Examination of the Influence of Alternative Fuels on Particulate Matter Properties Emitted from a Non-Proprietary Combustor
<p>Hydrogen content versus alkane, mono-aromatic and cycloalkane content of the nine fuels examined.</p> "> Figure 2
<p>Schematic of experimental setup. Note: nvPM number instrumentation and catalytic stripper described in text are not shown here for clarity as the results from these are not presented.</p> "> Figure 3
<p>Comparison of different instrument measurements (<b>A</b>)—number concentrations versus EC mass concentration, (<b>B</b>)—number concentrations versus TC and EC mass concentrations, (<b>C</b>)—EC mass concentrations) from several different aerosol instruments. Error bars show one standard deviation. The 1:1 line is shown in all graphs.</p> "> Figure 4
<p>Particle number concentrations (<b>A</b>) as a function of fuel hydrogen content, averaged across a given fuel flow rate, whilst other variables were changing (for all other variables held constant, see <a href="#app1-atmosphere-15-00308" class="html-app">Figure S5</a>). In (<b>B</b>), relative differences in hydrogen content and number concentrations are presented, the latter of which is averaged across all conditions (T1–T3 and T6–T7; excluded test points are as such due to SMPS failure for J-LA’s TP8 and J-HA’s lack of TP4–5). Values in 4b are compared against those of J-REF. X-axis error bars in 4a show one standard deviation for fuel’s repeatability of their compositional analysis. Y error bars are not shown but are SMPS measurement uncertainty (±10%). Regression values are results of linear regression with the natural log of displayed y values.</p> "> Figure 5
<p>nvPM mass concentrations (<b>A</b>) as a function of fuel hydrogen content, averaged across a given fuel flow rate, whilst other variables are changing (for all other variables held constant, see <a href="#app1-atmosphere-15-00308" class="html-app">Figure S5</a>). In (<b>B</b>), relative differences of hydrogen content and nvPM mass concentrations are presented, the latter of which is averaged across all conditions (T1–T3 and T6–T7). Both values are compared against those of J-REF. X-axis error bars in 5a show one standard deviation for fuel’s repeatability of their compositional analysis. Regression values are results of linear regression with the natural log of displayed y values.</p> "> Figure 6
<p>(<b>a</b>): Boxplot of ordinary least squares linear regression performed on organic mass concentration produced at each <span class="html-italic">m/z</span> (up to <span class="html-italic">m/z</span> 150, excluding <span class="html-italic">m/z</span> 28) by a fuel at a given condition, compared against the equivalent <span class="html-italic">m/z</span> of the organic vPM emitted by another fuel at the same operating condition, above the threshold of 0.5 µg/m<sup>3</sup>. Boxes show interquartile ranges, with median line at centre. Error bars show top and bottom quartiles of the dataset. (<b>b</b>): The same as (<b>a</b>) except <span class="html-italic">m/z</span> 12, 18, 28 and 44 were removed from comparisons.</p> "> Figure 7
<p>PMF factors and their mass concentrations as a function of MSS EC mass concentration. AlkOA (<b>left</b>) and QOA (<b>right</b>). Shaded by the hydrogen content of the fuel in the given example.</p> "> Figure 8
<p>PMF factors, categorised by their AMS ions detected via high-resolution analysis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fuels
2.2. Combustor
2.3. Setup and Sampling
2.4. Instrumentation
2.5. Line Loss Correction
2.6. Test Matrix
2.7. AMS Data Analysis
3. Results
3.1. Instrument Comparisons
3.2. Total Particle Number Concentrations
3.3. nvPM Mass Concentrations
3.4. vPM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grewe, V.; Rao, A.G.; Grönstedt, T.; Xisto, C.; Linke, F.; Melkert, J.; Middel, J.; Ohlenforst, B.; Blakey, S.; Christie, S.; et al. Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects. Nat. Commun. 2021, 12, 3841. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.; Petzold, A.; Prather, M.; Schumann, U.; Bais, A.; Berntsen, T.; et al. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar] [CrossRef] [PubMed]
- Hudda, N.; Fruin, S.A. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations. Environ. Sci. Technol. 2016, 50, 3362–3370. [Google Scholar] [CrossRef] [PubMed]
- Hudda, N.; Gould, T.; Hartin, K.; Larson, T.V.; Fruin, S.A. Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind. Environ. Sci. Technol. 2014, 48, 6628–6635. [Google Scholar] [CrossRef] [PubMed]
- Yim, S.H.; Stettler, M.E.; Barrett, S.R. Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment. Atmos. Environ. 2013, 67, 184–192. [Google Scholar] [CrossRef]
- He, R.-W.; Shirmohammadi, F.; Gerlofs-Nijland, M.E.; Sioutas, C.; Cassee, F.R. Pro-inflammatory responses to PM0.25 from airport and urban traffic emissions. Sci. Total Environ. 2018, 640–641, 997–1003. [Google Scholar] [CrossRef]
- Yu, Z.; Herndon, S.C.; Ziemba, L.D.; Timko, M.T.; Liscinsky, D.S.; Anderson, B.E.; Miake-Lye, R.C. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft. Environ. Sci. Technol. 2012, 46, 9630–9637. [Google Scholar] [CrossRef]
- Harper, J.; Durand, E.; Bowen, P.; Pugh, D.; Johnson, M.; Crayford, A. Influence of alternative fuel properties and combustor operating conditions on the nvPM and gaseous emissions produced by a small-scale RQL combustor. Fuel 2022, 315, 123045. [Google Scholar] [CrossRef]
- Brem, B.T.; Durdina, L.; Siegerist, F.; Beyerle, P.; Bruderer, K.; Rindlisbacher, T.; Rocci-Denis, S.; Andac, M.G.; Zelina, J.; Penanhoat, O.; et al. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine. Environ. Sci. Technol. 2015, 49, 13149–13157. [Google Scholar] [CrossRef]
- Chan, T.W.; Canteenwalla, P.; Chishty, W.A. Characterization of fuel composition and altitude impact on gaseous and particle emissions from a turbojet engine. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Tran, S.; Brown, A.; Olfert, J.S. Comparison of Particle Number Emissions from In-Flight Aircraft Fueled with Jet A1, JP-5 and an Alcohol-to-Jet Fuel Blend. Energy Fuels 2020, 34, 7218–7222. [Google Scholar] [CrossRef]
- Beyersdorf, A.; Timko, M.; Ziemba, L.; Bulzan, D.; Corporan, E.; Herndon, S.; Howard, R.; Miake-Lye, R.; Thornhill, K.; Winstead, E. Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels. Atmos. Chem. Phys. 2014, 14, 11–23. [Google Scholar] [CrossRef]
- Onasch, T.B.; Jayne, J.T.; Herndon, S.; Worsnop, D.R.; Miake-Lye, R.C.; Mortimer, I.P.; Anderson, B.E. Chemical Properties of Aircraft Engine Particulate Exhaust Emissions. J. Propuls. Power 2009, 25, 1121–1137. [Google Scholar] [CrossRef]
- Miake-Lye, R.C.; Anderson, B.E.; Cofer, W.R.; Wallio, H.A.; Nowicki, G.D.; Ballenthin, J.O.; Hunton, D.E.; Knighton, W.B.; Miller, T.M.; Seeley, J.V.; et al. SOx oxidation and volatile aerosol in aircraft exhaust plumes depend on fuel sulfur content. Geophys. Res. Lett. 1998, 25, 1677–1680. [Google Scholar] [CrossRef]
- Moore, R.H.; Shook, M.; Beyersdorf, A.; Corr, C.; Herndon, S.; Knighton, W.B.; Miake-Lye, R.; Thornhill, K.L.; Winstead, E.L.; Yu, Z.; et al. Influence of jet fuel composition on aircraft engine emissions: A synthesis of aerosol emissions data from the NASA APEX, AAFEX, and ACCESS missions. Energy Fuels 2015, 29, 2591–2600. [Google Scholar] [CrossRef]
- Anderson, B.E.; Cofer, W.R.; Barrick, J.D.; Bagwell, D.R.; Hudgins, C.H. Airborne observations of aircraft aerosol emissions II: Factors controlling volatile particle production. Geophys. Res. Lett. 1998, 25, 1693–1696. [Google Scholar] [CrossRef]
- Timko, M.T.; Fortner, E.; Franklin, J.; Yu, Z.; Wong, H.-W.; Onasch, T.B.; Miake-Lye, R.C.; Herndon, S.C. Atmospheric measurements of the physical evolution of aircraft exhaust plumes. Environ. Sci. Technol. 2013, 47, 3513–3520. [Google Scholar] [CrossRef]
- Wey, C.C.; Anderson, B.E.; Wey, C.; Miake-Lye, R.C.; Whitefield, P.; Howard, R. Overview on the aircraft particle emissions experiment. J. Propuls. Power 2007, 23, 898–904. [Google Scholar] [CrossRef]
- Bulzan, D.; Anderson, B.; Wey, C.; Howard, R.; Winstead, E.; Beyersdorf, A.; Corporan, E.; DeWitt, M.I.; Klingshirn, C.; Herndon, S. Gaseous and particulate emissions results of the NASA alternative aviation fuel experiment (AAFEX). In Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, UK, 14–18 June 2010. GT2010–23524. [Google Scholar]
- Anderson, B. Alternative Aviation Fuel Experiment II (AAFEX II) Overview. In Proceedings of the 3rd International Conference on Transport, Atmosphere and Climate, Prien am Chiemsee, Germany, 25–28 June 2012. [Google Scholar]
- Lobo, P.; Durdina, L.; Smallwood, G.J.; Rindlisbacher, T.; Siegerist, F.; Black, E.A.; Yu, Z.; Mensah, A.A.; Hagen, D.E.; Miake-Lye, R.C.; et al. Measurement of aircraft engine non-volatile PM emissions: Results of the Aviation-Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 campaign. Aerosol Sci. Technol. 2015, 49, 472–484. [Google Scholar] [CrossRef]
- Kılıç, D.; El Haddad, I.; Brem, B.T.; Bruns, E.; Bozetti, C.; Corbin, J.; Durdina, L.; Huang, R.-J.; Jiang, J.; Klein, F.; et al. Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmos. Chem. Phys. 2018, 18, 7379–7391. [Google Scholar] [CrossRef]
- Lobo, P.; Durdina, L.; Brem, B.T.; Crayford, A.P.; Johnson, M.P.; Smallwood, G.J.; Siegerist, F.; Williams, P.I.; Black, E.A.; Llamedo, A.; et al. Comparison of standardized sampling and measurement reference systems for aircraft engine non-volatile particulate matter emissions. J. Aerosol Sci. 2020, 145, 105557. [Google Scholar] [CrossRef]
- Smith, L.D.; Allan, J.; Coe, H.; Reyes-Villegas, E.; Johnson, M.P.; Crayford, A.; Durand, E.; Williams, P.I. Examining chemical composition of gas turbine-emitted organic aerosol using positive matrix factorization (PMF). J. Aerosol Sci. 2021, 159, 105869. [Google Scholar] [CrossRef]
- Makida, M.; Yamada, H.; Kurosawa, Y.; Yamamoto, T.; Matsuura, K.; Hayashi, S. Preliminary Experimental Research to Develop a Combustor for Small Class Aircraft Engine Utilizing Primary Rich Com-bustion Approach. In Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain, 8–11 May 2006; pp. 1–8. [Google Scholar]
- Crayford, A.P.; Lacan, F.; Runyon, J.; Bowen, P.J.; Balwadkar, S.; Harper, J.; Pugh, D.G. Manufacture, Characterization and Stability Limits of an Am Prefilming Air-Blast Atomizer. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, AZ, USA, 17–21 June 2019; American Society Mechanical Engineers: New York, NY, USA, 2019. [Google Scholar]
- ICAO. Annex 16—Environmental Protection; ICAO: Montreal, QC, Canada, 2018; Volume 2. [Google Scholar]
- Petzold, A.; Marsh, R.; Johnson, M.; Miller, M.; Sevcenco, Y.; Delhaye, D.; Ibrahim, A.; Williams, P.; Bauer, H.; Crayford, A.; et al. Evaluation of methods for measuring particulate matter emissions from gas turbines. Environ. Sci. Technol. 2011, 45, 3562–3568. [Google Scholar] [CrossRef] [PubMed]
- Durand, E.; Durdina, L.; Smallwood, G.; Johnson, M.; Spirig, C.; Edebeli, J.; Roth, M.; Brem, B.; Sevcenco, Y.; Crayford, A. Correction for particle loss in a regulatory aviation nvPM emissions system using measured particle size. J. Aerosol Sci. 2023, 169, 106140. [Google Scholar] [CrossRef]
- Timko, M.T.; Albo, S.E.; Onasch, T.B.; Fortner, E.C.; Yu, Z.; Miake-Lye, R.C.; Canagaratna, M.R.; Ng, N.L.; Worsnop, D.R. Composition and sources of the organic particle emissions from aircraft engines. Aerosol Sci. Technol. 2014, 48, 61–73. [Google Scholar] [CrossRef]
- McLafferty, F.; Turecek, F.W. Interpretation of Mass Spectra, 4th ed.; University Science Books: Sausalito, CA, USA, 1993. [Google Scholar]
- McCullagh, N.; Oldham, J. Mass Spectrometry; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Yang, Y.; Boehman, A.L.; Santoro, R.J. A study of jet fuel sooting tendency using the threshold sooting index (TSI) model. Combust. Flame 2007, 149, 191–205. [Google Scholar] [CrossRef]
- Li, L.; Sunderland, P.B. An improved method of smoke point normalization. Combust. Sci. Technol. 2012, 184, 829–841. [Google Scholar] [CrossRef]
- Calcote, H.; Manos, D. Effect of molecular structure on incipient soot formation. Combust. Flame 1983, 49, 289–304. [Google Scholar] [CrossRef]
- Schalla, R.L.; McDonald, G.E. Variation in Smoking Tendency. Ind. Eng. Chem. 1953, 53, 1497–1500. [Google Scholar] [CrossRef]
- Rye, L.; Wilson, C. The influence of alternative fuel composition on gas turbine ignition performance. Fuel 2012, 96, 277–283. [Google Scholar] [CrossRef]
- Onasch, T.B.; Jayne, J.T.; Herndon, S.C.; Mortimer, P.; Worsnop, D.R.; Miake-lye, R.C. Aircraft Particle Emissions eX-periment (APEX): Chemical Properties of Aircraft Engine Exhaust Aerosols Sampled During APEX (Appendix J). In Aircraft Particle Emissions eXperiment (APEX)—NASA/TM—2006-214382; NASA: Washington, DC, USA, 2006; pp. 475–500. [Google Scholar]
- Timko, M.T.; Onasch, T.B.; Northway, M.J.; Jayne, J.T.; Canagaratna, M.R.; Herndon, S.C.; Wood, E.C.; Miake-Lye, R.C.; Knighton, W.B. Gas turbine engine emissions—Part II: Chemical properties of particulate matter. J. Eng. Gas Turbines Power 2010, 132, 061505. [Google Scholar] [CrossRef]
- Yelvington, P.E.; Herndon, S.C.; Wormhoudt, J.C.; Jayne, J.T.; Miake-Lye, R.C.; Knighton, W.B.; Wey, C. Chemical Speciation of Hydrocarbon Emissions from a Commercial Aircraft Engine. J. Propuls. Power 2007, 23, 912–918. [Google Scholar] [CrossRef]
- Williams, P.I.; Allan, J.D.; Lobo, P.; Coe, H.; Christie, S.; Wilson, C.; Hagen, D.; Whitefield, P.; Raper, D.; Rye, L. Impact of alternative fuels on emissions characteristics of a gas turbine engine—Part 2: Volatile and semivolatile particulate matter emissions. Environ. Sci. Technol. 2012, 46, 10812–10819. [Google Scholar] [CrossRef] [PubMed]
- Alfarra, M. Insights into Atmospheric Organic Aerosols Using an Aerosol Mass Spectrometer; University of Manchester: Manchester, UK, 2004. [Google Scholar]
- Yu, Z.; Timko, M.T.; Herndon, S.C.; Richard, C.M.-L.; Beyersdorf, A.J.; Ziemba, L.D.; Winstead, E.L.; Anderson, B.E. Mode-specific, semi-volatile chemical composition of particulate matter emissions from a commercial gas turbine aircraft engine. Atmos. Environ. 2019, 218, 116974. [Google Scholar] [CrossRef]
- Ng, N.L.; Canagaratna, M.R.; Zhang, Q.; Jimenez, J.L.; Tian, J.; Ulbrich, I.M.; Kroll, J.H.; Docherty, K.S.; Chhabra, P.S.; Bahreini, R.; et al. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmos. Chem. Phys. 2010, 10, 4625–4641. [Google Scholar] [CrossRef]
- Rollins, A.W.; Fry, J.L.; Hunter, J.F.; Kroll, J.H.; Worsnop, D.R.; Singaram, S.W.; Cohen, R.C. Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. Atmos. Meas. Tech. 2010, 3, 301–310. [Google Scholar] [CrossRef]
Fuel | J-REF | J-HA | J-LA | B-REF | B-HE1 | B-HE2 | B-HA | A-HA | A-LA |
---|---|---|---|---|---|---|---|---|---|
Hydrogen Mass (%) | 14.022 (±0.024) | 13.649 (±0.046) | 14.083 (±0.029) | 14.405 (±0.006) | 14.397 (±0.074) | 14.514 (±0.036) | 14.042 (±0.033) | 13.510 (±0.007) | 15.31 (±0.003) |
Alkane Content (%) | 49.96 | 37.83 | 49.47 | 76.83 | 63.42 | 62.72 | 49.64 | 28.86 | 99.90 |
Monoaromatic Content (%) | 18.41 | 20.57 | 17.82 | 12.89 | 11.48 | 12.68 | 16.61 | 24.91 | 0.00 |
Diaromatic Content (%) | 1.82 | 2.18 | 0.18 | 1.28 | 1.22 | 0.14 | 1.26 | 0.28 | 0.00 |
Weight Total Aromatic Content (%) | 20.24 | 22.75 | 18.01 | 14.16 | 12.7 | 12.82 | 17.87 | 25.18 | 0.00 |
Sulphur Content (ppm) | 200 | 105 | 5.7 | 140 | 56.8 | 4.10 | 58.6 | 0.00 | 0.00 |
Molecular Weight (g/mol) | 153.6 | 162.37 | 151.64 | 181.55 | 166.92 | 156.00 | 159.89 | 159.82 | 200.17 |
Kinematic viscosity (mm2/s) | 1.62 | 1.62 | 1.3 | 1.64 | 1.59 | 1.39 | 1.57 | 1.72 | 1.74 |
Surface Tension (mn/m) | 25.9 | 27 | 25.67 | 25.07 | 25.63 | 25.23 | 26.13 | 27.60 | 27.00 |
Instrument | Species Measured | Unit of Measurement | Detection Limits | Time Resolution |
---|---|---|---|---|
CPC a | Total Number Concentration | Number/cm3 | 2.5 nm–2–3 µm | 1 s |
SMPS b | Size Distribution | dN/dlogDp | 8 nm–150 nm | Full Scan ~2.5 min |
OCEC Analyser c | Organic Carbon and Elemental Carbon | µg/m3 | N/A | User-specified sample time (in this study, always between 30 and 60 min), with user-specified analysis protocol d |
HR-AMS e | Non-Refractory Aerosol Species f | µg/m3 | ~30 nm–1 µm g | Full Scan 30 s |
MSS and LII h | Refractory Black Carbon (rBC), converted to Elemental Carbon | µg/m3 | ~1 µg/m3 | 1 Hz (MSS) and 20 Hz (LII) |
Test Point (TP) | Fuel Flow (g/s) | Primary Air (g/s) | Secondary Air (g/s) | Primary Air-to-Fuel Ratio | Global Air-to-Fuel Ratio |
---|---|---|---|---|---|
1 | 0.8 | 2.42 | 25 | 3.03 | 34.28 |
2 | 0.7 | 2.42 | 30 | 3.46 | 46.31 |
3 | 0.6 | 2.42 | 30 | 4.03 | 54.03 |
4 | 0.6 | 2.42 | 25 | 4.03 | 45.70 |
5 | 0.6 | 2.07 | 30 | 3.45 | 53.45 |
6 | 0.7 | 2.07 | 30 | 2.96 | 45.81 |
7 | 0.8 | 2.07 | 25 | 2.59 | 33.84 |
8 | 0.6 | 2.07 | 35 | 3.45 | 61.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, L.D.; Harper, J.; Durand, E.; Crayford, A.; Johnson, M.; Coe, H.; Williams, P.I. Examination of the Influence of Alternative Fuels on Particulate Matter Properties Emitted from a Non-Proprietary Combustor. Atmosphere 2024, 15, 308. https://doi.org/10.3390/atmos15030308
Smith LD, Harper J, Durand E, Crayford A, Johnson M, Coe H, Williams PI. Examination of the Influence of Alternative Fuels on Particulate Matter Properties Emitted from a Non-Proprietary Combustor. Atmosphere. 2024; 15(3):308. https://doi.org/10.3390/atmos15030308
Chicago/Turabian StyleSmith, Liam D., Joseph Harper, Eliot Durand, Andrew Crayford, Mark Johnson, Hugh Coe, and Paul I. Williams. 2024. "Examination of the Influence of Alternative Fuels on Particulate Matter Properties Emitted from a Non-Proprietary Combustor" Atmosphere 15, no. 3: 308. https://doi.org/10.3390/atmos15030308
APA StyleSmith, L. D., Harper, J., Durand, E., Crayford, A., Johnson, M., Coe, H., & Williams, P. I. (2024). Examination of the Influence of Alternative Fuels on Particulate Matter Properties Emitted from a Non-Proprietary Combustor. Atmosphere, 15(3), 308. https://doi.org/10.3390/atmos15030308