Holocene Paleoclimate Changes around Qinghai Lake in the Northeastern Qinghai-Tibet Plateau: Insights from Isotope Geochemistry of Aeolian Sediment
<p>Map of the study area. The Qinghai-Tibet Plateau (QTP) is located in Central Asia, and the Qinghai Lake (QHL) Basin is located in the northeastern QTP, as indicated by the inset map. The red pentagon on the map denotes the location of the Niaodao (ND) profile examined in this study.</p> "> Figure 2
<p>Stratigraphy and dating of the ND profile, with the age scale of the profile referenced to [<a href="#B20-atmosphere-15-00833" class="html-bibr">20</a>]; the ND profile is located along the Buha River.</p> "> Figure 3
<p>Experimental procedures for the δ<sup>13</sup>C<sub>org</sub> sample.</p> "> Figure 4
<p>Data results are correlated with the age of the ND profile. (<b>a</b>) δ<sup>13</sup>C<sub>org</sub> and (<b>b</b>) total organic carbon (TOC).</p> "> Figure 5
<p>Numerical comparison of the δ<sup>13</sup>C<sub>org</sub> (<b>A</b>) and TOC (<b>B</b>) in terrestrial (ND profile and ZYC profile) and lacustrine sediments (Genggahai Lake and QHL).</p> "> Figure 6
<p>Comparison of the δ<sup>13</sup>C<sub>org</sub> in the ND profile of QHL with other indicators during the Holocene. (<b>a</b>) The δ<sup>13</sup>C<sub>org</sub> of the ND profile, (<b>b</b>) the quantitative precipitation reconstruction of QHL [<a href="#B39-atmosphere-15-00833" class="html-bibr">39</a>], (<b>c</b>) the summer temperature of QHL [<a href="#B47-atmosphere-15-00833" class="html-bibr">47</a>], (<b>d</b>) the reconstruction of summer temperature of China [<a href="#B49-atmosphere-15-00833" class="html-bibr">49</a>], (<b>e</b>) the East Asian air temperature [<a href="#B48-atmosphere-15-00833" class="html-bibr">48</a>], and (<b>f</b>) the global temperature [<a href="#B50-atmosphere-15-00833" class="html-bibr">50</a>].</p> "> Figure 7
<p>Comparison of the δ<sup>13</sup>C<sub>org</sub> in the ND profile of QHL with other indicators since the Holocene. (<b>a</b>) The δ<sup>13</sup>C<sub>org</sub> of the ND profile, (<b>b</b>) the Northern Hemisphere summer insolation at 37° N [<a href="#B52-atmosphere-15-00833" class="html-bibr">52</a>], (<b>c</b>) the TOC, (<b>d</b>) low-frequency magnetic susceptibility (χlf), and (<b>e</b>) median grain size (Mz) of the ND profile. (<b>d</b>,<b>e</b>) Have been published in detail in the literature [<a href="#B20-atmosphere-15-00833" class="html-bibr">20</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Samples and Analytical Methods
3. Results
4. Discussion
4.1. Terrestrial Ecosystem Is Not a Major Contributor to the Lake Organic Matter
4.2. The Impact of Temperature on the δ13Corg Values
4.3. Temperature Changes in QHL Basin during the Holocene Recorded in the ND Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, Z.S.; Colman, S.M.; Zhou, W.; Li, X.; Brown, E.T.; Jull, A.T.; Cai, Y.; Huang, Y.; Lu, X.; Chang, H.; et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci. Rep. 2012, 2, 619. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Xingqi, L.; Sumin, W.; Matsumoto, R. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat. Int. 2005, 136, 131–140. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J.; Xu, X.; Liu, X.; Sirocko, F.; Zhang, E.; Ji, J. Environmental changes during the past 13500 cal. a BP deduced from lacustrine sediment records of Lake Qinghai, China. Chin. J. Geochem. 2011, 30, 479–489. [Google Scholar] [CrossRef]
- Liu, W.G.; Li, X.Z.; An, Z.S.; Xu, L.; Zhang, Q. Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai–Tibet Plateau, China. Chem. Geol. 2013, 347, 153–160. [Google Scholar] [CrossRef]
- Herzschuh, U.; Borkowski, J.; Schewe, J.; Mischke, S.; Tian, F. Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 402, 44–54. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.P.; Feng, Q.; Wang, H.W.; Wei, Y.F.; Li, X.J.; Nie, S.; Liu, J.Y. Responses of grassland to climate change and human activities in the area around Qinghai Lake. Chin. J. Ecol. 2019, 38, 1157. [Google Scholar]
- Li, H.; Liu, X.; Tripati, A.; Feng, S.; Kelley, A.M. Factors controlling the oxygen isotopic composition of lacustrine authigenic carbonates in western china: Implications for paleoclimate reconstructions. Sci. Rep. 2020, 10, 16370. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.; Wang, Q.; Wang, J.; Du, J.; Hu, J.; Ma, Y.; Kong, F.; Wang, Z. Regional environmental change and human activity over the past hundred years recorded in the sedimentary record of Lake Qinghai, China. Environ. Sci. Pollut. Res. 2017, 24, 9662–9674. [Google Scholar] [CrossRef]
- Liu, W.G.; Li, X.Z.; Wang, Z.; Wang, H.; Liu, H.; Zhang, B.; Zhang, H. Carbon isotope and environmental changes in lakes in arid Northwest China. Sci. China Earth Sci. 2019, 62, 1193–1206. [Google Scholar] [CrossRef]
- Hou, J.; D’Andrea, W.J.; Liu, Z. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat. Sci. Rev. 2012, 48, 67–79. [Google Scholar] [CrossRef]
- ChongYi, E.; Sun, Y.J.; Liu, X.J.; Hou, G.L.; Lv, S.C.; Yuan, J.; Sun, M.P. A comparative study of radiocarbon dating on terrestrial organisms and fish from Qinghai Lake in the northeastern Tibetan Plateau, China. Holocene 2018, 28, 1712–1719. [Google Scholar] [CrossRef]
- Chen, F.H.; Wu, D.; Chen, J.; Zhou, A.; Yu, J.; Shen, J.; Wang, S.; Huang, X. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies. Quat. Sci. Rev. 2016, 154, 111–129. [Google Scholar] [CrossRef]
- Rao, Z.G.; Chen, F.H.; Cheng, H.; Liu, W.G.; Wang, G.A.; Lai, Z.P.; Bloemendal, J. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Sci. Rep. 2013, 3, 2785. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, L.; Chen, H.; Tang, G.; Luo, Y.; Liu, N.; Cheng, T.; Li, D. Variability and environmental significance of organic carbon isotopes in Ganzi loess since the last interglacial on the eastern Tibetan Plateau. Catena 2021, 196, 104866. [Google Scholar] [CrossRef]
- Mansour, A.; Wagreich, M. Earth system changes during the cooling greenhouse phase of the Late Cretaceous: Coniacian-Santonian OAE3 subevents and fundamental variations in organic carbon deposition. Earth-Sci. Rev. 2022, 229, 104022. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, X.S.; Liu, Y.J.; Li, Y.F.; Qin, L.S.; Zhao, C.; Liu, M.H.; Zhou, Y.W.; Han, Z.Y.; Wang, Y.; et al. Quantification of Holocene temperatures in the eastern Hunshandake Sandy Land using δ13C of loess organic matter. Glob. Planet. Change 2024, 237, 104457. [Google Scholar] [CrossRef]
- Li, X.Z.; Liu, X.J.; He, Y.; Liu, W.; Zhou, X.; Wang, Z. Summer moisture changes in the Lake Qinghai area on the northeastern Tibetan Plateau recorded from a meadow section over the past 8400 yrs. Glob. Planet. Change 2018, 161, 1–9. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, K.; JM, B.; Ye, S. The formation and evolution of the Qinghai Lake. Quat. Sci. 1990, 10, 233–243. [Google Scholar]
- Zeng, F.M.; Liu, X.J.; Li, X.Z.; E, C.Y. Aquatic species dominate organic matter in Qinghai Lake during the Holocene: Evidence from eolian deposits around the lake. J. Earth Sci. 2017, 28, 484–491. [Google Scholar] [CrossRef]
- ChongYi, E.; Zhang, J.; Chen, Z.Y.; Sun, Y.J.; Zhao, Y.J.; Li, P.; Sun, M.P.; Shi, Y.K. High resolution OSL dating of aeolian activity at Qinghai Lake, Northeast Tibetan Plateau. Catena 2019, 183, 104180. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Liu, X.; Li, X. Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction. Quat. Sci. Rev. 2013, 63, 83–90. [Google Scholar] [CrossRef]
- Liu, X.; Su, Q.; Li, C.; Zhang, Y.; Wang, Q. Responses of carbon isotope ratios of C_3 herbs to humidity index in northern China. Turk. J. Earth Sci. 2014, 23, 100–111. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, C.H.; Liu, K.; Wu, J.S.; Fan, C.Y.; Xue, B.; Ma, R.H.; Song, C.Q. Potential impact of the dramatical expansion of Lake Qinghai on the habitat facilities and grassland since 2004. J. Lake Sci. 2021, 33, 922–934. [Google Scholar]
- Zhiyong, D.; Ruijie, L.; Chang, L.; Chenxi, D. Temporal change characteristics of climatic and its relationships with atmospheric circulation patterns in Qinghai Lake Basin. Adv. Earth Sci. 2018, 33, 281. [Google Scholar]
- Rao, Z.G.; Xu, Y.; Xia, D.; Xie, L.; Chen, F. Variation and paleoclimatic significance of organic carbon isotopes of Ili loess in arid Central Asia. Org. Geochem. 2013, 63, 56–63. [Google Scholar] [CrossRef]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; US Environmental Protection Agency, Office of Research and Development, Ecological Risk Assessment Support Center: Washington, DC, USA, 2002.
- Qiang, M.R.; Chen, F.H.; Song, L.; Liu, X.; Li, M.; Wang, Q. Late quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan plateau, China. Quat. Res. 2013, 79, 403–412. [Google Scholar] [CrossRef]
- Pu, Y.; Nace, T.; Meyers, P.A.; Zhang, H.; Wang, Y.; Zhang, C.; Shao, X. Paleoclimate changes of the last 1000 yr on the eastern qinghai–tibetan plateau recorded by elemental, isotopic, and molecular organic matter proxies in sediment from glacial lake ximencuo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 379–380, 39–53. [Google Scholar] [CrossRef]
- Xiao, J.; Nakamura, T.; Lu, H.; Zhang, G. Holocene climate changes over the desert/loess transition of north-central China. Earth Planet. Sci. Lett. 2002, 197, 11–18. [Google Scholar] [CrossRef]
- Liu, X.J.; Lai, Z.P.; Madsen, D.; Zeng, F.M. Last deglacial and holocene lake level variations of qinghai lake, north-eastern qinghai–tibetan plateau. J. Quat. Sci. 2015, 30, 245–257. [Google Scholar] [CrossRef]
- Li, X.Z.; Liu, W.G.; Xu, L. Evaluation of lacustrine organic δ13C as a lake-level indicator: A case study of lake qinghai and the satellite lakes on the tibetan plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 532, 109274. [Google Scholar] [CrossRef]
- Tieszen, L.L.; Reed, B.C.; Bliss, N.B.; Wylie, B.K.; DeJong, D.D. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecol. Appl. 1997, 7, 59–78. [Google Scholar]
- Melillo, J.M.; Aber, J.D.; Linkins, A.E.; Ricca, A.; Fry, B.; Nadelhoffer, K.J. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil 1989, 115, 189–198. [Google Scholar] [CrossRef]
- Wendler, I. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for late cretaceous global correlation. Earth-Sci. Rev. 2013, 126, 116–146. [Google Scholar] [CrossRef]
- Feng, X.; Epstein, S. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochim. Cosmochim. Acta 1995, 59, 2599–2608. [Google Scholar] [CrossRef]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef]
- Farquhar, G.; O’Leary, M.; Berry, J. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Wang, G.A.; Han, J.; Liu, D. The carbon isotope composition of C3 herbaceous plants in loess area of northern China. Sci. China Ser. D Earth Sci. 2003, 46, 1069–1076. [Google Scholar] [CrossRef]
- Herzschuh, U.; Birks, H.J.B.; Liu, X.; Kubatzki, C.; Lohmann, G. What caused the mid-holocene forest decline on the eastern tibet-qinghai plateau? Glob. Ecol. Biogeogr. 2010, 19, 278–286. [Google Scholar] [CrossRef]
- Lu, H.; Wu, N.; Gu, Z.; Guo, Z.; Wang, L.; Wu, H.; Wang, G.; Zhou, L.; Han, J.; Liu, T. Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau. Biogeochemistry 2004, 70, 275–299. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, F.; Fang, X.; Yang, Y. Altitudinal variations in the bulk organic carbon isotopic composition of topsoil in the Qilian Mountains area, NE Tibetan Plateau, and its environmental significance. Quat. Int. 2017, 454, 45–55. [Google Scholar] [CrossRef]
- Xie, S.; Guo, J.; Huang, J.; Chen, F.; Wang, H.; Farrimond, P. Restricted utility of δ13C of bulk organic matter as a record of paleovegetation in some loessu2013paleosol sequences in the Chinese loess plateau. Quat. Res. 2004, 62, 86–93. [Google Scholar] [CrossRef]
- Liu, W.G.; Yang, H.; Ning, Y.; An, Z. Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau. Org. Geochem. 2007, 38, 1571–1579. [Google Scholar] [CrossRef]
- Wang, X.; Cui, L.; Xiao, J.; Ding, Z. Stable carbon isotope of black carbon in lake sediments as an indicator of terrestrial environmental changes: An evaluation on paleorecord from Daihai Lake, Inner Mongolia, China. Chem. Geol. 2013, 347, 123–134. [Google Scholar] [CrossRef]
- Liu, X.; Colman, S.M.; Brown, E.T.; Henderson, A.C.; Werne, J.P.; Holmes, J.A. Abrupt deglaciation on the northeastern Tibetan Plateau: Evidence from Lake Qinghai. J. Paleolimnol. 2014, 51, 223–240. [Google Scholar] [CrossRef]
- Zhang, Z.; Ullah, I.; Wang, Z.; Ma, P.; Zhao, Y.; Ma, X.; Li, Y. Reconstruction of temperature for the past 400 years in the Southern Margin of the Taklimakan Desert based on carbon isotope fractionation of Tamarix leaves. Appl. Ecol. Environ. Res. 2019, 17, 1. [Google Scholar] [CrossRef]
- Hou, J.Z.; Huang, Y.; Zhao, J.; Liu, Z.; Colman, S.; An, Z. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau. Geophys. Res. Lett. 2016, 43, 1323–1330. [Google Scholar] [CrossRef]
- Peterse, F.; Martínez-García, A.; Zhou, B.; Beets, C.J.; Prins, M.A.; Zheng, H.; Eglinton, T.I. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the past 130,000 years. Quat. Sci. Rev. 2014, 83, 76–82. [Google Scholar] [CrossRef]
- Shi, F.; Lu, H.; Guo, Z.; Yin, Q.; Wu, H.; Xu, C.; Zhang, E.; Shi, J.; Cheng, J.; Xiao, X.; et al. The position of the Current Warm Period in the context of the past 22,000 years of summer climate in China. Geophys. Res. Lett. 2021, 48, e2020GL091940. [Google Scholar] [CrossRef]
- Marcott, S.; Shakun, J.; Clark, P.U.; Mix, A. A reconstruction of regional and global temperature for the past 11,300 years. Science 2013, 339, 1198–1201. [Google Scholar] [CrossRef]
- Liu, W.G.; Huang, Y.; An, Z.; Clemens, S.C.; Li, L.; Prell, W.L.; Ning, Y. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 243–254. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F.; Yin, Q. Total irradiation during any time interval of the year using elliptic integrals. Quat. Sci. Rev. 2010, 29, 1968–1982. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, C.; Mason, J.; Yi, S.; Zhao, H.; Zhou, Y.; Ji, J.; Swinehart, J.; Wang, C. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms. Holocene 2011, 21, 297–304. [Google Scholar]
- Lu, R.; Jia, F.; Gao, S.; Shang, Y.; Li, J.; Zhao, C. Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai–Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 430, 1–10. [Google Scholar] [CrossRef]
- Shaowu, W. Abrupt climate change and collapse of ancient civilizations at 2200BC–2000BC. Prog. Nat. Sci. 2005, 15, 908–914. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q.; E, C.; Li, X.; Sun, Y.; Zhang, J.; Zhang, S.; Shi, Y.; Ji, X.; Zhang, Z. Holocene Paleoclimate Changes around Qinghai Lake in the Northeastern Qinghai-Tibet Plateau: Insights from Isotope Geochemistry of Aeolian Sediment. Atmosphere 2024, 15, 833. https://doi.org/10.3390/atmos15070833
Peng Q, E C, Li X, Sun Y, Zhang J, Zhang S, Shi Y, Ji X, Zhang Z. Holocene Paleoclimate Changes around Qinghai Lake in the Northeastern Qinghai-Tibet Plateau: Insights from Isotope Geochemistry of Aeolian Sediment. Atmosphere. 2024; 15(7):833. https://doi.org/10.3390/atmos15070833
Chicago/Turabian StylePeng, Qiang, Chongyi E, Xiangzhong Li, Yongjuan Sun, Jing Zhang, Shuaiqi Zhang, Yunkun Shi, Xianba Ji, and Zhaokang Zhang. 2024. "Holocene Paleoclimate Changes around Qinghai Lake in the Northeastern Qinghai-Tibet Plateau: Insights from Isotope Geochemistry of Aeolian Sediment" Atmosphere 15, no. 7: 833. https://doi.org/10.3390/atmos15070833