The Global Distribution of Cirrus Clouds Reflectance Based on MODIS Level-3 Data
<p>The flow chart of quality control for cirrus clouds data preprocesses: Obtain the effective samples.</p> "> Figure 2
<p>The 18-year average cirrus reflectance vs. latitude and longitude.</p> "> Figure 3
<p>The global average of cirrus reflectance.</p> "> Figure 4
<p>The variations of the yearly-average cirrus reflectance vs. latitude from 2000 to 2017.</p> "> Figure 5
<p>The hemispheric cirrus reflectance vs. year.</p> "> Figure 6
<p>The seasonal-average cirrus reflectance vs. latitude from 2000 to 2017. (<b>a</b>) March-May, (<b>b</b>) June-August, (<b>c</b>) September-November, (<b>d</b>) December-February. Note that there are no data for (<b>b</b>) and (<b>d</b>) in the [80 °S, 90 °S], [80 °N, 90 °N] regions, respectively, due to the Polar nights or very short sunshine time.</p> "> Figure 6 Cont.
<p>The seasonal-average cirrus reflectance vs. latitude from 2000 to 2017. (<b>a</b>) March-May, (<b>b</b>) June-August, (<b>c</b>) September-November, (<b>d</b>) December-February. Note that there are no data for (<b>b</b>) and (<b>d</b>) in the [80 °S, 90 °S], [80 °N, 90 °N] regions, respectively, due to the Polar nights or very short sunshine time.</p> "> Figure 7
<p>The seasonal distribution of the 18-year average cirrus reflectance vs. latitude. Note that: due to the polar nights in the South and Arctic, data in the region [80°,90°] in winter and [−90°,−80°] in summer does not exist.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Data Source
2.2. The Methods of Data Processing
3. Global Cirrus Patterns
3.1. Global Distribution of Cirrus Reflectance
3.2. The Temporal Variation of Cirrus Clouds from 2000 to 2017
3.3. Seasonal Variation of Cirrus Clouds During 2000–2017
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baran, A.J. From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res. 2012, 112, 45–69. [Google Scholar] [CrossRef]
- Yang, P.; Liou, K.N.; Bi, L.; Liu, C.; Yi, B.; Baum, B.A. On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization. Adv. Atmos. Sci. 2015, 32, 32–63. [Google Scholar] [CrossRef]
- Liou, K.-N.; Yang, P. Light Scattering by Ice Crystals: Fundamentals and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 2016; pp. 14–55. [Google Scholar]
- McFarquhar, G.M.; Heymsfield, A.J.; Spinhirne, J.; Hart, B. Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci. 2000, 57, 1841–1853. [Google Scholar] [CrossRef]
- Mason, B.J. The role of clouds in the radiative balance of the atmosphere and their effects on climate. Contemp. Phys. 2002, 43, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Li, F. Influence of thin cirrus clouds on the short-wave infrared satellite observation of atmospheric CO2. Optik 2019. [Google Scholar] [CrossRef]
- Kärcher, B.; Burkhardt, U. A cirrus cloud scheme for general circulation models. Q. J. R. Meteorol. Soc. 2008, 134, 1439–1461. [Google Scholar] [CrossRef] [Green Version]
- Ou, S.C.; Liou, K.N. Ice microphysics and climatic temperature feedback. Atmos. Res. 1995, 35, 127–138. [Google Scholar] [CrossRef]
- Tang, G.; Panetta, R.L.; Yang, P.; Kattawar, G.W.; Zhai, P.W. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective. J. Quant. Spectrosc. Radiat. Transf. 2017, 195, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Starr, D.O.; Cox, S.K. Cirrus clouds. Part ii: Numerical experiments on the formation and maintenance of cirrus. J. Atmos. Sci. 1985, 42, 2682–2694. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Ansmann, A.; Mamouri, R.; Bühl, J.; Seifert, P.; Engelmann, R.; Hofer, J.; Nisantzi, A.; Atkinson, J.D.; Kanji, Z.A.; Sierau, B.; et al. Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust:a closure study. Atmos. Chem. Phys. 2019, 19, 15087–15115. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Liu, G. The Characteristics of Ice Cloud Properties Derived from CloudSat and CALIPSO Measurements. J. Clim. 2015, 28, 3880–3901. [Google Scholar] [CrossRef]
- Mitchell, D.L.; Garnier, A.; Pelon, J.; Erfani, E. CALIPSO (IIR–CALIOP) retrievals of cirrus cloud ice-particle concentrations. Atmos. Chem. Phys. 2018, 18, 17325–17354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, D.L.; Garnier, A.; Avery, M.; Erfani, E. CALIPSO observations of the dependence of homo- and heterogeneous ice nucleation in cirrus clouds on latitude, season and surface condition. Atmos. Chem. Phys. Discuss. 2016, 1062, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Nazaryan, H.; McCormick, M.P.; Menzel, W.P. Global characterization of cirrus clouds using CALIPSO data. J. Geophys. Res. Atmos. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Sassen, K.; Wang, Z.; Liu, D. Global distribution of cirrus clouds from CloudSat/Cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements. J. Geophys. Res. Atmos. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Katagiri, S.; Sekiguchi, M.; Hayasaka, T.; Nakajima, T. Cirrus cloud radiative forcing at the top of atmosphere using the nighttime global distribution with the microphysical parameters derived from AVHRR. Am. Inst. Phys. 2013, 1531, 704–707. [Google Scholar]
- Pandit, A.K.; Gadhavi, H.; Ratnam, M.V.; Jayaraman, A.; Raghunath, K.; Rao, S.V.B. Characteristics of cirrus clouds and tropical tropopause layer: Seasonal variation and long-term trends. J. Atmos. Sol.-Terr. Phys. 2014, 121, 248–256. [Google Scholar] [CrossRef]
- Kumar, K.N.; Suzuki, K. Assessment of seasonal cloud properties in the United Arab Emirates and adjoining regions from geostationary satellite data. Remote Sens. Environ. 2019, 228, 90–104. [Google Scholar] [CrossRef]
- Eichmann, K.U.; Lelli, L.; von Savigny, C.; Sembhi, H.; Burrows, J.P. Global cloud top height retrieval using SCIAMACHY limb spectra: Model studies and first results. Atmos. Meas. Tech. Discuss. 2015, 8, 8295–8352. [Google Scholar] [CrossRef]
- Meyer, K.; Yang, P.; Gao, B.C.; Wiscombe, W. Characteristics of tropical cirrus cloud optical thickness fields using MODIS level-3 data. Proc. SPIE 2004, 5652, 231–238. [Google Scholar]
- King, M.D.; Menzel, W.P.; Kaufman, Y.J.; Tanré, D.; Gao, B.C.; Platnick, S.; Ackerman, S.A.; Remer, L.A.; Pincus, R.; Hubanks, P.A. Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens. 2003, 41, 442–458. [Google Scholar] [CrossRef] [Green Version]
- King, M.D.; Kaufman, Y.J.; Menzel, W.P.; Tanre, D. Cirrus Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens. 2013, 30, 2–27. [Google Scholar] [CrossRef] [Green Version]
- Baum, B.A.; Platnick, S. Introduction to MODIS cloud products. In Earth Science Satellite Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 74–91. [Google Scholar]
- Gao, B.; Yang, P.; Han, W.; Li, R.; Wiscombe, W. An algorithm using visible and 1.38-μm channels to retrieve cirrus cloud reflectance from aircraft and satellite data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1659–1668. [Google Scholar]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C.; Kaufman, Y.J. Water vapor retrievals using moderate resolution imaging spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res. 2003, 108, 4389. [Google Scholar] [CrossRef]
- Stigler, S.M. Francis galton’s account of the invention of correlation. Stat. Sci. 1989, 4, 73–79. [Google Scholar] [CrossRef]
- Gao, B.C.; Yang, P.; Guo, G.; Park, S.K.; Wiscombe, W.J.; Chen, B. Measurements of water vapor and high clouds over the Tibetan plateau with the terra MODIS instrument. IEEE Trans. Geosci. Remote Sens. 2003, 41, 895–900. [Google Scholar]
- Wylie, D.P. Eight years of high cloud statistics using HIRS. J. Clim. 1999, 12, 170–184. [Google Scholar] [CrossRef]
- Liou, K.N. Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Weather Rev. 1986, 114, 1167–1199. [Google Scholar] [CrossRef]
- Lowe, D.; Mackenzie, A.R. Polar stratospheric cloud microphysics and chemistry. J. Atmos. Sol.-Terr. Phys. 2008, 70, 13–40. [Google Scholar] [CrossRef] [Green Version]
- Maturilli, M.; Andreas, D. Polar stratospheric ice cloud above Spitsbergen. J. Geophys. Res. Atmos. 2006, 111, 1–12. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Tang, C.; Dai, C.; Wu, X.; Wei, H. The Global Distribution of Cirrus Clouds Reflectance Based on MODIS Level-3 Data. Atmosphere 2020, 11, 219. https://doi.org/10.3390/atmos11020219
Zhao F, Tang C, Dai C, Wu X, Wei H. The Global Distribution of Cirrus Clouds Reflectance Based on MODIS Level-3 Data. Atmosphere. 2020; 11(2):219. https://doi.org/10.3390/atmos11020219
Chicago/Turabian StyleZhao, Fengmei, Chaoli Tang, Congming Dai, Xin Wu, and Heli Wei. 2020. "The Global Distribution of Cirrus Clouds Reflectance Based on MODIS Level-3 Data" Atmosphere 11, no. 2: 219. https://doi.org/10.3390/atmos11020219
APA StyleZhao, F., Tang, C., Dai, C., Wu, X., & Wei, H. (2020). The Global Distribution of Cirrus Clouds Reflectance Based on MODIS Level-3 Data. Atmosphere, 11(2), 219. https://doi.org/10.3390/atmos11020219