Comparison of Different Impact Factors and Spatial Scales in PM2.5 Variation
<p>Location of the four core urban agglomerations in China. (<b>a</b>) Beijing–Tianjin–Hebei urban agglomeration, (<b>b</b>) Pearl River urban agglomeration, (<b>c</b>) Yangtze River urban agglomeration, (<b>d</b>) Chengdu–Chongqing urban agglomeration.</p> "> Figure 2
<p>Spatial distribution of precipitation in the four core urban agglomerations in China in 2020 at different grid scales: Beijing–Tianjin–Hebei urban agglomeration (BTH), Pearl River urban agglomeration (PRD), Yangtze River urban agglomeration (YRD), and Chengdu–Chongqing urban agglomeration (CC).</p> "> Figure 3
<p>The spatial distribution of the annual average PM<sub>2.5</sub> concentration.</p> "> Figure 4
<p>The direct effects of different factors vary with the research scale. (<b>a</b>) PRE; (<b>b</b>) TMP; (<b>c</b>) WND; (<b>d</b>) CPL; (<b>e</b>) FOREST; (<b>f</b>) WATER; (<b>g</b>) IPS.</p> "> Figure 4 Cont.
<p>The direct effects of different factors vary with the research scale. (<b>a</b>) PRE; (<b>b</b>) TMP; (<b>c</b>) WND; (<b>d</b>) CPL; (<b>e</b>) FOREST; (<b>f</b>) WATER; (<b>g</b>) IPS.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. The Four Core Urban Agglomerations in China
2.2. Data Sources and Grid Design
2.2.1. Data Sources
2.2.2. Grid Design
3. Methodology
3.1. Spatiotemporal Pattern Analysis
3.2. Spatial Regression Model
- PRE: annual precipitation;
- TMP: annual average temperature;
- WND: annual average wind speed;
- CPL: the land use of cropland;
- FOREST: the land use of forests;
- WATER: the land use of water;
- IPS: the land use of impermeable surfaces.
4. Results and Analyses
4.1. Spatiotemporal Patterns of the PM2.5 Concentration
4.2. Spatial Econometric Testing of the Influencing Factors of PM2.5
4.2.1. Regression Model Identification
4.2.2. Regression Results
5. Discussion
5.1. The Relationship between Impacts and Scales
5.2. Potential Causes of the Direct and Spillover Effects
5.2.1. Precipitation
5.2.2. Temperature
5.2.3. Wind Speed
5.2.4. Cropland
5.2.5. Forests
5.2.6. Water Bodies
5.2.7. Impermeable Surfaces
5.3. The Impacts of Factors Vary with Scales
5.4. Relevant Policy Recommendations and Limitations
6. Conclusions
- The average annual PM2.5 concentration in the four core urban agglomerations in China generally showed a downward trend and was lower in the PRD than in the other three urban agglomerations.
- The PM2.5 concentrations showed obvious spatial autocorrelation. After the LM test, Wald test, and LR test, we found that spatial econometric models can be introduced when studying the spatial distribution and influencing factors of PM2.5.
- Overall, in the direct effects, meteorological factors were found to have a significant negative impact on the BTH, significantly positive effect on forests, and significantly negative effect on water bodies and impermeable surfaces. In the PRD, the influence of temperature was significantly negative. In the YRD, the impact of precipitation and temperature was significantly negative, while the impact on land use factors was significantly positive. The impact of precipitation, temperature, cropland, forests, and impermeable surfaces in the CC was significantly negative.
- On the whole, in the BTH, the indirect effects of precipitation, temperature, cropland, forests, and impermeable surfaces were found to be significantly negative, while their effects on wind speed and water bodies were significantly positive. The impact of temperature in the PRD was significantly negative. The impact of precipitation, temperature, and land use factors in the YRD was significantly negative. In the CC, the impact of precipitation, temperature, and land use factors was significantly negative, while the impact of wind speed was significantly positive.
- The influence of wind speed on coastal urban clusters was not significant among the meteorological factors, but it had a significant impact on inland urban clusters. The direct effect of land use factors showed a significant U-shaped change with the change in research scale in the YRD, and the direct effect was more than twice as large as the spillover effect.
- Among the land use factors, human factors (impermeable surfaces) in inland urban agglomerations were found to have a greater influence than natural factors in inland urban agglomerations, while natural factors (forests) were found to have a greater influence in coastal urban agglomerations.
- Targeted prevention and control measures should be utilized according to different regions and scales in different urban agglomerations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of (PM2.5) air pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM (2.5) concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, Y.J.; Liang, H.Y. The Impact of Meteorological Factors on (PM2.5) Variations in Hong Kong. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 78. [Google Scholar]
- Wu, W.; Zhang, M.; Ding, Y. Exploring the effect of economic and environment factors on (PM2.5) concentration: A case study of the Beijing-Tianjin-Hebei region. J. Environ. Manag. 2020, 268, 110703. [Google Scholar] [CrossRef] [PubMed]
- Kodaka, A.; Leelawat, N.; Tang, J.; Onda, Y.; Kohtake, N. Status of Industrial Complex Activity Explained by Air Quality: Central Thailand. In Proceedings of the 2023 Third International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand, 18–20 January 2023; pp. 123–126. [Google Scholar]
- Wang, Y.; Liu, C.; Wang, Q.; Qin, Q.; Ren, H.; Cao, J. Impacts of natural and socioeconomic factors on PM(2.5) from 2014 to 2017. J. Environ. Manag. 2021, 284, 112071. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, G.; De Matteis, S.; Calori, G.; Pepe, N.; Ferrario, M.M. Long-term exposure to air pollution and COVID-19 incidence: A prospective study of residents in the city of Varese, Northern Italy. Occup. Environ. Med. 2022, 79, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhou, S.; Peng, Y.; Xu, J.; Lin, R. Relationship between neighborhood land use structure and the spatiotemporal pattern of (PM2.5) at the microscale: Evidence from the central area of Guangzhou, China. Environ. Plan. B Urban Anal. City Sci. 2021, 49, 485–500. [Google Scholar] [CrossRef]
- Li, C.; Zhang, K.; Dai, Z.; Ma, Z.; Liu, X. Investigation of the Impact of Land-Use Distribution on PM(2.5) in Weifang: Seasonal Variations. Int. J. Environ. Res. Public Health 2020, 17, 5135. [Google Scholar] [CrossRef]
- Lin, Y.; Yuan, X.; Zhai, T.; Wang, J. Effects of land-use patterns on PM(2.5) in China’s developed coastal region: Exploration and solutions. Sci. Total Environ. 2020, 703, 135602. [Google Scholar] [CrossRef]
- Czechowski, P.O.; Romanowska, A.; Czermański, E.; Oniszczuk-Jastrząbek, A.; Wanagos, M. An Attempt to Determine the Relationship between Air Pollution and the Real Estate Market in 2010–2020 in Gdańsk Using GLM and GRM Statistical Models. Sustainability 2023, 15, 2471. [Google Scholar] [CrossRef]
- Rincon, G.; Morantes, G.; Roa-López, H.; Cornejo-Rodriguez, M.d.P.; Jones, B.; Cremades, L.V. Spatio-temporal statistical analysis of PM1 and PM2.5 concentrations and their key influencing factors at Guayaquil city, Ecuador. Stoch. Environ. Res. Risk Assess. 2022, 37, 1093–1117. [Google Scholar] [CrossRef]
- Kazi, Z.; Filip, S.; Kazi, L. Predicting PM2.5, PM10, SO2, NO2, NO and CO Air Pollutant Values with Linear Regression in R Language. Appl. Sci. 2023, 13, 3617. [Google Scholar] [CrossRef]
- Lee, U.-J.; Kim, M.-J.; Kim, E.-J.; Lee, D.-W.; Lee, S.-D. Spatial Distribution Characteristics and Analysis of PM2.5 in South Korea: A Geographically Weighted Regression Analysis. Atmosphere 2024, 15, 69. [Google Scholar] [CrossRef]
- Eeftens, M.; Beelen, R.; de Hoogh, K.; Bellander, T.; Cesaroni, G.; Cirach, M.; Declercq, C.; Dedele, A.; Dons, E.; de Nazelle, A.; et al. Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 2012, 46, 11195–11205. [Google Scholar] [CrossRef]
- Wu, J.; Abban, O.J.; Boadi, A.D.; Charles, O. The effects of energy price, spatial spillover of CO(2) emissions, and economic freedom on CO(2) emissions in Europe: A spatial econometrics approach. Environ. Sci. Pollut. Res. 2022, 29, 63782–63798. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, M.; Li, J.; Jiang, N.; Wang, D.; Yao, L.; Xu, Y. The Gradient Effect on the Relationship between the Underlying Factor and Land Surface Temperature in Large Urbanized Region. Land 2020, 10, 20. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Chen, S.; Wang, W.; Nie, R. The environmental Kuznets curve for (PM2.5) pollution in Beijing-Tianjin-Hebei region of China: A spatial panel data approach. J. Clean. Prod. 2019, 220, 984–994. [Google Scholar] [CrossRef]
- Dai, Z.; Guldmann, J.M.; Hu, Y. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing. Sci. Total Environ. 2018, 626, 1136–1147. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, Y.; Zhao, J.; Zhou, Y.; Wang, X.; Yang, X.; Zou, Z.; Zhang, C.; Fu, Q.; et al. Changes in the SO(2) Level and PM(2.5) Components in Shanghai Driven by Implementing the Ship Emission Control Policy. Environ. Sci. Technol. 2019, 53, 11580–11587. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, T.; Feiock, R.; Li, F. The impacts of China’s provincial energy policies on major air pollutants: A spatial econometric analysis. Energy Policy 2019, 132, 392–403. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zhou, Y.; Yue, Y.; Bai, Y.; Zhang, L. Effects of Rainfall on (PM2.5) and PM10 in the Middle Reaches of the Yangtze River. Adv. Meteorol. 2020, 2020, 2398146. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Zhao, C.; Jiang, H. Impact of Precipitation with Different Intensity on (PM2.5) over Typical Regions of China. Atmosphere 2020, 11, 906. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, W.; Wang, C.; Zhao, X.; Sun, X.; Yang, J. Analysis of the removal effect of precipitation on atmospheric pollutants in Chengdu. Environ. Sci. Res. China 2020, 33, 305–311. [Google Scholar]
- Zhao, H.; Che, H.; Zhang, X.; Ma, Y.; Wang, Y.; Wang, H.; Wang, Y. Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res. 2013, 4, 427–434. [Google Scholar] [CrossRef]
- Gu, Z.; Feng, J.; Han, W.; Li, L.; Wu, M.; Fu, J.; Sheng, G. Diurnal variations of polycyclic aromatic hydrocarbons associated with (PM2.5) in Shanghai, China. J. Environ. Sci. 2010, 22, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.-W.; Zhao, X.-J.; Zhang, X.-L.; Ma, Z.-Q. Effect of Meteorological Factors on (PM2.5) during July to September of Beijing. Procedia Earth Planet. Sci. 2011, 2, 272–277. [Google Scholar] [CrossRef]
- Xu, B.; Lin, W.; Taqi, S.A. The impact of wind and non-wind factors on (PM2.5) levels. Technol. Forecast. Soc. Chang. 2020, 154, 119960. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, J.; Hu, M.; Wong, H. Estimation of daily PM(2.5) concentration and its relationship with meteorological conditions in Beijing. J. Environ. Sci. 2016, 48, 161–168. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.; Han, L.; Locke, D. Spatiotemporal variation in PM(2.5) concentrations and their relationship with socioeconomic factors in China’s major cities. Environ. Int 2019, 133 Pt A, 105145. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.; Xiao, Y.; Tani, H.; Zhong, G.; Sun, Z. Study on spatial distribution of crop residue burning and PM(2.5) change in China. Environ. Pollut. 2017, 220 Pt A, 204–221. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, L.; Jiang, G.; Meadows, M.E.; Zhang, J.; Pu, L.; Wu, C.; Xie, X. Modelling Spatial Heterogeneity in the Effects of Natural and Socioeconomic Factors, and Their Interactions, on Atmospheric (PM2.5) Concentrations in China from 2000–2015. Remote Sens. 2021, 13, 2152. [Google Scholar] [CrossRef]
- Lu, D.; Mao, W.; Yang, D.; Zhao, J.; Xu, J. Effects of land use and landscape pattern on (PM2.5) in Yangtze River Delta, China. Atmos. Pollut. Res. 2018, 9, 705–713. [Google Scholar] [CrossRef]
- Bai, Y.; Tan, X. Research on Agricultural Green Productivity and Spatial Effects in Chengdu Chongqing Urban Agglomeration. Price Theory Pract. China 2021, 10, 164–167+196. [Google Scholar]
- Yun, G.; Zuo, S.; Dai, S.; Song, X.; Xu, C.; Liao, Y.; Zhao, P.; Chang, W.; Chen, Q.; Li, Y.; et al. Individual and Interactive Influences of Anthropogenic and Ecological Factors on Forest (PM2.5) Concentrations at an Urban Scale. Remote Sens. 2018, 10, 521. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, L.; Wang, H.; Yang, Y.; Liu, J.; Qiu, D.; Ma, W.; Zhang, Z.; Liu, J. Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing. Atmos. Environ. 2016, 125, 178–187. [Google Scholar] [CrossRef]
- Su, Z.; Lin, L.; Chen, Y.; Hu, H. Understanding the distribution and drivers of PM(2.5) concentrations in the Yangtze River Delta from 2015 to 2020 using Random Forest Regression. Environ. Monit. Assess. 2022, 194, 284. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Jeong, S.; Joo, J.; Park, C.-R.; Kim, J.; Kim, S. Potential role of urban forest in removing (PM2.5): A case study in Seoul by deep learning with satellite data. Urban Clim. 2021, 36, 100795. [Google Scholar] [CrossRef]
- Liu, H.; Fu, M.; Jin, X.; Shang, Y.; Shindell, D.; Faluvegi, G.; Shindell, C.; He, K. Health and climate impacts of ocean-going vessels in East Asia. Nat. Clim. Chang. 2016, 6, 1037–1041. [Google Scholar] [CrossRef]
- She, Q.; Peng, X.; Xu, Q.; Long, L.; Wei, N.; Liu, M.; Jia, W.; Zhou, T.; Han, J.; Xiang, W. Air quality and its response to satellite-derived urban form in the Yangtze River Delta, China. Ecol. Indic. 2017, 75, 297–306. [Google Scholar] [CrossRef]
- Li, F.; Zhou, T. Effects of urban form on air quality in China: An analysis based on the spatial autoregressive model. Cities 2019, 89, 130–140. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The Impact of the Digital Economy on CO2 Emissions: A Theoretical and Empirical Analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Jia, L.; Zhou, X.; Wang, Q. Effects of Agricultural Machinery Operations on (PM2.5), PM10 and TSP in Farmland under Different Tillage Patterns. Agriculture 2023, 13, 930. [Google Scholar] [CrossRef]
Grid | BTH | PRD | YRD | CC |
---|---|---|---|---|
6 km | 0.992 *** | 0.944 *** | 0.976 *** | 0.970 *** |
9 km | 0.986 *** | 0.897 *** | 0.958 *** | 0.957 *** |
12 km | 0.980 *** | 0.858 *** | 0.940 *** | 0.943 *** |
15 km | 0.972 *** | 0.791 *** | 0.917 *** | 0.926 *** |
18 km | 0.966 *** | 0.719 *** | 0.904 *** | 0.903 *** |
Name | Tests | Grid | ||||
---|---|---|---|---|---|---|
6 km | 9 km | 12 km | 15 km | 18 km | ||
BHT | SLM-LM | 13,696.97 *** | 4398.65 *** | 1921.41 *** | 930.39 *** | 568.19 *** |
SLM-RLM | 37.16 ** | 17.04 *** | 10.43 *** | 5.77 ** | 3.94 ** | |
SEM-LM | 167,629.41 *** | 69,599.45 *** | 36,460.26 *** | 22,019.29 *** | 14,062.00 *** | |
SEM-RLM | 153,969.60 *** | 65,217.84 *** | 34,549.28 *** | 21,094.67 *** | 13,497.75 *** | |
PRD | SLM-LM | 397.82 *** | 66.95 *** | 7.89 ** | 23.10 *** | 2.91 ** |
SLM-RLM | 0.38 | 0.05 | 0.02 | 0.24 | 0.05 | |
SEM-LM | 32,409.20 *** | 12,464.77 *** | 5544.46 *** | 2913.49 *** | 1462.80 *** | |
SEM-RLM | 32,011.76 *** | 12,397.86 *** | 5536.59 *** | 2890.63 *** | 1461.93 *** | |
SLM-LR | 9045.75 *** | 5829.31 *** | 3076.38 *** | 1884.30 *** | 1073.15 *** | |
SLM-WALD | 13,374.82 *** | 8000.14 *** | 4701.32 *** | 2365.86 *** | 1553.49 *** | |
SEM-LR | 23,330.29 *** | 11,935.92 *** | 5968.71 *** | 3304.76 *** | 1864.52 *** | |
SEM-WALD | 1520.89 *** | 561.71 *** | 270.97 *** | 153.28 *** | 121.49 *** | |
YRD | SLM-LM | 753.00 *** | 222.23 *** | 58.66 *** | 36.85 *** | 8.53 *** |
SLM-RLM | 0.12 | 0.03 | 0.01 | 0.02 | 0.01 | |
SEM-LM | 90,850.35 *** | 56,947.38 *** | 28,886.59 *** | 15,586.31 *** | 9970.70 *** | |
SEM-RLM | 90,097.48 *** | 56,725.17 *** | 28,827.95 *** | 15,549.49 *** | 9962.17 *** | |
SLM-LR | 6952.62 *** | 3624.49 *** | 1397.80 *** | 334.66 *** | 556.32 *** | |
SLM-WALD | 11,522.59 *** | 5336.92 *** | 3265.22 *** | 1098.44 *** | 1212.28 *** | |
SEM-LR | 35,987.88 *** | 15,160.72 *** | 8066.07 *** | 3919.46 *** | 3087.32 *** | |
SEM-WALD | 1150.83 *** | 460.00 *** | 325.07 *** | 426.96 *** | 157.50 *** | |
CC | SLM-LM | 66,599.01 *** | 14,155.22 *** | 3195.68 *** | 1401.74 *** | 377.44 *** |
SLM-RLM | 43.62 ** | 16.37 *** | 5.99 ** | 4.25 *** | 1.57 | |
SEM-LM | 195,228.22 *** | 81,183.65 *** | 42,028.11 *** | 25,138.77 *** | 16,026.24 *** | |
SEM-RLM | 128,672.84 *** | 67,044.80 *** | 38,838.42 *** | 23,741.27 *** | 15,650.37 *** | |
SLM-LR | - | - | - | - | 519.88 *** | |
SLM-WALD | - | - | - | - | 898.87 *** | |
SEM-LR | - | - | - | - | 2417.39 *** | |
SLM-WALD | - | - | - | - | 114.48 *** |
Name | Variables | Grid | ||||
---|---|---|---|---|---|---|
6 km | 9 km | 12 km | 15 km | 18 km | ||
BHT | PRE | −0.031 *** | −0.029 *** | −0.033 *** | −0.036 *** | −0.031 *** |
TMP | −5.646 *** | −6.758 *** | −7.404 *** | −9.902 *** | −8.951 *** | |
WND | −0.188 *** | 0.031 | 0.272 | −0.541 * | 0.513 | |
CPL | −0.031 *** | −0.024 *** | −0.022 *** | −0.016 ** | −0.016 ** | |
FOREST | −0.046 *** | −0.017 | −0.000 | −0.007 | 0.028 *** | |
WATER | 0.012 | −0.014 | −0.063 *** | −0.038 ** | −0.128 *** | |
IPS | −0.115 *** | −0.088 *** | −0.096 *** | −0.068 *** | −0.060 *** | |
W*PRE | 0.005 *** | 0.005 *** | 0.006 *** | 0.006 *** | 0.005 *** | |
W*TMP | 0.964 *** | 1.153 *** | 1.250 *** | 1.663 *** | 1.532 *** | |
W*WND | −0.003 | −0.074 ** | −0.149 *** | −0.036 | −0.199 * | |
W*CPL | 0.012 *** | 0.009 *** | 0.008 *** | 0.009 *** | 0.009 *** | |
W*FPREST | 0.021 *** | 0.013 *** | 0.009 *** | 0.010 *** | 0.001 | |
W*WATER | −0.009 ** | −0.012 *** | −0.006 | 0.001 *** | 0.007 | |
W*IPS | 0.026 *** | 0.017 *** | 0.017 *** | 0.011 *** | 0.012 *** | |
W*(PM2.5) | 0.165 *** | 0.164 *** | 0.163 *** | 0.161 *** | 0.163 *** | |
R2 | 0.9993 | 0.9990 | 0.9987 | 0.9981 | 0.9802 | |
PRD | PRE | 0.000 ** | 0.001 *** | 0.001 ** | 0.001 | 0.000 |
TMP | −5.806 *** | −7.342 *** | −8.288 *** | −8.153 *** | −9.171 *** | |
WND | 0.021 | −0.017 | −0.104 | −0.398 * | 0.325 | |
CPL | 0.010 | −0.225 * | 0.071 | 0.059 | −0.022 | |
FOREST | 0.073 | −0.162 | 0.109 | 0.091 | −0.012 | |
WATER | 0.091 | −0.137 | 0.138 | 0.099 | 0.001 | |
IPS | −0.079 | −0.264 ** | 0.074 | 0.042 | −0.034 | |
W*PRE | −0.000 | −0.000 *** | −0.000 *** | −0.000 ** | −0.000 ** | |
W*TMP | 1.514 *** | 1.710 *** | 1.829 *** | 1.710 *** | 1.863 *** | |
W*WND | −0.039 * | −0.043 | 0.003 | 0.106 | 0.087 | |
W*CPL | 0.004 | 0.054 | 0.079 * | 0.011 | 0.122 * | |
W*FPREST | −0.013 | 0.038 | 0.067 | −0.002 | 0.117 * | |
W*WATER | 0.010 | 0.049 | 0.076 * | 0.014 | 0.132 ** | |
W*IPS | 0.001 | 0.055 | 0.074 * | 0.015 | 0.123 * | |
W*(PM2.5) | 0.138 *** | 0.139 *** | 0.140 *** | 0.135 *** | 0.130 *** | |
R2 | 0.9966 | 0.9964 | 0.9961 | 0.9955 | 0.9946 | |
YRD | PRE | −0.006 *** | −0.006 *** | −0.005 *** | −0.005 *** | −0.005 *** |
TMP | −5.873 *** | −6.610 *** | −7.059 *** | −1.576 *** | −6.422 *** | |
WND | 0.146 ** | −0.165 * | −0.160 | −0.363 | −0.014 | |
CPL | 0.281 | −0.010 | −0.217 | 0.187 | 0.216 | |
FOREST | 0.303 | 0.002 | −0.211 | 0.217 | 0.234 | |
WATER | 0.337 | 0.063 | −0.162 | 0.157 | 0.221 | |
IPS | 0.282 | −0.020 | −0.231 | 0.147 | 0.188 | |
W*PRE | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | |
W*TMP | 1.200 *** | 1.317 *** | 1.468 ** | 0.879 *** | 1.395 *** | |
W*WND | −0.033 ** | 0.054 * | 0.118 *** | 0.282 *** | 0.331 *** | |
W*CPL | 0.182 ** | 0.219 *** | 0.299 *** | 0.151 * | 0.153 ** | |
W*FPREST | 0.195 *** | 0.230 *** | 0.308 *** | 0.154 * | 0.159 ** | |
W*WATER | 0.172 ** | 0.202 ** | 0.283 *** | 0.151 * | 0.148 * | |
W*IPS | 0.179 ** | 0.217 *** | 0.296 *** | 0.155 ** | 0.152 * | |
W*(PM2.5) | 0.152 *** | 0.149 *** | 0.147 *** | 0.139 *** | 0.134 *** | |
R2 | 0.9963 | 0.9950 | 0.9941 | 0.9916 | 0.9904 | |
CC | PRE | −0.018 *** | −0.019 *** | −0.020 *** | −0.017 *** | −0.014 *** |
TMP | −0.665 *** | −1.909 *** | −3.191 *** | −4.369 *** | −6.133 *** | |
WND | 0.735 *** | 0.523 *** | 0.377 *** | 0.388 * | 0.446 * | |
CPL | −0.234 *** | −0.264 *** | −0.184 *** | −0.181 *** | −0.267 *** | |
FOREST | −0.229 *** | −0.263 *** | −0.182 *** | −0.176 *** | −0.265 *** | |
WATER | −0.209 *** | −0.295 *** | −0.169 ** | −0.207 *** | −0.324 *** | |
IPS | −0.217 *** | −0.266 *** | −0.202 *** | −0.210 *** | −0.297 *** | |
W*PRE | 0.003 *** | 0.003 *** | 0.003 *** | 0.003 *** | 0.002 *** | |
W*TMP | 0.132 *** | 0.337 *** | 0.547 *** | 0.729 *** | 1.011 *** | |
W*WND | −0.227 *** | −0.216 *** | −0.273 *** | −0.322 *** | −0.342 *** | |
W*CPL | 0.061 *** | 0.064 *** | 0.037 *** | 0.047 *** | 0.057 *** | |
W*FPREST | 0.062 *** | 0.065 *** | 0.038 *** | 0.048 *** | 0.058 *** | |
W*WATER | 0.115 *** | 0.101 *** | 0.083 *** | 0.091 *** | 0.085 *** | |
W*IPS | 0.038 *** | 0.053 *** | 0.032 *** | 0.045 *** | 0.057 *** | |
W*(PM2.5) | 0.159 *** | 0.159 *** | 0.157 *** | 0.155 *** | 0.157 *** | |
R2 | 0.9978 | 0.9973 | 0.9962 | 0.9947 | 0.9951 |
Grid | Impact | Variable | ||||||
---|---|---|---|---|---|---|---|---|
PRE | TMP | WND | CPL | FOREST | WATER | IPS | ||
6 km (N = 6340) | Direct | −0.030 *** | −5.392 *** | −0.440 *** | 0.017 | 0.052 *** | −0.040 | −0.063 *** |
Spillover | −0.000 *** | −0.214 *** | 0.207 *** | −0.040 *** | −0.083 *** | 0.043 ** | −0.044 *** | |
Total | −0.030 *** | −5.606 *** | −0.232 *** | −0.023 ** | −0.031 ** | 0.003 | −0.107 *** | |
9 km (N = 2485) | Direct | −0.028 *** | −6.470 *** | −0.404 ** | −0.010 | 0.051 *** | −0.102 *** | −0.071 *** |
Spillover | −0.000 * | −0.235 *** | 0.349 *** | −0.027 *** | −0.055 *** | 0.072 *** | −0.014 | |
Total | −0.029 *** | −6.705 *** | −0.054 | −0.017 ** | −0.004 | −0.030 * | −0.084 *** | |
12 km (N = 1354) | Direct | −0.033 *** | −7.185 *** | −0.237 | 0.001 | 0.042 *** | −0.143 *** | −0.091 *** |
Spillover | −0.001 *** | −0.162 *** | 0.386 *** | −0.017 *** | −0.032 *** | 0.061 *** | −0.004 | |
Total | −0.033 *** | −7.347 *** | 0.148 | −0.016 ** | 0.011 | −0.083 *** | −0.095 *** | |
15 km (N = 849) | Direct | −0.035 *** | −9.583 *** | −1.082 *** | 0.010 | 0.032 *** | −0.060 * | −0.067 *** |
Spillover | −0.001 *** | −0.228 * | 0.383 * | −0.019 *** | −0.028 *** | 0.016 | −0.001 | |
Total | −0.035 *** | −9.810 *** | −0.698 ** | −0.009 | 0.004 | −0.044 ** | −0.067 *** | |
18 km (N = 565) | Direct | −0.030 *** | −8.584 *** | −0.065 | 0.014 * | 0.055 *** | −0.197 *** | −0.048 *** |
Spillover | −0.001 ** | −0.280 *** | 0.439 *** | −0.023 *** | −0.021 *** | 0.052 ** | −0.009 | |
Total | −0.031 *** | −8.864 *** | 0.374 *** | −0.009 | 0.035 *** | −0.144 *** | −0.058 *** |
Grid | Impact | Variable | ||||||
---|---|---|---|---|---|---|---|---|
PRE | TMP | WND | CPL | FOREST | WATER | IPS | ||
6 km (N = 1210) | Direct | 0.001 *** | −4.508 *** | −0.041 | 0.018 | 0.065 | 0.130 | −0.098 |
Spillover | −0.000 *** | −0.468 *** | −0.024 *** | 0.003 | 0.003 | −0.014 | 0.007 | |
Total | 0.000 *** | −4.976 *** | −0.017 | 0.015 | 0.068 | 0.116 | −0.091 | |
9 km (N = 499) | Direct | 0.001 *** | −6.091 *** | −0.101 | −0.189 | −0.139 | −0.087 | −0.237 |
Spillover | 0.000 | −0.447 *** | 0.030 | −0.015 | −0.010 | −0.019 | −0.012 | |
Total | 0.001 *** | −6.538 *** | −0.071 | −0.204 | −0.149 | −0.107 | −0.249 * | |
12 km (N = 251) | Direct | 0.001 * | −7.062 *** | −0.127 | 0.225 | 0.252 | 0.305 * | 0.220 |
Spillover | 0.000 * | −0.451 *** | 0.007 | −0.060 ** | −0.055 * | −0.064 ** | −0.057 ** | |
Total | 0.001 * | −7.513 *** | −0.120 | 0.166 | 0.197 | 0.241 * | 0.163 | |
15 km (N = 152) | Direct | 0.000 | −7.169 *** | −0.322 | 0.085 | 0.104 | 0.138 | 0.072 |
Spillover | 0.000 ** | −0.275 *** | −0.023 | −0.008 | −0.004 | −0.012 | −0.009 | |
Total | 0.000 | −7.444 *** | −0.346 | 0.077 | 0.100 | 0.126 | 0.063 | |
18 km (N = 96) | Direct | −0.000 *** | −8.168 *** | 0.528 | 0.158 | 0.164 | 0.200 | 0.145 |
Spillover | 0.000 ** | −0.227 *** | −0.046 | −0.041 | −0.040 | −0.046 * | −0.041 | |
Total | −0.000 | −8.395 *** | 0.482 | 0.117 | 0.124 | 0.155 | 0.104 |
Grid | Impact | Variable | ||||||
---|---|---|---|---|---|---|---|---|
PRE | TMP | WND | CPL | FOREST | WATER | IPS | ||
6 km (N = 4663) | Direct | −0.006 *** | −5.018 *** | 0.116 * | 0.896 *** | 0.963 *** | 0.947 *** | 0.889 *** |
Spillover | −0.000 *** | −0.488 *** | 0.017 | −0.359 *** | −0.385 *** | −0.356 *** | −0.354 *** | |
Total | −0.006 *** | −5.506 *** | 0.132 ** | 0.537 * | 0.578 ** | 0.590 ** | 0.535 * | |
9 km (N = 1942) | Direct | −0.005 *** | −5.779 *** | −0.090 | 0.541 * | 0.586 * | 0.598 *** | 0.523 * |
Spillover | −0.000 *** | −0.441 *** | −0.039 | −0.292 *** | −0.309 *** | −0.283 *** | −0.287 *** | |
Total | −0.005 *** | −6.220 *** | −0.129 | 0.250 | 0.277 | 0.314 | 0.236 | |
12 km (N = 1034) | Direct | −0.005 *** | −6.061 *** | 0.060 | 0.406 | 0.435 | 0.441 * | 0.381 |
Spillover | −0.000 *** | −0.498 *** | −0.107 ** | −0.309 *** | −0.320 *** | −0.299 *** | −0.303 *** | |
Total | −0.005 *** | −6.559 *** | 0.048 | 0.097 | 0.114 | 0.142 | 0.078 | |
15 km (N = 600) | Direct | −0.004 *** | −0.357 ** | 0.071 | 0.510 * | 0.553 ** | 0.472 * | 0.467 * |
Spillover | −0.000 *** | −0.459 *** | −0.161 *** | −0.121 ** | −0.126 ** | −0.118 ** | −0.120 ** | |
Total | −0.005 *** | −0.817 *** | −0.090 | 0.389 * | 0.427 * | 0.354 | 0.348 | |
18 km (N = 403) | Direct | −0.005 *** | −5.532 *** | 0.526 | 0.525 ** | 0.556 ** | 0.522 *** | 0.488 * |
Spillover | −0.000 *** | −0.278 *** | −0.169 *** | −0.097 ** | −0.101 ** | −0.094 ** | −0.094 ** | |
Total | −0.005 *** | −5.810 *** | 0.356 | 0.428 * | 0.455 * | 0.427 * | 0.394 * |
Grid | Impact | Variable | ||||||
---|---|---|---|---|---|---|---|---|
PRE | TMP | WND | CPL | FOREST | WATER | IPS | ||
6 km (N = 6353) | Direct | −0.018 *** | −0.521 *** | 0.132 ** | −0.104 *** | −0.088 ** | 0.235 *** | −0.199 *** |
Spillover | −0.000 *** | −0.112 *** | 0.474 *** | −0.102 *** | −0.111 *** | −0.349 *** | −0.015 | |
Total | −0.018 *** | −0.633 *** | 0.606 *** | −0.206 *** | −0.199 *** | −0.114 ** | −0.214 *** | |
9 km (N = 2739) | Direct | −0.018 *** | −1.779 *** | 0.007 | −0.178 *** | −0.172 *** | −0.085 | −0.226 *** |
Spillover | −0.000 *** | −0.089 *** | 0.357 *** | −0.060 *** | −0.063 *** | −0.144 *** | −0.028 *** | |
Total | −0.018 *** | −1.868 *** | 0.364 *** | −0.238 *** | −0.235 *** | −0.229 *** | −0.254 *** | |
12 km (N = 1478) | Direct | −0.019 *** | −3.043 *** | −0.318 ** | −0.155 *** | −0.149 *** | 0.017 | −0.202 *** |
Spillover | −0.000 *** | −0.099 *** | 0.448 *** | −0.019 *** | −0.021 *** | −0.119 *** | −0.001 | |
Total | −0.020 *** | −3.142 *** | 0.130 | −0.174 *** | −0.170 *** | −0.102 * | −0.203 *** | |
15 km (N = 927) | Direct | −0.017 *** | −4.197 *** | −0.435 * | −0.120 *** | −0.109 *** | −0.023 | −0.169 *** |
Spillover | −0.000 *** | −0.100 ** | 0.515 *** | −0.038 *** | −0.041 *** | −0.116 *** | −0.025 *** | |
Total | −0.017 *** | −4.298 *** | 0.080 | −0.158 *** | −0.150 *** | −0.139 ** | −0.194 *** | |
18 km (N = 623) | Direct | −0.014 *** | −5.985 *** | −0.463 | −0.217 *** | −0.211 *** | −0.212 *** | −0.263 *** |
Spillover | −0.000 *** | −0.101 * | 0.579 *** | −0.032 *** | −0.035 *** | −0.071 ** | −0.022 *** | |
Total | −0.014 *** | −6.086 *** | 0.116 | −0.249 *** | −0.246 *** | −0.283 *** | −0.286 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Dai, Z.; Wu, C.; Ma, X.; Zhu, L.; Wu, P. Comparison of Different Impact Factors and Spatial Scales in PM2.5 Variation. Atmosphere 2024, 15, 307. https://doi.org/10.3390/atmos15030307
Zhou H, Dai Z, Wu C, Ma X, Zhu L, Wu P. Comparison of Different Impact Factors and Spatial Scales in PM2.5 Variation. Atmosphere. 2024; 15(3):307. https://doi.org/10.3390/atmos15030307
Chicago/Turabian StyleZhou, Hongyun, Zhaoxin Dai, Chuangqi Wu, Xin Ma, Lining Zhu, and Pengda Wu. 2024. "Comparison of Different Impact Factors and Spatial Scales in PM2.5 Variation" Atmosphere 15, no. 3: 307. https://doi.org/10.3390/atmos15030307
APA StyleZhou, H., Dai, Z., Wu, C., Ma, X., Zhu, L., & Wu, P. (2024). Comparison of Different Impact Factors and Spatial Scales in PM2.5 Variation. Atmosphere, 15(3), 307. https://doi.org/10.3390/atmos15030307