporaches for solving system of nonlinear time-fractional partial differential equations. Fractal Fract. 2022, 6, 32. [Google Scholar] [CrossRef]
- Shakeel, M.; Shah, N.A.; Chung, J.D. Novel analytical technique to find closed form solutions of time fractional partial differential equations. Fractal Fract. 2022, 6, 24. [Google Scholar] [CrossRef]
- Hosseini, V.R.; Zou, W. The peridynamic differential opertaor for solving time-fractional partial differential equations. Nonlinear Dyn. 2022, 109, 1823–1850. [Google Scholar] [CrossRef]
- Malagi, N.S.; Prakasha, D.G.; Veeresha, P.; Prasannakumara, B.C. Fractional Reaction-Diffusion Model: An Efficient Computational Technique for Nonlinear Time-Fractional Schnackenberg Model; Springer: Singapore, 2022. [Google Scholar]
- Joujehi, A.S.; Derakhshan, M.H.; Marasi, H.R. An efficient hybrid numerical method for multi-term time fractional partial differential equations in fluid mechanics with convergence and error analysis. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106620. [Google Scholar] [CrossRef]
- Alesemi, M.; Shahrani, J.S.A.; Iqbal, N.; Shah, R.; Nonlapon, K. Analysis and numerical simulation of system of fractional partial differential equations with non-singular kernel operators. Symmetry 2023, 15, 233. [Google Scholar] [CrossRef]
- Laoubi, M.; Odibat, Z.; Maayah, B. Effective optimized decomposition algorithms for solving nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 2023, 18, 021001. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.T.; Mofarreh, F.; Bazighifan, O. Exact solutions and finite time stability of linear conformable fractional systems with pure delay. Comput. Model. Eng. Sci. 2023, 134, 927–940. [Google Scholar] [CrossRef]
- Wang, S.; Luo, X.; Riaz, S.; Zaman, H.; Zhou, C.; Hao, P. A fractional order fast repetitive control paradigm ofvienna rectifier for power quality improvement. Cmes-Comput. Model. Eng. Sci. 2023, 135, 259–273. [Google Scholar]
- Khan, H.; Kumam, P.; Nawaz, A.; Khan, Q.; Khan, S. The fractional investigation of fornberg-whitham equation using an efficient technique. Cmes-Comput. Model. Eng. Sci. 2023, 134, 1159–1176. [Google Scholar] [CrossRef]
- Veeresha, P.; Ilhan, E.; Prakasha, D.G.; Baskonus, H.M.; Gao, W. Regarding on the fractional mathematical model of tumor invasion and metastasis. Cmes-Comput. Model. Eng. Sci. 2021, 127, 1013–1036. [Google Scholar]
- Mohamed, M.A. Adomian decomposition method for solving the equation governing the unsteady flow of a polytropic gas. Appl. Appl. Math. 2009, 4, 52–61. [Google Scholar]
- Kreyszig, E. Introductory Functional Analysis with Applications; John Wiley and Sons: New York, NY, USA, 1978. [Google Scholar]
- Qing, Y.; Rhoades, B.E. T-Stability of Picard iteration in metric spaces. Fixed Point Theory Appl. 2008, 2008, 418971. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Khan, A.; Chen, W.; Shah, K. Stability analysis and a numerical scheme for fractional Klein-Gordon equations. Math. Meth. Appl. Sci. 2019, 42, 723–732. [Google Scholar] [CrossRef]
- Maitama, S.; Zhao, W. Beyond sumudu transform and natural transform: j-transform properties and applications. J. Appl. Anal. Comput. 2020, 10, 1223–1241. [Google Scholar]
- He, J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 1998, 167, 57–68. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method—A kind of non-linear analytical technique: Some examples. Int. J. -Non-Linear Mech. 1999, 167, 57–68. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method-Some recent results and new interpretations. J. Comput. Appl. Math. 2007, 207, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Odibat, Z.M. A study on the convergence of variational iteration method. Math. Comput. Model. 2010, 51, 1181–1192. [Google Scholar] [CrossRef]
- Abassy, T.A.; El-Tawil, M.A.; El-Zoheiry, H. Modified variational iteration method for Boussinesq equation. Comput. Math. Appl. 2007, 54, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.K.; Kumar, P. Fractional variational iteration method for solving fractional partial differential equations with proportional delay. Int. J. Differ. Equ. 2017, 88, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Momani, S.; Odibat, Z.M. The variational iteration method: An efficient scheme for handling fractional partial differential equation in fluid mechanics. Comput. Math. Appl. 2009, 58, 2199–2208. [Google Scholar]
- Jafari, H.; Alipoor, A. A new method for calculating general Lagrange multiplier in the variational iteration method. Numer. Methods Partial. Differ. Equ. 2011, 27, 996–1001. [Google Scholar] [CrossRef]
- Goswami, P.; Alqahtani, R. Solutions of fractional differential equations by sumudu transform and variational iteration method. J. Nonlinear Sci. Appl. 2016, 9, 1944–1951. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, B.A. The Method of Weighted Residuals and Variational Principles; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Khuri, S.A.; Sayfy, A. A laplace variational iteration strategy for the solution of differential equations. Appl. Math. Lett. 2012, 25, 2298–2305. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Nadeem, H.A.M. Modified laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients. Comput. Math. Appl. 2020, 78, 2052–2062. [Google Scholar]
-VITM | HA TM | HA TM | -VITM | HATM | HA TM | ||
---|---|---|---|---|---|---|---|
(0.25,1,0.25) | 4.3627 | 4.3627 | 2.0887 | 2.1316 | 3.9968 | 2.5757 | |
(0.25,1,0.5) | 5.7683 | 5.7683 | 1.6874 | 4.4546 | 4.4606 | 1.1191 | |
(0.25,1,0.75) | 1.0189 | 1.0189 | 3.4828 | 3.9379 | 3.9380 | 3.3333 | |
(0.25,1,1) | 7.8977 | 7.8977 | 1.5869 | 9.5331 | 9.5331 | 1.7106 | |
(0.5,1,0.25) | 5.6018 | 5.6018 | 2.6820 | 2.7534 | 6.0396 | 1.7764 | |
(0.5,1,0.5) | 7.4066 | 7.4066 | 2.1667 | 5.7198 | 5.7214 | 4.0856 | |
(0.5,1,075) | 1.3083 | 1.3083 | 4.4720 | 5.0564 | 5.0564 | 4.6523 | |
(0.5,1,1) | 1.0141 | 1.0141 | 2.0376 | 1.2241 | 1.2241 | 2.1923 | |
(0.75,1,0.25) | 7.1929 | 7.1929 | 3.4437 | 3.4639 | 4.1744 | 6.3949 | |
(0.75,1,0.5) | 9.5103 | 9.5103 | 2.7821 | 7.3443 | 7.3399 | 6.5725 | |
(0.75,1,0.75) | 1.6799 | 1.6799 | 5.7422 | 6.4926 | 6.4929 | 5.4818 | |
(0.75,1,1) | 1.3021 | 1.3021 | 2.6164 | 1.5717 | 1.5717 | 2.8172 | |
(1,1,0.25) | 9.2359 | 9.2359 | 4.4219 | 4.4409 | 2.6645 | 4.7962 | |
(1,1,0.5) | 1.2211 | 1.2211 | 3.5723 | 9.4301 | 9.4241 | 3.8547 | |
(1,1,0.75) | 2.1570 | 2.1570 | 7.3731 | 8.3366 | 8.3368 | 6.9846 | |
(1,1,1) | 1.6719 | 1.6719 | 3.3595 | 2.0181 | 2.0181 | 3.6275 | |
CPU Time | 1.8290 | 4.0150 | 3.2340 | 12.0300 |
-VITM | HA TM | HA TM | -VITM | HA TM | HA TM | ||
---|---|---|---|---|---|---|---|
(0.25,1,0.25) | 4.3627 | 4.3627 | 9.3490 | 2.0428 | 2.5757 | 2.5757 | |
(0.25,1,0.5) | 5.7683 | 5.7683 | 1.7979 | 4.4546 | 4.4578 | 1.1191 | |
(0.25,1,0.75) | 1.0189 | 1.0189 | 5.4706 | 3.9379 | 3.9380 | 3.3342 | |
(0.25,1,1) | 7.8977 | 7.8977 | 1.5031 | 9.5331 | 9.5331 | 1.7106 | |
(0.5,1,0.25) | 5.6018 | 5.6018 | 1.2006 | 2.8422 | 6.0396 | 1.7764 | |
(0.5,1,0.5) | 7.4066 | 7.4066 | 2.3086 | 5.7197 | 5.7213 | 4.0856 | |
(0.5,1,075) | 1.3083 | 1.3083 | 7.0244 | 5.0564 | 5.0564 | 4.6523 | |
(0.5,1,1) | 1.0141 | 1.0141 | 1.9301 | 1.2241 | 1.2241 | 2.1923 | |
(0.75,1,0.25) | 7.1929 | 7.1929 | 1.5415 | 3.5527 | 4.2633 | 6.3949 | |
(0.75,1,0.5) | 9.5103 | 9.5103 | 2.9643 | 7.3443 | 7.3399 | 6.5725 | |
(0.75,1,0.75) | 1.6799 | 1.6799 | 9.0195 | 6.4926 | 6.4929 | 5.3682 | |
(0.75,1,1) | 1.3021 | 1.3021 | 2.4783 | 1.5717 | 1.5717 | 2.8173 | |
(1,1,0.25) | 9.2359 | 9.2359 | 1.9796 | 4.4409 | 5.1514 | 9.5923 | |
(1,1,0.5) | 1.2211 | 1.2211 | 3.8062 | 9.4301 | 9.4298 | 3.6415 | |
(1,1,0.75) | 2.1570 | 2.1570 | 1.1581 | 8.3366 | 8.3369 | 7.0415 | |
(1,1,1) | 1.6719 | 1.6719 | 3.1822 | 2.0181 | 2.0181 | 3.6265 |
Exact | Exact | ||||||
---|---|---|---|---|---|---|---|
(0.25,1,0.25) | 4.8728202329 | 4.4816890703 | 4.4816890703 | 5.8728202329 | 5.4816890703 | 5.4816890703 | |
(0.25,1,0.5) | 6.4418579146 | 5.7546026760 | 5.7546026760 | 7.4418579146 | 6.7546026760 | 6.7546026760 | |
(0.25,1,0.75) | 8.4088209398 | 7.3890560989 | 7.3890560989 | 9.4088209398 | 8.3890560989 | 8.3890560989 | |
(0.25,1,1) | 10.9090468543 | 9.4877358365 | 9.4877358364 | 11.9090468543 | 10.4877358365 | 10.4877358364 | |
(0.5,1,0.25) | 6.2568250301 | 5.7546026760 | 5.7546026760 | 7.2568250301 | 6.7546026760 | 6.7546026760 | |
(0.5,1,0.5) | 8.2715092930 | 7.3890560989 | 7.3890560989 | 9.2715092930 | 8.3890560989 | 8.3890560989 | |
(0.5,1,075) | 10.7971398111 | 9.4877358364 | 9.4877358364 | 11.7971398111 | 10.4877358364 | 10.4877358364 | |
(0.5,1,1) | 14.0074934328 | 12.1824939609 | 12.1824939607 | 15.0074934328 | 13.1824939609 | 13.1824939607 | |
(0.75,1,0.25) | 8.0339223664 | 7.3890560989 | 7.3890560989 | 9.0339223664 | 8.3890560989 | 8.3890560989 | |
(0.75,1,0.5) | 10.6208281666 | 9.4877358364 | 9.4877358364 | 11.6208281666 | 10.4877358364 | 10.4877358364 | |
(0.75,1,0.75) | 13.8638019450 | 12.1824939607 | 12.1824939607 | 14.8638019450 | 13.1824939607 | 13.1824939607 | |
(0.75,1,1) | 17.9859775918 | 15.6426318845 | 15.6426318842 | 18.9859775918 | 16.6426318845 | 16.6426318842 | |
(1,1,0.25) | 10.3157605141 | 9.4877358364 | 9.4877358364 | 11.3157605141 | 10.4877358364 | 10.4877358364 | |
(1,1,0.5) | 13.6374133121 | 12.1824939607 | 12.1824939607 | 14.6374133121 | 13.1824939607 | 13.1824939607 | |
(1,1,0.75) | 17.8014740693 | 15.6426318842 | 15.6426318842 | 18.8014740693 | 16.6426318842 | 16.6426318842 | |
(1,1,1) | 23.0944523718 | 20.0855369235 | 20.0855369232 | 24.0944523718 | 21.0855369236 | 21.0855369232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.K.; Baskonus, H.M.; Singh, N.; Gupta, M.; Prakasha, D.G. Study of Time-Fractional Nonlinear Model Governing Unsteady Flow of Polytropic Gas. Axioms 2023, 12, 285. https://doi.org/10.3390/axioms12030285
Singh BK, Baskonus HM, Singh N, Gupta M, Prakasha DG. Study of Time-Fractional Nonlinear Model Governing Unsteady Flow of Polytropic Gas. Axioms. 2023; 12(3):285. https://doi.org/10.3390/axioms12030285
Chicago/Turabian StyleSingh, Brajesh K., Haci Mehmet Baskonus, Neetu Singh, Mukesh Gupta, and D. G. Prakasha. 2023. "Study of Time-Fractional Nonlinear Model Governing Unsteady Flow of Polytropic Gas" Axioms 12, no. 3: 285. https://doi.org/10.3390/axioms12030285
APA StyleSingh, B. K., Baskonus, H. M., Singh, N., Gupta, M., & Prakasha, D. G. (2023). Study of Time-Fractional Nonlinear Model Governing Unsteady Flow of Polytropic Gas. Axioms, 12(3), 285. https://doi.org/10.3390/axioms12030285