Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The peridynamic differential operator for solving time-fractional partial differential equations

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the numerical solution of time-fractional convection diffusion equations (TF-CDEs) is considered as a generalization of classical ones, nonexponential relaxation patterns and anomalous diffusion. A nonlocal model further is developed toward such problems via peridynamic differential operator, which may be utilized to derive all partial derivatives of higher orders concurrently in a simple and effective manner, with no need for shape functions. To generate the final discrete system of equations, only functionals based on nonlocal operators are required, greatly simplifying the implementation. The main contribution of this work is three-fold: (1) a finite difference/nonlocal operator method is contracted for the discretization of the TF-CDEs; (2) a detailed analysis of the proposed scheme is given by providing some stability and error estimates, and the method convergence is established; and eventually, (3) numerical experiments are presented to substantiate the theoretical analysis and demonstrate the computational efficiency of the schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Altan, A., Karasu, S., Zio, E.: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Appl. Soft Comput. 100, 106996 (2021)

    Google Scholar 

  2. Atkinson, C., Osseiran, A.: Rational solutions for the time-fractional diffusion equation. SIAM J. Appl. Math. 71, 92–106 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Aulisa, E., Capodaglio, G., Chierici, A., D’Elia, M.: Efficient quadrature rules for finite element discretizations of nonlocal equations (2021). arXiv preprint arXiv:2101.08825

  4. Bazazzadeh, S., Shojaei, A., Zaccariotto, M., Galvanetto, U.: Application of the peridynamic differential operator to the solution of sloshing problems in tanks. Eng. Comput. (2018)

  5. Bazazzadeh, S., Zaccariotto, M., Galvanetto, U.: Fatigue degradation strategies to simulate crack propagation using peridynamic based computational methods. Latin Am. J. Solids Struct. 16, (2019)

  6. Behzadinasab, M., Foster, J.T.: A semi-Lagrangian constitutive correspondence framework for peridynamics. J. Mech. Phys. Solids 137, 103862 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Bekar, A.C., Madenci, E.: Peridynamics enabled learning partial differential equations. J. Comput. Phys. 434, 110193 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Bekar, A.C., Madenci, E., Haghighat, E.: On the solution of hyperbolic equations using the peridynamic differential operator. Comput. Methods Appl. Mech. Eng. 391, 114574 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Bie, Y.H., Cui, X.Y., Li, Z.C.: A coupling approach of state-based peridynamics with node-based smoothed finite element method. Comput. Methods Appl. Mech. Eng. 331, 675–700 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  11. Can, N.H., Nikan, O., Rasoulizadeh, M.N., Jafari, H., Gasimov, Y.S.: Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 24, 49–58 (2020)

    Google Scholar 

  12. Chu, B., Liu, Q., Liu, L., Lai, X., Mei, H.: A rate-dependent peridynamic model for the dynamic behavior of ceramic materials. Comput. Model. Eng. Sci. 124, 151–178 (2020)

    Google Scholar 

  13. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    MathSciNet  MATH  Google Scholar 

  14. D’Elia, M., Gulian, M., Olson, H., Karniadakis, G.E.: A unified theory of fractional, nonlocal, and weighted nonlocal vector calculus. (2020). arXiv preprint arXiv:2005.07686

  15. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Di Leoni, P.C., Zaki, T.A., Karniadakis, G., Meneveau, C.: Two-point stress-strain-rate correlation structure and non-local eddy viscosity in turbulent flows. J. Fluid Mech. 914 (2021)

  17. Emam, S., Lacarbonara, W.: A review on buckling and postbuckling of thin elastic beams. Eur. J. Mech.-A/Solids 92, 104449 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Fu, Z.J., Chen, W., Yang, H.T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Ganji, R.M., Jafari, H., Baleanu, D.: A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel. Chaos, Solitons Fractals 130, 109405 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Gao, Y., Oterkus, S.: Fluid-elastic structure interaction simulation by using ordinary state-based peridynamics and peridynamic differential operator. Eng. Anal. Bound. Elem. 121, 126–142 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Gao, Y., Oterkus, S.: Multi-phase fluid flow simulation by using peridynamic differential operator. Ocean Eng. 216, 108081 (2020)

    Google Scholar 

  22. Gu, X., Madenci, E., Zhang, Q.: Revisit of non-ordinary state-based peridynamics. Eng. Fract. Mech. 190, 31–52 (2018)

    Google Scholar 

  23. Gumina, S., Candela, V., Cacciarelli, A., Iannuzzi, E., Formica, G., Lacarbonara, W.: Three-part humeral head fractures treated with a definite construct of blocked threaded wires: finite element and parametric optimization analysis. JSES Int. 5, 983–991 (2021)

    Google Scholar 

  24. Hosseini, V., Yousefi, F., Zou, W.N.: The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method. J. Adv. Res. (2021). https://doi.org/10.1016/j.jare.2020.12.015

    Article  Google Scholar 

  25. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Bound. Elem. 38, 31–39 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Hosseini, V.R., Koushki, M., Zou, W.N.: The meshless approach for solving 2D variable-order time-fractional advection-diffusion equation arising in anomalous transport. Engineering with Computers , pp. 1–19 (2021)

  27. Hosseini, V.R., Shivanian, E., Chen, W.: Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur. Phys. J. Plus 130, 1–21 (2015)

    Google Scholar 

  28. Jafari, H.: A new general integral transform for solving integral equations. J. Adv. Res. 32, 133–138 (2021)

    Google Scholar 

  29. Jafari, H., Mehdinejadiani, B., Baleanu, D.: Fractional calculus for modeling unconfined groundwater, p. 119. Appl. Eng. Life Soc. Sci. (2019)

  30. Karasu, S., Altan, A., Bekiros, S., Ahmad, W.: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212, 118750 (2020)

    Google Scholar 

  31. Kreyszig, E.: Introductory Functional Analysis with Applications, vol. 1. Wiley, New York (1978)

    MATH  Google Scholar 

  32. Li, S., Liu, W.K.: Reproducing kernel hierarchical partition of unity, part I–formulation and theory. Int. J. Numer. Meth. Eng. 45, 251–288 (1999)

    MATH  Google Scholar 

  33. Li, S., Liu, W.K.A.M.: Reproducing kernel hierarchical partition of unity. Part II - Appl. 317, 289–317 (1999)

    MathSciNet  Google Scholar 

  34. Li, Z., Huang, D., Xu, Y., Yan, K.: Nonlocal steady-state thermoelastic analysis of functionally graded materials by using peridynamic differential operator. Appl. Math. Model. 93, 294–313 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Lotfi, A., Dehghan, M., Yousefi, S.A.: A numerical technique for solving fractional optimal control problems. Comput. Math. Appl. 62, 1055–1067 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Madenci, E., Barut, A., Dorduncu, M.: Peridynamic differential operator for numerical. Analysis. (2019). https://doi.org/10.1007/978-3-030-02647-9

  38. Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. 304, 408–451 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Madenci, E., Oterkus, E.: Peridynamic theory. In: Peridynamic Theory and Its Applications. Springer, pp. pp. 19–43 (2014)

  40. Nguyen, C.T., Oterkus, S., Oterkus, E.: A physics-guided machine learning model for two-dimensional structures based on ordinary state-based peridynamics. Theoret. Appl. Fract. Mech. 112, 102872 (2021)

    Google Scholar 

  41. Nikan, O., Jafari, H., Golbabai, A.: Numerical analysis of the fractional evolution model for heat flow in materials with memory. Alex. Eng. J. 59, 2627–2637 (2020)

    Google Scholar 

  42. Nikan, O., Molavi-Arabshai, S.M., Jafari, H.: Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete Contin. Dyn. Syst.-S 14, 3685 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Pang, G., D’Elia, M., Parks, M., Karniadakis, G.E.: nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications. J. Comput. Phys. 422, 109760 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Rabczuk, T., Ren, H.: A peridynamics formulation for quasi-static fracture and contact in rock. Eng. Geol. 225, 42–48 (2017)

    Google Scholar 

  45. Seblani, Y.E., Shivanian, E.: New insight into meshless radial point Hermite interpolation through direct and inverse 2-D reaction-diffusion equation. Eng. Comput. 37, 3605–3613 (2021)

    Google Scholar 

  46. Shadabfar, M., Cheng, L.: Probabilistic approach for optimal portfolio selection using a hybrid Monte Carlo simulation and Markowitz model. Alex. Eng. J. 59, 3381–3393 (2020)

    Google Scholar 

  47. Shivanian, E.: To study existence of at least three weak solutions to a system of over-determined Fredholm fractional integro-differential equations. Commun. Nonlinear Sci. Numer. Simul. 101, 105892 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Shojaei, A., Galvanetto, U., Rabczuk, T., Jenabi, A., Zaccariotto, M.: A generalized finite difference method based on the Peridynamic differential operator for the solution of problems in bounded and unbounded domains. Comput. Methods Appl. Mech. Eng. 343, 100–126 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Tong, Y., Shen, W.Q., Shao, J.F.: An adaptive coupling method of state-based peridynamics theory and finite element method for modeling progressive failure process in cohesive materials. Comput. Methods Appl. Mech. Eng. 370, 113248 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Yu, H., Li, S.: On approximation theory of nonlocal differential operators. Int. J. Numer. Meth. Eng. 122, 6984–7012 (2021)

    MathSciNet  Google Scholar 

  52. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Zeng, F., Mao, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities. SIAM J. Sci. Comput. 39, A360–A383 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, J., Zhang, X., Yang, B.: An approximation scheme for the time fractional convection-diffusion equation. Appl. Math. Comput. 335, 305–312 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Zheng, Y., Li, C., Zhao, Z.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Reza Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is dedicated to the memory of the late Professor Prof. J. A. Tenreiro Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, V.R., Zou, W. The peridynamic differential operator for solving time-fractional partial differential equations. Nonlinear Dyn 109, 1823–1850 (2022). https://doi.org/10.1007/s11071-022-07424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07424-4

Keywords

Navigation