Paleoclimate Controls on West African Dust Inferred from Rb/Sr and Si/Al of Sediments in an Eastern Equatorial Atlantic Marine Core
"> Figure 1
<p>Study location. Climatological features are idealized, and the reader should note that positions of the winds, air masses, and monsoonal flows are changing throughout the year: open arrows are tradewinds; closed arrows monsoonal; high (H) and low (L) pressure; thick, black line is ITCZ; and large arrow is Harmattan. Stippled area is approximate position of the Sahel [<a href="#B16-atmosphere-15-00902" class="html-bibr">16</a>]. Dark brown is areas producing significance dust for 21–31 days; yellow is significant dust production over 7–21 days [<a href="#B24-atmosphere-15-00902" class="html-bibr">24</a>]. Numbers refer to the potential source areas of Scheuvens et al. [<a href="#B23-atmosphere-15-00902" class="html-bibr">23</a>]. For the broader geographic context of VM30–40, the reader is referred to <a href="#atmosphere-15-00902-f002" class="html-fig">Figure 2</a>.</p> "> Figure 2
<p>Wet dust deposition during years 2002–2017; winter extends to December of 2001. Wet deposition is the removal of atmospheric gases or aerosols by precipitation. Map-model data accessed through the NASA Giovanni website, from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA—2). Colors and scale bar at the right of each panel indicate dust deposition units of kg m<sup>−2</sup> s<sup>−1</sup>. Panels show deposition during: (<b>A</b>) December, January, and February (DJF); (<b>B</b>) March, April, May (MAM); (<b>C</b>) June, July, August (JJA); and (<b>D</b>) September, October, November (SON). Warmer colors symbolize increased rate of deposition. For possible source areas of the dust, the reader is referred to <a href="#atmosphere-15-00902-f001" class="html-fig">Figure 1</a>. Location of VM30–40 indicated by black circle.</p> "> Figure 3
<p>Stratigraphy of VM30—40. Marine isotope stages (MIS) and oxygen isotope curve at left are after Lisiecki and Raymo [<a href="#B50-atmosphere-15-00902" class="html-bibr">50</a>]. Oxygen isotope curve of VM30–40 is from Imbrie et al. and McIntyre et al. [<a href="#B57-atmosphere-15-00902" class="html-bibr">57</a>,<a href="#B58-atmosphere-15-00902" class="html-bibr">58</a>]. All δ18O units are in per mil (0/00). Lithostratigraphy of the core is based on archival information of the Lamont Geological Observatory. Lithological symbols: (1) interbedded layers of foraminiferal ooze and foraminiferal marl ooze, (2) foraminiferal marl, (3) foraminiferal ooze, and (4) foraminiferal marl ooze. The original XRF counts for each record is provided by the <a href="#app1-atmosphere-15-00902" class="html-app">Supplementary Material</a>.</p> "> Figure 4
<p>Results of Blackman–Tukey cross-coherency method. Frequency peaks below the gray-shaded area failed to achieve the 80% confidence interval. Periods correspond to short eccentricity (100 kyr), obliquity (40 kyr), and precession (23 and 18 kyr). A short eccentricity was probably not significant over the short timescale (~260 kyr) of this marine core.</p> "> Figure 5
<p>(<b>A</b>) Conceptual model of aeolian transport and deposition of freshwater diatoms in VM30–40 [<a href="#B59-atmosphere-15-00902" class="html-bibr">59</a>]. In the climatic precession curve, “a” is time of minimum precession (maximum insolation) and thus high lake levels, i.e., no diatom material available for transport. In “b”, the onset of dryness during increasing precession (decreasing insolation) quickly erodes and depletes sources of diatoms in the exposed lakebeds when lake level is low. In “c”, very little diatom detritus is remaining for transport at the precession maximum (insolation minimum). (<b>B</b>) Pokras and Mix’s [<a href="#B59-atmosphere-15-00902" class="html-bibr">59</a>] preferred chronostratigraphic correlation between diatom increases in the core (<span class="html-italic">Melosira</span>/g) and summer insolation. Example is shown for <span class="html-italic">Melosira</span> increase in the core near 75 ka. (<b>C</b>) Same as in (<b>B</b>) but spring insolation is now shown for comparison.</p> "> Figure 6
<p>(<b>A</b>) Blackman–Tukey cross-coherency analysis [<a href="#B80-atmosphere-15-00902" class="html-bibr">80</a>] performed between the log(Rb/Sr) timeseries and seasonal insolation. (<b>B</b>) Phase relationship [<a href="#B81-atmosphere-15-00902" class="html-bibr">81</a>] between the log(Rb/Sr) timeseries and seasonal insolation for 23° north latitude.</p> "> Figure 7
<p>(<b>A</b>) The filtered precession log(Rb/Sr) timeseries compared to spring insolation. The Gaussian filter [<a href="#B80-atmosphere-15-00902" class="html-bibr">80</a>] was set at 0.036–0.048. (<b>B</b>) Same as previous, except with summer.</p> "> Figure 8
<p>Chronostratigraphic comparison between the log(Rb/Sr) timeseries and orbital precession during late MIS 6 and into MIS 5. The log(Rb/Sr) data were smoothed with a 6-point moving average. Vertical dashed lines indicate position of precession minima.</p> "> Figure 9
<p>The filtered obliquity log(Si/Al) timeseries compared to the Laskar et al. [<a href="#B82-atmosphere-15-00902" class="html-bibr">82</a>] obliquity solution for the last ~260 kyr. The Tanner filter [<a href="#B83-atmosphere-15-00902" class="html-bibr">83</a>] was set at 0.022–0.029.</p> "> Figure 10
<p>(<b>Upper</b>) The solid blue line is the %CaCO<sub>3</sub> record of the core (<a href="https://doi.org/10.1594/PANGAEA.51365" target="_blank">https://doi.org/10.1594/PANGAEA.51365</a>) and the dotted line is the global ice volume record over the last ~260 kyr [<a href="#B50-atmosphere-15-00902" class="html-bibr">50</a>]. The scale along bottom depicts the MIS stages/substages. (<b>Lower</b>) Same as above except now the dotted line is the astronomical solution for obliquity [<a href="#B82-atmosphere-15-00902" class="html-bibr">82</a>].</p> "> Figure 11
<p>Comparison of weathering intensity (<b>A</b>), Rb counts (<b>B</b>), and Sr counts (<b>C</b>) during the last glacial maximum (MIS 2). Lower row of figures (<b>D</b>–<b>F</b>) is the same except for the penultimate glacial maximum (MIS 6).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Marine Core VM30–40
2.2. Seasonal Production of the Dust
2.3. Analyses
3. Results
4. Discussion
4.1. Origin of the Precession Signal in the Rb/Sr Timeseries
4.2. Obliquity and Windiness in the Si/Al Data
4.3. CaCO3 Dissolution Bias?
5. Conclusions
- Chemical weathering intensities (Rb/Sr) appear to be in phase with the timing of spring (MAM) insolation, presumably because of the moisture and temperature changes associated with the precession forcing of the West African monsoon.
- Grain size (Si/Al) maxima correlate to obliquity maxima, suggesting intensified winter tradewinds during interglacial epochs. This is inferred to reflect the sensitivity of the ITCZ over Africa to obliquity forcing of the intertropical insolation gradient [39].
- Maximum Rb/Sr values of the core coincide with the last glacial maximum (MIS 2) and the penultimate glacial maximum (MIS 6). Most paleoclimate reconstructions suggest that late Quaternary glacial epochs in northern Africa were cool and dry, which is at odds with chemical weathering intensities increasing (increasing Rb/Sr ratios) during warm and wet monsoons at spring insolation maxima. This may be explained either by an increase in mechanical over chemical weathering during glacial epochs [61,63] or the dissolution of Sr-bearing phases of carbonate by corrosive glacial Atlantic bottom waters [32].
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojha, L.; Lewis, K.; Karunatillake, S.; Schmidt, M. The Medusae Fossae Formation as the single largest source of dust on Mars. Nat. Commun. 2018, 9, 2867. [Google Scholar] [CrossRef]
- Soreghan, G.S.; Beccaletto, L.; Benison, K.C.; Bourquin, S.; Feulner, G.; Hamamura, N.; Hamilton, M.; Heavens, N.G.; Hinnov, L.; Huttenlocker, A.; et al. Report on ICDP Deep Dust workshops: Probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond. Sci. Dril. 2020, 28, 93–112. [Google Scholar] [CrossRef]
- Jickells, T.D. Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science 2005, 308, 67–71. [Google Scholar] [CrossRef]
- Barkley, A.E.; Prospero, J.M.; Mahowald, N.; Hamilton, D.S.; Popendorf, K.J.; Oehlert, A.M.; Pourmand, A.; Gatineau, A.; Panechou-Pulcherie, K.; Blackwelder, P.; et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. Sci. USA 2019, 116, 16216–16221. [Google Scholar] [CrossRef]
- Maher, B.A.; Prospero, J.M.; Mackie, D.; Gaiero, D.; Hesse, P.P.; Balkanski, Y. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth Sci. Rev. 2010, 99, 61–97. [Google Scholar] [CrossRef]
- Yuan, T.; Yu, H.; Chin, M.; Remer, L.A.; McGee, D.; Evan, A. Anthropogenic Decline of African Dust: Insights From the Holocene Records and Beyond. Geophys. Res. Lett. 2020, 47, e2020GL08971. [Google Scholar] [CrossRef] [PubMed]
- Pitkanen-Brunnsberg, J. Background Note on the UN Sand and Dust Storm (SDS) Coalition. 2019. Available online: https://policycommons.net/artifacts/2227328/background-note-on-the-un-sand-and-dust-storm-sds-coalition/2984760/ (accessed on 16 July 2024).
- Moskowitz, B.M.; Reynolds, R.L.; Goldstein, H.L.; Berquó, T.S.; Kokaly, R.F.; Bristow, C.S. Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara. Aeolian Res. 2016, 22, 93–106. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.C.; Engelstaedter, S.; Mbainayel, S.; Mitchell, F. Dust and the low-level circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005. J. Geophys. Res. 2006, 111, D03201. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Muhs, D.R. The geologic records of dust in the Quaternary. Aeolian Res. 2013, 9, 3–48. [Google Scholar] [CrossRef]
- Schwanghart, W.; Schütt, B. Meteorological causes of Harmattan dust in West Africa. Geomorphology 2008, 95, 412–428. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Zhou, W. Understanding the Variability of West African Summer Monsoon Rainfall: Contrasting Tropospheric Features and Monsoon Index. Atmosphere 2020, 11, 309. [Google Scholar] [CrossRef]
- Peters, M.; Tetzlaff, G. The structure of West African Squall Lines and their environmental moisture budget. Meteorl. Atmos. Phys. 1988, 39, 74–84. [Google Scholar] [CrossRef]
- Bercos-Hickey, E.; Nathan, T.R.; Chen, S.-H. On the Relationship between the African Easterly Jet, Saharan Mineral Dust Aerosols, and West African Precipitation. J. Clim. 2020, 33, 3533–3546. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate of the Sahel and West Africa. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- Rodríguez, S.; Calzolai, G.; Chiari, M.; Nava, S.; García, M.I.; López-Solano, J.; Marrero, C.; López-Darias, J.; Cuevas, E.; Alonso-Pérez, S.; et al. Rapid changes of dust geochemistry in the Saharan Air Layer linked to sources and meteorology. Atmos. Environ. 2020, 223, 117186. [Google Scholar] [CrossRef]
- Blanco, A.; Dee Tomasi, F.; Filippo, E.; Manno, D.; Perrone, M.R.; Serra, A.; Tafuro, A.M.; Tepore, A. Characterization of African dust over southern Italy. Atmos. Chem. Phys. 2003, 3, 2147–2159. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; di Lorenzo, F.; Elert, K. Mineralogy and physicochemical features of Saharan dust wet deposited in the Iberian Peninsula during an extreme red rain event. Atmos. Chem. Phys. 2018, 18, 10089–10122. [Google Scholar] [CrossRef]
- McGee, D.; deMenocal, P.B.; Winckler, G.; Stuut, J.B.W.; Bradtmiller, L.I. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 2013, 371–372, 163–176. [Google Scholar] [CrossRef]
- Bonar, A.L.; Soreghan, G.S.; Elwood Madden, M.E. Assessing Weathering, Pedogenesis, and Silt Generation in Granitoid-Hosted Soils From Contrasting Hydroclimates. JGR Earth Surf. 2023, 128, e2023JF007095. [Google Scholar] [CrossRef]
- Oldfield, F.; Chiverrell, R.C.; Lyons, R.; Williams, E.; Shen, Z.; Bristow, C.; Bloemendal, J.; Torrent, J.; Boyle, J.F. Discriminating dusts and dusts sources using magnetic properties and hematite:Goethite ratios of surface materials and dust from North Africa, the Atlantic and Barbados. Aeolian Res. 2014, 13, 91–104. [Google Scholar] [CrossRef]
- Scheuvens, D.; Schütz, L.; Kandler, K.; Ebert, M.; Weinbruch, S. Bulk composition of northern African dust and its source sediments—A compilation. Earth Sci. Rev. 2013, 116, 170–194. [Google Scholar] [CrossRef]
- Muhs, D.R.; Prospero, J.M.; Baddock, M.C.; Gill, T.E. Identifying Sources of Aeolian Mineral Dust: Present and Past. In Mineral Dust; Knippertz, P., Stuut, J.-B.W., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 51–74. [Google Scholar] [CrossRef]
- Armstrong, E.; Tallavaara, M.; Hopcroft, P.O.; Valdes, P.J. North African humid periods over the past 800,000 years. Nat. Commun. 2023, 14, 5549. [Google Scholar] [CrossRef] [PubMed]
- Bozzano, G.; Kuhlmann, H.; Alonso, B. Storminess control over African dust input to the Moroccan Atlantic margin (NW Africa) at the time of maxima boreal summer insolation: A record of the last 220 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 183, 155–168. [Google Scholar] [CrossRef]
- Crocker, A.J.; Naafs, B.D.A.; Westerhold, T.; James, R.H.; Cooper, M.J.; Röhl, U.; Pancost, R.D.; Xuan, C.; Osborne, C.P.; Beerling, D.J.; et al. Astronomically controlled aridity in the Sahara since at least 11 million years ago. Nat. Geosci. 2022, 15, 671–676. [Google Scholar] [CrossRef]
- Kinsley, C.W.; Bradtmiller, L.I.; McGee, D.; Galgay, M.; Stuut, J.B.; Tjallingii, R.; Winckler, G.; DeMenocal, P.B. Orbital- and Millennial-Scale Variability in Northwest African Dust Emissions over the Past 67,000 years. Paleoceanogr. Paleoclimatol. 2022, 37, e2020PA004137. [Google Scholar] [CrossRef]
- Kutzbach, J.E.; Guan, J.; He, F.; Cohen, A.S.; Orland, I.J.; Chen, G. African climate response to orbital and glacial forcing in 140,000-y simulation with implications for early modern human environments. Proc. Natl. Acad. Sci. USA 2020, 117, 2255–2264. [Google Scholar] [CrossRef]
- Moreno, A.; Targarona, J.; Henderiks, J.; Canals, M.; Freudenthal, T.; Meggers, H. Orbital forcing of dust supply to the North Canary Basin over the last 250 kyr. Quat. Sci. Rev. 2001, 20, 1327–1339. [Google Scholar] [CrossRef]
- O’Mara, N.A.; Skonieczny, C.; McGee, D.; Winckler, G.; Bory, A.J.M.; Bradtmiller, L.I.; Malaizé, B.; Polissar, P.J. Pleistocene drivers of Northwest African hydroclimate and vegetation. Nat. Commun. 2022, 13, 3552. [Google Scholar] [CrossRef]
- Skonieczny, C.; McGee, D.; Winckler, G.; Bory, A.; Bradtmiller, L.I.; Kinsley, C.W.; Polissar, P.J.; De Pol-Holz, R.; Rossignol, L.; Malaizé, B. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 2019, 5, eaav1887. [Google Scholar]
- Tisserand, A.; Malaizé, B.; Jullien, E.; Zaragosi, S.; Charlier, K.; Grousset, F. African monsoon enhancement during the penultimate glacial period (MIS 6.5~170 ka) and its atmospheric impact. Paleoceanography 2009, 24, PA2220. [Google Scholar]
- Trauth, M.H.; Larrasoaña, J.C.; Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 2009, 28, 399–411. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F. Intertropical Latitudes and Precessional and Half-Precessional Cycles. Science 1997, 278, 1476–1478. [Google Scholar] [CrossRef]
- Clement, A.C.; Hall, A.; Broccoli, A.J. The importance of precessional signals in the tropical climate. Clim. Dyn. 2004, 22, 327–341. [Google Scholar] [CrossRef]
- Grant, K.M.; Amarathunga, U.; Amies, J.D.; Hu, P.; Qian, Y.; Penny, T.; Rodriguez-Sanz, L.; Zhao, X.; Heslop, D.; Liebrand, D.; et al. Organic carbon burial in Mediterranean sapropels intensified during Green Sahara Periods since 3.2 Myr ago. Commun. Earth Environ. 2022, 3, 11. [Google Scholar] [CrossRef]
- Rossignol-Strick, M.; Nesteroff, W.; Olive, P.; Vergnaud-Grazzini, C. After the deluge: Mediterranean stagnation and sapropel formation. Nature 1982, 295, 105–110. [Google Scholar] [CrossRef]
- Bosmans, J.H.C.; Hilgen, F.J.; Tuenter, E.; Lourens, L.J. Obliquity forcing of low-latitude climate. Clim. Past. 2015, 11, 1335–1346. [Google Scholar] [CrossRef]
- Hennekam, R.; Grant, K.M.; Rohling, E.J.; Tjallingii, R.; Heslop, D.; Roberts, A.P.; Lourens, L.J.; Reichart, G.J. Accurately calibrated X-ray fluorescence core scanning (XRF-CS) record of Ti ∕ Al reveals Early Pleistocene aridity and humidity variability over North Africa and its close relationship to low-latitude insolation. Clim. Past 2022, 18, 2509–2521. [Google Scholar] [CrossRef]
- Castañeda, I.S.; Mulitza, S.; Schefuß, E.; Lopes dos Santos, R.A.; Sinninghe Damsté, J.S.; Schouten, S. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl. Acad. Sci. USA 2009, 106, 20159–20163. [Google Scholar] [CrossRef] [PubMed]
- deMenocal, P.B.; Ruddiman, W.F.; Pokras, E.M. Influences of High- and Low-Latitude Processes on African Terrestrial Climate: Pleistocene Eolian Records from Equatorial Atlantic Ocean Drilling Program Site 663. Paleoceanography 1993, 8, 209–242. [Google Scholar] [CrossRef]
- deMenocal, P.D. Plio-Pleistocene African climate. Science 1995, 270, 53–59. [Google Scholar]
- Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 2000, 19, 189–211. [Google Scholar] [CrossRef]
- Garcin, Y.; Vincens, A.; Williamson, D.; Buchet, G.; Guiot, J. Abrupt resumption of the African Monsoon at the Younger Dryas—Holocene climatic transition. Quat. Sci. Rev. 2007, 26, 690–704. [Google Scholar] [CrossRef]
- Nicholson, S.E. Pleistocene and Holocene climates in Africa. Nature 1982, 296, 779. [Google Scholar] [CrossRef]
- Chadwick, M.; Allen, C.S.; Sime, L.C.; Hillenbrand, C.-D. Analysing the timing of peak warming and minimum winter sea-ice extent in the Southern Ocean during MIS 5e. Quat. Sci. Rev. 2020, 229, 106134. [Google Scholar] [CrossRef]
- Govin, A.; Varma, V.; Prange, M. Astronomically forced variations in western African rainfall (21°N-20°S) during the Last Interglacial period. Geophys. Res. Lett. 2014, 41, 2117–2125. [Google Scholar] [CrossRef]
- Menviel, L.; Govin, A.; Avenas, A.; Meissner, K.J.; Grant, K.M.; Tzedakis, P.C. Drivers of the evolution and amplitude of African Humid Periods. Commun. Earth Environ. 2021, 2, 237. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography 2005, 20, 2004PA001071. [Google Scholar] [CrossRef]
- Bajo, P.; Drysdale, R.N.; Woodhead, J.D.; Hellstrom, J.C.; Hodell, D.; Ferretti, P.; Voelker, A.H.; Zanchetta, G.; Rodrigues, T.; Wolff, E.; et al. Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science 2020, 367, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.U.; Archer, D.; Pollard, D.; Blum, J.D.; Rial, J.A.; Brovkin, V.; Mix, A.C.; Pisias, N.G.; Roy, M. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 2006, 25, 3150–3184. [Google Scholar] [CrossRef]
- Raymo, M.E.; Lisiecki, L.E.; Nisancioglu, K. Plio-Pleistocene Ice Volume, Antarctic Climate, and the Global d18O Record. Science 2006, 313, 492–495. [Google Scholar] [CrossRef]
- Bloemendal, J.; deMenocal, P. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature 1989, 342, 897–900. [Google Scholar] [CrossRef]
- Lepre, C.J.; Quinn, R.L. Aridification and orbital forcing of eastern African climate during the Plio-Pleistocene. Glob. Planet. Chang. 2022, 208, 103684. [Google Scholar] [CrossRef]
- Trauth, M.H.; Asrat, A.; Berner, N.; Bibi, F.; Foerster, V.; Grove, M.; Kaboth-Bahr, S.; Maslin, M.A.; Mudelsee, M.; Schäbitz, F. Northern Hemisphere Glaciation, African climate and human evolution. Quat. Sci. Rev. 2021, 268, 107095. [Google Scholar] [CrossRef]
- Imbrie, J.; Hays, J.D.; Martinson, D.G.; McIntyre, A.; Mix, A.C.; Morley, J.J.; Pisias, N.G.; Prell, W.L.; Shackleton, N.J. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In Milankovitch and Climate, Part 1; Berger, A.L., Imbrie, J., Hays, J., Saltzman, B., Eds.; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1984; pp. 269–305. [Google Scholar]
- McIntyre, A.; Ruddiman, W.F.; Karlin, K.; Mix, A.C. Surface water response of the equatorial Atlantic Ocean to orbital forcing. Paleoceanography 1989, 4, 19–55. [Google Scholar] [CrossRef]
- Pokras, E.M.; Mix, A.C. Earth’s precession cycle and Quaternary climatic change in tropical Africa. Nature 1987, 326, 486–487. [Google Scholar] [CrossRef]
- Pokras, E.M.; Mix, A.C. Eolian Evidence for Spatial Variability of Late Quaternary Climates in Tropical Africa. Quat. Res. 1985, 24, 137–149. [Google Scholar] [CrossRef]
- Cole, J.M.; Goldstein, S.L.; deMenocal, P.B.; Hemming, S.R.; Grousset, F.E. Contrasting compositions of Saharan dust in the eastern Atlantic Ocean during the last deglaciation and African Humid Period. Earth Planet. Sci. Lett. 2009, 278, 257–266. [Google Scholar] [CrossRef]
- de Boer, B.; Peters, M.; Lourens, L.J. The Transient Impact of the African Monsoon on Plio-Pleistocene Mediterranean Sediments. Clim. Past 2020, 17, 331–344. [Google Scholar] [CrossRef]
- Jung, S.J.A.; Davies, G.R.; Ganssen, G.M.; Kroon, D. Stepwise Holocene aridification in NE Africa deduced from dust-borne radiogenic isotope records. Earth Planet. Sci. Lett. 2004, 221, 27–37. [Google Scholar] [CrossRef]
- Bradtmiller, L.I.; Anderson, R.F.; Fleisher, M.Q.; Burckle, L.H. Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle. Paleoceanography 2007, 22, PA4216. [Google Scholar] [CrossRef]
- Rowland, G.H.; Robinson, L.F.; Hendry, K.R.; Ng, H.C.; McGee, D.; McManus, J.F. The Spatial Distribution of Aeolian Dust and Terrigenous Fluxes in the Tropical Atlantic Ocean Since the Last Glacial Maximum. Paleoceanogr. Paleoclimatology 2021, 36, e2020PA004148. [Google Scholar] [CrossRef]
- Tiedemann, R.; Sarnthein, M.; Shackleton, N.J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 1994, 9, 619–638. [Google Scholar] [CrossRef]
- Hooghiemstra, H.; Lézine, A.-M.; Leroy, S.A.G.; Dupont, L.; Marret, F. Late Quaternary palynology in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 2006, 148, 29–44. [Google Scholar] [CrossRef]
- Leroy, S.; Dupont, L. Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: The pollen record of ODP site 658. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 109, 295–316. [Google Scholar] [CrossRef]
- Lézine, A.-M.; Casanova, J. Correlated oceanic and continental records demonstrate past climate and hydrology of North Africa (0–140 ka). Geology 1991, 19, 307. [Google Scholar] [CrossRef]
- Balsam, W.L.; Otto-Bliesner, B.L.; Deaton, B.C. Modern and Last Glacial Maximum eolian sedimentation patterns in the Atlantic Ocean interpreted from sediment iron oxide content. Paleoceanography 1995, 10, 493–507. [Google Scholar] [CrossRef]
- Pokras, E.M. Diatom record of Late Quaternary climatic change in the eastern equatorial Atlantic and tropical Africa. Paleoceanography 1987, 2, 273–286. [Google Scholar] [CrossRef]
- Prospero, J.M.; Barkley, A.E.; Gaston, C.J.; Gatineau, A.; Campos y Sansano, A.; Panechou, K. Characterizing and Quantifying African Dust Transport and Deposition to South America: Implications for the Phosphorus Budget in the Amazon Basin. Glob. Biogeochem. Cycles 2020, 34, e2020GB006536. [Google Scholar] [CrossRef]
- Sultan, B.; Janicot, S. Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys. Res. Lett. 2000, 27, 3353–3356. [Google Scholar] [CrossRef]
- Doherty, O.M.; Riemer, N.; Hameed, S. Control of Saharan mineral dust transport to Barbados in winter by the Intertropical Convergence Zone over West Africa. J. Geophys. Res. 2012, 117, 2012JD017767. [Google Scholar] [CrossRef]
- Croudace, I.; Rothwell, G. Micro-XRF sediment core scanners: Important new tools for the environmental and earth sciences. SpectroscopyEurope 2010, 22, 6. [Google Scholar]
- Hodell, D.; Lourens, L.; Crowhurst, S.; Konijnendijk, T.; Tjallingii, R.; Jiménez-Espejo, F.; Skinner, L.; Tzedakis, P.C.; Members, T.S.S.P.; Abrantes, F.; et al. A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Glob. Planet. Chang. 2015, 133, 49–64. [Google Scholar] [CrossRef]
- Weltje, G.J.; Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 2008, 274, 423–438. [Google Scholar] [CrossRef]
- Chen, J.; An, Z.; Head, J. Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130,000 Years and Their Implications for Monsoon Paleoclimatology. Quat. Res. 1999, 51, 215–219. [Google Scholar] [CrossRef]
- White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E. Differential rates of feldspar weathering in granitic regoliths. Geochim. Cosmochim. Acta 2001, 65, 847–869. [Google Scholar] [CrossRef]
- Paillard, D.; Labeyrie, L.; Yiou, P. Macintosh Program performs time-series analysis. Eos Trans. Am. Geophys. Union 1996, 77, 379. [Google Scholar] [CrossRef]
- Li, M.; Hinnov, L.; Kump, L. Acycle: Time-series analysis software for paleoclimate research and education. Comput. Geosci. 2019, 127, 12–22. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Zeeden, C.; Kaboth, S.; Hilgen, F.J.; Laskar, J. Taner filter settings and automatic correlation optimisation for cyclostratigraphic studies. Comput. Geosci. 2018, 119, 18–28. [Google Scholar] [CrossRef]
- Berger, A. Astronomical Frequencies in Paleoclimates. In Encyclopedia of Marine Geosciences; Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–13. [Google Scholar] [CrossRef]
- Olsen, P.E.; Laskar, J.; Kent, D.V.; Kinney, S.T.; Reynolds, D.J.; Sha, J.; Whiteside, J.H. Mapping Solar System chaos with the Geological Orrery. Proc. Natl. Acad. Sci. USA 2019, 116, 10664–10673. [Google Scholar] [CrossRef]
- Berger, A.; Loutre, M.F.; Mélice, J.L. Equatorial insolation: From precession harmonics to eccentricity frequencies. Clim. Past 2006, 2, 131–136. [Google Scholar] [CrossRef]
- Zeeden, C.; Meyers, S.R.; Hilgen, F.J.; Lourens, L.J.; Laskar, J. Time scale evaluation and the quantification of obliquity forcing. Quat. Sci. Rev. 2019, 209, 100–113. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Rosenthal, Y.; Köhler, P.; Bartlein, P.J. Global and regional temperature change over the past 4.5 million years. Science 2024, 383, 884–890. [Google Scholar] [CrossRef]
- Tuenter, E.; Weber, S.L.; Hilgen, F.J.; Lourens, L.J. The response of the African summer monsoon to remote and local forcing due to precession and obliquity. Glob. Planet. Chang. 2003, 36, 219–235. [Google Scholar] [CrossRef]
- Demenocal, P.; Ortiz, J.; Guilderson, T.; Adkins, J.; Sarnthein, M.; Baker, L.; Yarusinsky, M. Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 2000, 19, 347–361. [Google Scholar] [CrossRef]
- Shanahan, T.M.; McKay, N.P.; Hughen, K.A.; Overpeck, J.T.; Otto-Bliesner, B.; Heil, C.W.; King, J.; Scholz, C.A.; Peck, J. The time-transgressive termination of the African Humid Period. Nat. Geosci. 2015, 8, 140–144. [Google Scholar] [CrossRef]
- Blum, J.D.; Erel, I.Y.; Brown, K. 87Sr/86Sr ratios of Sierra Nevada stream waters: Implications for relative mineral weathering rates. Geochim. Cosmochim. Acta 1994, 57, 5019–5025. [Google Scholar] [CrossRef]
- Blum, J.D.; Erel, Y. Rb-Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochim. Cosmochim. Acta 1997, 61, 3193–3204. [Google Scholar] [CrossRef]
- Marticorena, B.; Chatenet, B.; Rajot, J.L.; Traoré, S.; Coulibaly, M.; Diallo, A.; Koné, I.; Maman, A.; NDiaye, T.; Zakou, A. Temporal variability of mineral dust concentrations over West Africa: Analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmos. Chem. Phys. 2010, 10, 8899–8915. [Google Scholar] [CrossRef]
- Prospero, J.M.; Glaccum, R.A.; Nees, R.T. Atmospheric transport of soil dust from Africa to South America. Nature 1981, 289, 570–572. [Google Scholar] [CrossRef]
- Gläser, G.; Knippertz, P.; Heinold, B. Orographic Effects and Evaporative Cooling along a Subtropical Cold Front: The Case of the Spectacular Saharan Dust Outbreak of March 2004. Mon. Weather. Rev. 2012, 140, 2520–2533. [Google Scholar] [CrossRef]
- Knippertz, P.; Fink, A.H. Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Quart. J. R. Meteoro Soc. 2006, 132, 1153–1177. [Google Scholar] [CrossRef]
- Tulet, P.; Mallet, M.; Pont, V.; Pelon, J.; Boone, A. The 7–13 March 2006 dust storm over West Africa: Generation, transport, and vertical stratification. J. Geophys. Res. 2008, 113, 2008JD009871. [Google Scholar] [CrossRef]
- Prospero, J.M.; Collard, F.-X.; Molinié, J.; Jeannot, A. Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality: African dust transport to South America. Global Biogeochem. Cycles 2014, 28, 757–773. [Google Scholar] [CrossRef]
- Kump, L.R.; Brantley, S.L.; Arthur, M.A. Chemical Weathering, Atmospheric CO2, and Climate. Annu. Rev. Earth Planet. Sci. 2000, 28, 611–667. [Google Scholar] [CrossRef]
- Hemming, S.R. Terrigenous Sediments. In Encyclopedia of Quaternary Science; Elsevier: Oxford, UK, 2007; Volume 3, pp. 1776–1785. [Google Scholar]
- Hobart, B.; Lisiecki, L.E.; Rand, D.; Lee, T.; Lawrence, C.E. Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation. Nat. Geosci. 2023, 16, 717–722. [Google Scholar]
- Dupont, L. Orbital scale vegetation change in Africa. Quat. Sci. Rev. 2011, 30, 3589–3602. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Castillo, S.; Alastuey, A.; Cuevas, E.; Herrmann, L.; Mounkaila, M.; Elvira, J.; Gibbons, W. Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 2006, 65, 261–270. [Google Scholar] [CrossRef]
- McManus, J.F.; Francois, R.; Gherardi, J.-M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834–837. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, J.; Holbourn, A.; Kuhnt, W.; Xiong, Z.; Li, T. Obliquity Induced Latitudinal Migration of the Intertropical Convergence Zone During the Past ∼410 kyr. Geophys. Res. Lett. 2022, 49, e2022GL100039. [Google Scholar] [CrossRef]
- Broccoli, A.J.; Dahl, K.A.; Stouffer, R.J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. 2006, 33, L01702. [Google Scholar] [CrossRef]
- Mantsis, D.F.; Lintner, B.R.; Broccoli, A.J.; Erb, M.P.; Clement, A.C.; Park, H.S. The Response of Large-Scale Circulation to Obliquity-Induced Changes in Meridional Heating Gradients. J. Clim. 2014, 27, 5504–5516. [Google Scholar] [CrossRef]
- Oppo, D.W.; Fairbanks, R.G. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the Southern Ocean. Earth Planet. Sci. Lett. 1987, 86, 1–15. [Google Scholar] [CrossRef]
MIS Substage ‡ | Age (ka) | Depth (cm) |
---|---|---|
nr | 1.5 | 0 |
1.1 | 6.5 | 12 |
2.0 | 12 | 33 |
2.22 | 17.8 | 58.5 |
2.24 | 21.4 | 75 |
3.0 | 24 | 91.5 |
3.3 | 53 | 162 |
4.0 | 59 | 183 |
4.2 | 65 | 195 |
5.0 | 71 | 208 |
5.1 | 80 | 241.5 |
5.2 | 87 | 261 |
5.3 | 99 | 297 |
5.5 | 122 | 370.5 |
6.0 | 128 | 387 |
6.2 | 135 | 399 |
6.4 | 151 | 462 |
6.5 | 171 | 522 |
nr | 176 | 540 |
6.6 | 183 | 555 |
7.0 | 186 | 567 |
7.1 | 194 | 606 |
7.2 | 205 | 627 |
nr | 212 | 633 |
7.3 | 216 | 642 |
7.4 | 228 | 666 |
7.5 | 238 | 705 |
nr | 257 | 753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lepre, C.J.; Chang, C.Y.; Yazzie, O.M. Paleoclimate Controls on West African Dust Inferred from Rb/Sr and Si/Al of Sediments in an Eastern Equatorial Atlantic Marine Core. Atmosphere 2024, 15, 902. https://doi.org/10.3390/atmos15080902
Lepre CJ, Chang CY, Yazzie OM. Paleoclimate Controls on West African Dust Inferred from Rb/Sr and Si/Al of Sediments in an Eastern Equatorial Atlantic Marine Core. Atmosphere. 2024; 15(8):902. https://doi.org/10.3390/atmos15080902
Chicago/Turabian StyleLepre, Christopher J., Clara Y. Chang, and Owen M. Yazzie. 2024. "Paleoclimate Controls on West African Dust Inferred from Rb/Sr and Si/Al of Sediments in an Eastern Equatorial Atlantic Marine Core" Atmosphere 15, no. 8: 902. https://doi.org/10.3390/atmos15080902