Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective
"> Figure 1
<p>The city-block-design alternatives. From left to right: V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> (the longer sides of buildings parallel to the boulevard), V<math display="inline"> <semantics> <msub> <mrow/> <mi>per</mi> </msub> </semantics> </math> (the longer sides perpendicular to the boulevard), V<math display="inline"> <semantics> <msub> <mrow/> <mi>perHV</mi> </msub> </semantics> </math> (similar to V<math display="inline"> <semantics> <msub> <mrow/> <mi>per</mi> </msub> </semantics> </math> but the building height varies) and V<math display="inline"> <semantics> <msub> <mrow/> <mi>parJJ</mi> </msub> </semantics> </math> (similar to V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> but with Jing-Jang building structure variation). The boulevard is marked in red and the major junction with a black dot.</p> "> Figure 2
<p>The computational domain for southwesterly (<math display="inline"> <semantics> <mrow> <mi>W</mi> <mi>D</mi> </mrow> </semantics> </math> = 225<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math>) inflow conditions and V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> where the longer sides of building blocks are parallel to the boulevard. The domain is separated into child (<b>B</b>) and parent (<b>A</b>) domains, where the white colour stands for the topography elevation <span class="html-italic">Z</span> = 0 m. The data output domains are marked with rectangles: the small domain with a solid black and the large domain with a black dashed line. The boulevard is marked in red.</p> "> Figure 3
<p>A map of the tree canopy height <math display="inline"> <semantics> <msub> <mi>Z</mi> <mi>canopy</mi> </msub> </semantics> </math> (m) for the whole computational domain. Orientation as in <a href="#atmosphere-09-00065-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>The vertical profile of <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>A</mi> <mi>D</mi> </mrow> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics> </math> m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics> </math>) for the street along the boulevard (blue dashed line with dots). Example profiles for smaller and taller trees outside of the boulevard plotted in green (dashed line with stars) and red (dashed line with triangles), respectively. Additionally, the winter time <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>A</mi> <mi>D</mi> </mrow> </semantics> </math> profile for the street trees is given in black (solid line).</p> "> Figure 5
<p>The particle source area (in colours) in the block-design alternatives V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> and V<math display="inline"> <semantics> <msub> <mrow/> <mi>parJJ</mi> </msub> </semantics> </math>. Source areas are divided into groups 1, 2 and 3 based on the estimated mean traffic rates in year 2025 (see legends). Street surfaces below trees (white dots) are omitted as source areas. Orientation as in <a href="#atmosphere-09-00065-f002" class="html-fig">Figure 2</a>.</p> "> Figure 6
<p>The vertical profile of (<b>a</b>) streamwise velocity <span class="html-italic">u</span> (m s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>), (<b>b</b>) Reynolds stress <math display="inline"> <semantics> <mover> <mrow> <msup> <mi>u</mi> <mo>′</mo> </msup> <msup> <mi>w</mi> <mo>′</mo> </msup> </mrow> <mo>¯</mo> </mover> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math>), and (<b>c</b>) potential temperature <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> (K) at the inflow boundary for the general (solid line) and wintry (dashed line) inflow conditions. The top <span class="html-italic">x</span>-axis for <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> is for the wintry conditions.</p> "> Figure 7
<p>40-min horizontal mean particle concentrations <math display="inline"> <semantics> <mrow> <mi>p</mi> <mi>c</mi> </mrow> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics> </math>) under the (<b>a</b>) general and (<b>b</b>) wintry inflow conditions separately above the boulevard, other street canyons, courtyards and surroundings at height <span class="html-italic">z</span> = 4 m (bars with solid lines) and <span class="html-italic">z</span> = 10 m (bar with dashed lines) for all runs. 90th percentile values are given with errorbars. The mean difference to the values in V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> is given in percentages (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math>).</p> "> Figure 8
<p>40-min temporal mean of particle concentration <math display="inline"> <semantics> <mrow> <mi>p</mi> <mi>c</mi> </mrow> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics> </math>) at height <span class="html-italic">z</span> = 4 m under the (<b>a</b>) general and (<b>b</b>) wintry inflow conditions. Notice the orientation of the mean wind and different scales of <math display="inline"> <semantics> <mrow> <mi>p</mi> <mi>c</mi> </mrow> </semantics> </math>. Cross sections in <a href="#atmosphere-09-00065-f008" class="html-fig">Figure 8</a> are marked with white lines.</p> "> Figure 9
<p>40-min mean particle concentration <math display="inline"> <semantics> <mrow> <mi>p</mi> <mi>c</mi> </mrow> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics> </math>) across the boulevard. (Cross <a href="#sec1-atmosphere-09-00065" class="html-sec">Section 1</a> and <a href="#sec2-atmosphere-09-00065" class="html-sec">Section 2</a>, which are marked in <a href="#atmosphere-09-00065-f008" class="html-fig">Figure 8</a>, are shown in (<b>a</b>,<b>b</b>) under the general inflow conditions, and in (<b>c</b>,<b>d</b>) under the wintry inflow conditions, respectively. Cross sections are viewed from the south. Lengths of the wind arrows are relative to the wind speeds normal to the cross section. Height in m a.g.l. are given in the left. Notice the different scales of <math display="inline"> <semantics> <mrow> <mi>p</mi> <mi>c</mi> </mrow> </semantics> </math>.)</p> "> Figure 10
<p>Horizontal mean of the low-frequency vertical turbulent particle flux density <math display="inline"> <semantics> <msub> <mi>F</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>L</mi> <mi>F</mi> </mrow> </msub> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) under the (<b>a</b>) general and (<b>b</b>) wintry inflow conditions separately for the boulevard, other street canyons, courtyards and surroundings at <span class="html-italic">z</span> = 20 m for all runs. The difference to the value in V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> is given in percentages (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math>).</p> "> Figure 11
<p>40-min mean low-frequency vertical turbulent particle flux density <math display="inline"> <semantics> <msub> <mi>F</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>L</mi> <mi>F</mi> </mrow> </msub> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) at <span class="html-italic">z</span> = 20 m under the (<b>a</b>) general and (<b>b</b>) wintry inflow conditions. Positive values indicate upward flux.</p> "> Figure 12
<p>The volume averaged particle dilution rate <math display="inline"> <semantics> <msub> <mrow> <mo>〈</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> <mi>V</mi> </msub> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) between <span class="html-italic">z</span> = 1–20 m under the (<b>a</b>) general and (<b>b</b>) wintry inflow conditions. Results are represented relative to V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> (<math display="inline"> <semantics> <msub> <mrow> <mo>〈</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> <mrow> <mi>V</mi> <mo>,</mo> <msub> <mi mathvariant="normal">V</mi> <mi>par</mi> </msub> </mrow> </msub> </semantics> </math>).</p> "> Figure 13
<p>Mean <math display="inline"> <semantics> <msub> <mrow> <mo>〈</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> </msub> </semantics> </math> (×10<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics> </math> m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) under the (<b>a</b>) general and (<b>b</b>) wintry inflow conditions separately for the boulevard, other street canyons, courtyards and surroundings between <span class="html-italic">z</span> = 1–20 m for all runs. <span class="html-italic">D</span> is calculated using data from the first 50 s after the particle source has been switched off. The difference to the value in V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> is given in percentages (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math>).</p> "> Figure 14
<p>The temporal mean particle dilution rate <math display="inline"> <semantics> <msub> <mrow> <mo>〈</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> </msub> </semantics> </math> (m<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics> </math> s<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>) between <span class="html-italic">z</span> = 1–20 m for the first 60 s after the particle has been switched off: (<b>a</b>) general and (<b>b</b>) wintry inflow conditions.</p> "> Figure A1
<p>40-min horizontal mean particle concentrations <math display="inline"> <semantics> <mrow> <mi>p</mi> <mi>c</mi> </mrow> </semantics> </math> (<math display="inline"> <semantics> <mrow> <msup> <mi mathvariant="normal">m</mi> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics> </math>) for the (<b>a</b>) neutral run with an easterly wind and (<b>b</b>) stable run with a southwesterly wind separately above the boulevard, other street canyons, courtyards and surroundings at height <span class="html-italic">z</span> = 4 m (bars with solid lines) and <span class="html-italic">z</span> = 10 m (bar with dashed lines) for all runs. 90th percentile values are given with errorbars. The mean difference to the values in V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> is given in percentages (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math>).</p> "> Figure A2
<p>5-min mean high-frequency vertical turbulent particle flux density <math display="inline"> <semantics> <msub> <mi>F</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>H</mi> <mi>F</mi> </mrow> </msub> </semantics> </math> (m<sup>−2</sup> s<sup>−1</sup>) at <span class="html-italic">z</span> = 20 m under the (<b>a</b>) general and (<b>b</b>) wintry inflow conditions. The analysis area is marked in <a href="#atmosphere-09-00065-f002" class="html-fig">Figure 2</a> with a black solid line.</p> "> Figure A3
<p>Horizontal mean of the low-frequency vertical turbulent particle flux density <math display="inline"> <semantics> <msub> <mi>F</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>L</mi> <mi>F</mi> </mrow> </msub> </semantics> </math> (m<sup>−2</sup> s<sup>−1</sup>) for the (<b>a</b>) neutral and (<b>b</b>) stable runs separately for the boulevard, other street canyons, courtyards and surroundings at <span class="html-italic">z</span> = 20 m for all runs. The difference to the value in V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> is given in percentages (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math>).</p> "> Figure A4
<p>Mean <math display="inline"> <semantics> <msub> <mrow> <mo>〈</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> </msub> </semantics> </math> (×10<sup>−3</sup> m<sup>−3</sup> s<sup>−1</sup>) for the (<b>a</b>) neutral run with an easterly wind and (<b>b</b>) stable run with a southwesterly wind separately for the boulevard, other street canyons, courtyards and surroundings between <span class="html-italic">z</span> = 1–20 m for all runs. <span class="html-italic">D</span> is calculated using data from the first 50 s after the particle source has been switched off. The difference to the value in V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> is given in percentages (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math>).</p> "> Figure A5
<p>Mean <math display="inline"> <semantics> <msub> <mrow> <mo>〈</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>〉</mo> </mrow> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> </msub> </semantics> </math> (×10<sup>−3</sup> m<sup>−3</sup> s<sup>−1</sup>) under the general (<b>left</b>) and wintry (<b>right</b>) inflow conditions separately for the boulevard, other street canyons, courtyards and surroundings between <span class="html-italic">z</span> = 1–20 m for all runs. <span class="html-italic">D</span> is calculated for different averaging periods: (<b>a</b>) 30 s; (<b>b</b>) 40 s; (<b>c</b>) 50 s; (<b>d</b>) 60 s and (<b>e</b>) 70 s. The difference to the value in V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math> is given in percentages (<math display="inline"> <semantics> <mo>Δ</mo> </semantics> </math>V<math display="inline"> <semantics> <msub> <mrow/> <mi>par</mi> </msub> </semantics> </math>).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Model Description
2.2. Model Construction
2.2.1. Modelling Area
2.2.2. Urban Surface Data
2.2.3. Tree Canopy Model
2.2.4. Lagrangian Stochastic Particle Model (LPM)
2.3. Computational Set-Up
2.4. Simulations and Data Output
2.5. Ventilation and Dispersion Measures
3. Results
3.1. Particle Concentration pc
3.2. Turbulent Particle Flux
3.3. Particle Dilution Rate D
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ABL | Atmospheric boundary layer |
CFD | Computational fluid dynamics |
LAD | Leaf area density |
LES | Large-eddy simulaion |
LPM | Lagrangian stochastic particle model |
MOST | Monin-Obukhov similarity theory |
PAD | Plant area density |
PALM | Parallelized Large-Eddy Simulation Model |
par | parallel |
parJJ | paraller with Jin-Jang shape variation |
per | perpendicular |
perHV | perpendicular with height variation |
RANS | Reynolds-averaged Navier-Stokes equations |
Appendix A. Technical Specifications
V | Characteristics |
---|---|
Programming language | Fortran 95/2003 |
Discretization | Arakawa staggered C-grid [77,78] |
Parallelization | Two-dimensional domain decomposition (e.g., [36]). Communication between processors realized using Message Passing Interface (MPI). |
Sub-grid closure | 1.5-order scheme based on Deardorff [79] |
Advection scheme | 5th-order advection scheme by Wicker and Skamarock [80] |
Pressure solver | Iterative multigrid scheme (e.g., [81]) |
Time step closure | 3rd-order Runge-Kutta approximation [82] |
Boundary condition between the surface and the first grid level | Monin-Obukhov similarity theory [83] |
Appendix B. Particle Concentration pc for the Supportive Simulations
Appendix C. 5-Minute Mean High-Frequency Vertical Turbulent Particle Flux Density Fp,HF
Appendix D. Low-Frequency Vertical Turbulent Particle Flux Density Fp,HF for the Supportive Simulations
Appendix E. Column-Averaged Dilution Rate 〈D(x,y)〉t,z for the Supportive Simulations
Appendix F. Column-Averaged Dilution Rate 〈D(x,y)〉t,z with Different Averaging Periods
References
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2014. [Google Scholar]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Pope, C.A.I.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Gakibou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef]
- European Environmental Agency. Air Quality in Europe—2017 Report; EEA Report No 13/2017; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Fenger, J. Air pollution in the last 50 years–From local to global. Atmos. Environ. 2009, 43, 13–22. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Fisher, B.E.; Pericleous, K.; Gonzalez-Flesca, N. Modelling air quality in street canyons: A review. Atmos. Environ. 2003, 37, 155–182. [Google Scholar] [CrossRef]
- Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Ann. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Buccolieri, R.; Sandberg, M.; Sabatino, S.D. City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmos. Environ. 2010, 44, 1894–1903. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. Ten questions concerning modeling of near-field pollutant dispersion in the built environment. Build. Environ. 2016, 105, 390–402. [Google Scholar] [CrossRef]
- Giometto, M.G.; Christen, A.; Meneveau, C.; Fang, J.; Krafczyk, M.; Parlange, M.B. Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence over a Realistic Urban Surface. Bound. Layer Meteorol. 2016, 160, 425–452. [Google Scholar] [CrossRef]
- Gousseau, P.; Blocken, B.; Stathopoulos, T.; van Heijst, G. CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal. Atmos. Environ. 2011, 45, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, Y.; Stathopoulos, T. CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS. J. Wind Eng. Ind. Aerodyn. 2011, 99, 340–348. [Google Scholar] [CrossRef]
- Salim, S.M.; Cheah, S.C.; Chan, A. Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: Comparison between RANS and LES. Build. Environ. 2011, 46, 1735–1746. [Google Scholar] [CrossRef]
- Baik, J.J.; Kim, J.J. On the escape of pollutants from urban street canyons. Atmos. Environ. 2002, 36, 527–536. [Google Scholar] [CrossRef]
- Cai, X.M.; Barlow, J.; Belcher, S. Dispersion and transfer of passive scalars in and above street canyons—Large-eddy simulations. Atmos. Environ. 2008, 42, 5885–5895. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, C.H.; Leung, D.Y. Numerical investigation of pollutant transport characteristics inside deep urban street canyons. Atmos. Environ. 2009, 43, 2410–2418. [Google Scholar] [CrossRef]
- Raupach, M.R.; Finnigan, J.J.; Brunet, Y. Boundary-Layer Meteorology 25th Anniversary Volume, 1970–1995: Invited Reviews and Selected Contributions to Recognise Ted Munn’s Contribution as Editor over the Past 25 Years; Chapter Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy; Springer: Dordrecht, The Netherlands, 1996; pp. 351–382. [Google Scholar]
- Gromke, C.; Blocken, B. Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: Traffic pollutant concentrations at pedestrian level. Environ. Pollut. 2015, 196, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987. [Google Scholar]
- Buccolieri, R.; Gromke, C.; Sabatino, S.D.; Ruck, B. Aerodynamic effects of trees on pollutant concentration in street canyons. Sci. Total Environ. 2009, 407, 5247–5256. [Google Scholar] [CrossRef] [PubMed]
- Gromke, C.; Ruck, B. On the Impact of Trees on Dispersion Processes of Traffic Emissions in Street Canyons. Bound. Layer Meteorol. 2009, 131, 19–34. [Google Scholar] [CrossRef]
- Mochida, A.; Lun, I.Y. Prediction of wind environment and thermal comfort at pedestrian level in urban area. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1498–1527. [Google Scholar] [CrossRef]
- Vos, P.E.; Maiheu, B.; Vankerkom, J.; Janssen, S. Improving local air quality in cities: To tree or not to tree? Environ. Pollut. 2013, 183, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, F.; Grimmond, C.S.B. Continuous sky view factor maps from high resolution urban digital elevation models. Clim. Res. 2010, 42, 177–183. [Google Scholar] [CrossRef]
- Nordbo, A.; Karsisto, P.; Matikainen, L.; Wood, C.R.; Järvi, L. Urban surface cover determined with airborne lidar at 2 m resolution—Implications for surface energy balance modelling. Urban Clim. 2015, 13, 52–72. [Google Scholar] [CrossRef]
- Gousseau, P.; Blocken, B.; Stathopoulos, T.; van Heijst, G. Near-field pollutant dispersion in an actual urban area: Analysis of the mass transport mechanism by high-resolution Large Eddy Simulations. Comput. Fluids 2015, 114, 151–162. [Google Scholar] [CrossRef]
- Kanda, M.; Inagaki, A.; Miyamoto, T.; Gryschka, M.; Raasch, S. A New Aerodynamic Parametrization for Real Urban Surfaces. Bound. Layer Meteorol. 2013, 148, 357–377. [Google Scholar] [CrossRef]
- Letzel, M.O.; Krane, M.; Raasch, S. High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 2008, 42, 8770–8784. [Google Scholar] [CrossRef]
- Park, S.B.; Baik, J.J.; Lee, S.H. Impacts of Mesoscale Wind on Turbulent Flow and Ventilation in a Densely Built-up Urban Area. J. Appl. Meteorol. Climatol. 2015, 54, 811–824. [Google Scholar] [CrossRef]
- Xie, Z.T.; Castro, I.P. Large-eddy simulation for flow and dispersion in urban streets. Atmos. Environ. 2009, 43, 2174–2185. [Google Scholar] [CrossRef]
- Keck, M.; Raasch, S.; Letzel, M.O.; Ng, E. First Results of High Resoltuion Large-Eddy Simulations of the Atmospheric Boundary Layer. J. Heat Island Inst. Int. 2014, 9, 39–43. [Google Scholar]
- Cui, Z.; Cai, X.; Baker, C.J. Large-eddy simulation of turbulent flow in a street canyon. Q. J. R. Meteorol. Soc. 2004, 130, 1373–1394. [Google Scholar] [CrossRef]
- Letzel, M.O.; Helmke, C.; Ng, E.; An, X.; Lai, A.; Raasch, S. LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong. Meteorol. Z. 2012, 21, 575–589. [Google Scholar] [CrossRef]
- Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M.O.; Sühring, M.; Raasch, S. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev. 2015, 8, 2515–2551. [Google Scholar] [CrossRef]
- Raasch, S.; Schröter, M. PALM—A large-eddy simulation model performing on massively parallel computers. Meteorol. Z. 2001, 10, 363–372. [Google Scholar] [CrossRef]
- Hoffmann, F.; Raasch, S.; Noh, Y. Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM–LES approach. Atmos. Res. 2015, 156, 43–57. [Google Scholar] [CrossRef]
- Kanani-Sühring, F.; Raasch, S. Spatial Variability of Scalar Concentrations and Fluxes Downstream of a Clearing-to-Forest Transition: A Large-Eddy Simulation Study. Bound. Layer Meteorol. 2015, 155, 1–27. [Google Scholar] [CrossRef]
- Beare, R.J.; Macvean, M.K.; Holtslag, A.A.M.; Cuxart, J.; Esau, I.; Golaz, J.C.; Jimenez, M.A.; Khairoutdinov, M.; Kosovic, B.; Lewellen, D.; et al. An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer. Bound. Layer Meteorol. 2006, 118, 247–272. [Google Scholar] [CrossRef]
- Razak, A.A.; Hagishima, A.; Ikegaya, N.; Tanimoto, J. Analysis of airflow over building arrays for assessment of urban wind environment. Build. Environ. 2013, 59, 56–65. [Google Scholar] [CrossRef]
- Giometto, M.G.; Christen, A.; Egli, P.E.; Schmid, M.F.; Tooke, R.T.; Coops, N.C.; Parlange, M.B. Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment. Adv. Water Resour. 2017, 106, 154–168. [Google Scholar] [CrossRef]
- Hellsten, A.; Ketelsen, K.; Barmpas, F.; Tsegas, G.; Moussiopoulos, N.; Raasch, S. Nested multi-scale system in the PALM large-eddy simulation model. In Proceedings of the 35th International Technical Meeting on Air Pollution Modelling and its Application, Chania, Crete, Greece, 3–7 October 2016; Springer: Cham, Switzerland, 2017; pp. 287–292. [Google Scholar]
- Kataoka, H.; Mizuno, M. Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence. Wind Struct. 2002, 5, 379–392. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, C.-W. On Maximum-principle-satisfying High Order Schemes for Scalar Conservation Laws. J. Comput. Phys. 2010, 229, 3091–3120. [Google Scholar] [CrossRef]
- Auvinen, M.; Järvi, L.; Hellsten, A.; Rannik, U.; Vesala, T. Numerical framework for the computation of urban flux footprints employing large-eddy simulation and Lagrangian stochastic modeling. Geosci. Model Dev. 2017, 10, 4187–4205. [Google Scholar] [CrossRef]
- Riikonen, A.; Järvi, L.; Nikinmaa, E. Environmental and crown related factors affecting street tree transpiration in Helsinki, Finland. Urban Ecosyst. 2016, 19, 1693–1715. [Google Scholar] [CrossRef]
- Groenendijk, M.; Dolman, A.J.; Ammann, C.; Arneth, A.; Cescatti, A.; Dragoni, D.; Gash, J.H.C.; Gianelle, D.; Gioli, B.; Kiely, G.; et al. Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data. J. Geophys. Res. Biogeosci. 2011, 116, G04027. [Google Scholar] [CrossRef]
- Muraoka, H.; Saigusa, N.; Nasahara, K.N.; Noda, H.; Yoshino, J.; Saitoh, T.M.; Nagai, S.; Murayama, S.; Koizumi, H. Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. J. Plant Res. 2010, 123, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Brunet, Y. Edge Flow and Canopy Structure: A Large-Eddy Simulation Study. Bound. Layer Meteorol. 2008, 126, 51–71. [Google Scholar] [CrossRef]
- Liu, C.; Leung, D.; Barth, M. On the prediction of air and pollutant exchange rates in street canyons of different aspect ratios using large-eddy simulation. Atmos. Environ. 2005, 39, 1567–1574. [Google Scholar] [CrossRef]
- Hellsten, A.; Luukkonen, S.M.; Steinfeld, G.; Kanani-Suehring, F.; Markkanen, T.; Jarvi, L.; Lento, J.; Vesala, T.; Raasch, S. Footprint Evaluation for Flux and Concentration Measurements for an Urban-Like Canopy with Coupled Lagrangian Stochastic and Large-Eddy Simulation Models. Bound. Layer Meteorol. 2015, 157, 191–217. [Google Scholar] [CrossRef]
- Pirinen, P.; Simola, H.; Allto, J.; Kaukoranta, J.P.; Karlsson, P.; Ruuhela, R. Climatological Statistics of Finland 1981–2010; Finnish Meteorological Institute: Helsinki, Finland, 2012.
- Karsisto, P.; Fortelius, C.; Demuzere, M.; Grimmond, C.S.B.; Oleson, K.W.; Kouznetsov, R.; Masson, V.; Järvi, L. Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki. Q. J. R. Meteorol. Soc. 2016, 142, 401–417. [Google Scholar] [CrossRef] [Green Version]
- Kurppa, M.; Nordbo, A.; Haapanala, S.; Järvi, L. Effect of seasonal variability and land use on particle number and CO2 exchange in Helsinki, Finland. Urban Clim. 2015, 13, 94–109. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.H. Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities. J. Wind Eng. Ind. Aerodyn. 2011, 99, 434–442. [Google Scholar] [CrossRef]
- Li, X.X.; Britter, R.; Norford, L.K. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation. Atmos. Environ. 2016, 144, 47–59. [Google Scholar] [CrossRef]
- Basu, S.; Porté-Agel, F. Large-Eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence: A Scale-Dependent Dynamic Modeling Approach. J. Atmos. Sci. 2006, 63, 2074–2091. [Google Scholar] [CrossRef]
- Bentham, T.; Britter, R. Spatially averaged flow within obstacle arrays. Atmos. Environ. 2003, 37, 2037–2043. [Google Scholar] [CrossRef]
- Kato, S.; Ito, K.; Murakami, S. Analysis of visitation frequency through particle tracking method based on LES and model experiment. Indoor Air 2003, 13, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.; Ngan, K. Characterising the pollutant ventilation characteristics of street canyons using the tracer age and age spectrum. Atmos. Environ. 2015, 122, 611–621. [Google Scholar] [CrossRef]
- Lim, E.; Ito, K.; Sandberg, M. New ventilation index for evaluating imperfect mixing conditions—Analysis of Net Escape Velocity based on RANS approach. Build. Environ. 2013, 61, 45–56. [Google Scholar] [CrossRef]
- Liu, C.H.; Barth, M.C.; Leung, D.Y.C. Large-Eddy Simulation of Flow and Pollutant Transport in Street Canyons of Different Building-Height-to-Street-Width Ratios. J. Appl. Meteorol. 2004, 43, 1410–1424. [Google Scholar] [CrossRef]
- Michioka, T.; Takimoto, H.; Sato, A. Large-Eddy Simulation of Pollutant Removal from a Three-Dimensional Street Canyon. Bound. Layer Meteorol. 2014, 150, 259–275. [Google Scholar] [CrossRef]
- Walton, A.; Cheng, A. Large-eddy simulation of pollution dispersion in an urban street canyon—Part II: Idealised canyon simulation. Atmos. Environ. 2002, 36, 3615–3627. [Google Scholar] [CrossRef]
- Nosek, Š.; Kukačka, L.; Kellnerová, R.; Jurčáková, K.; Jaňour, Z. Ventilation Processes in a Three-Dimensional Street Canyon. Bound. Layer Meteorol. 2016, 159, 259–284. [Google Scholar] [CrossRef]
- Moon, K.; Hwang, J.M.; Kim, B.G.; Lee, C.; Choi, J.I. Large-eddy simulation of turbulent flow and dispersion over a complex urban street canyon. Environ. Fluid Mech. 2014, 14, 1381–1403. [Google Scholar] [CrossRef]
- Dabberdt, W.F.; Hoydysh, W.G. Street canyon dispersion: Sensitivity to block shape and entrainment. Atmos. Environ. Part A Gen. Top. 1991, 25, 1143–1153. [Google Scholar] [CrossRef]
- Ossanlis, I.; Barmpas, P.; Moussiopoulos, N. The Effect of the Street Canyon Length on the Street Scale Flow Field and Air Quality: A Numerical Study. In Air Pollution Modeling and Its Application XVII; Borrego, C., Norman, A.L., Eds.; Springer: Boston, MA, USA, 2007; pp. 632–640. [Google Scholar]
- Hoydysh, W.G.; Dabberdt, W.F. Kinematics and dispersion characteristics of flows in asymmetric street canyons. Atmos. Environ. 1988, 22, 2677–2689. [Google Scholar] [CrossRef]
- Xiaomin, X.; Zhen, H.; Jiasong, W. The impact of urban street layout on local atmospheric environment. Build. Environ. 2006, 41, 1352–1363. [Google Scholar] [CrossRef]
- Chan, A.T.; Au, W.T.; So, E.S. Strategic guidelines for street canyon geometry to achieve sustainable street air quality—Part II: Multiple canopies and canyons. Atmos. Environ. 2003, 37, 2761–2772. [Google Scholar] [CrossRef]
- Gu, Z.L.; Zhang, Y.W.; Cheng, Y.; Lee, S.C. Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Build. Environ. 2011, 46, 2657–2665. [Google Scholar] [CrossRef]
- Hang, J.; Wang, Q.; Chen, X.; Sandberg, M.; Zhu, W.; Buccolieri, R.; Sabatino, S.D. City breathability in medium density urban-like geometries evaluated through the pollutant transport rate and the net escape velocity. Build. Environ. 2015, 94 Pt 1, 166–182. [Google Scholar] [CrossRef]
- Hu, T.; Yoshie, R. Indices to evaluate ventilation efficiency in newly-built urban area at pedestrian level. J. Wind Eng. Ind. Aerodyn. 2013, 112, 39–51. [Google Scholar] [CrossRef]
- Yang, F.; Gao, Y.; Zhong, K.; Kang, Y. Impacts of cross-ventilation on the air quality in street canyons with different building arrangements. Build. Environ. 2016, 104, 1–12. [Google Scholar] [CrossRef]
- Moonen, P.; Dorer, V.; Carmeliet, J. Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES. J. Wind Eng. Ind. Aerodyn. 2011, 99, 414–423. [Google Scholar] [CrossRef]
- Harlow, F.H.; Welch, J.E. Numerical calculation of Time-Dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 1965, 8, 2182–2189. [Google Scholar] [CrossRef]
- Arakawa, A.; Lamb, V.R. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. In General Circulation Models of the Atmosphere; Methods in Computational Physics: Advances in Research and Applications; Chang, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; Volume 17, pp. 173–265. [Google Scholar]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound. Layer Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Wicker, L.; Skamarock, W. Time-splitting methods for elastic models using forward time schemes. Mon. Weather Rev. 2002, 130, 2088–2097. [Google Scholar] [CrossRef]
- Hackbusch, W. Multi-Grid Methods and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Williamson, J.H. Low-storage Runge-Kutta schemes. J. Comput. Phys. 1980, 35, 48–56. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A. Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 24, 163–187. [Google Scholar]
Boundary | Domain | |
---|---|---|
Parent | Child | |
Bottom and solid walls | No-slip condition for the horizontal wind components u and v (i.e., 0 m s). For potential temperature , the vertical gradient = 0 K m. Monin-Obukhov similarity theory (MOST) is applied between any solid-wall boundary and the first grid level normal to the respective boundary surface. | Same as for the parent. |
Top | Dirichlet condition, i.e., (geostrophic wind speed) and m s. is extrapolated using the initial gradient of from a precursor run. | Two-way nesting. Boundary conditions obtained from the parent domain. |
Horizontal: Lateral | Cyclic boundary conditions | Two-way nesting. Boundary conditions obtained from the parent domain. |
Horizontal: streamwise | Non-cyclic. A time-dependent turbulent inflow is produced by a turbulence recycling method [43]. Requires a precursor run that is carried out over a domain of the same vertical extent as the parent domain and 1/16 in area. | Two-way nesting. Boundary conditions obtained from the parent domain. |
V | Characteristics |
---|---|
V | Building blocks by the boulevard are oriented so that the longest side is parallel to the boulevard. Building heights are fixed to 30 m. |
V | Building block by the boulevard are oriented so that the longest side is perpendicular to the boulevard. Building heights are fixed to 30 m. |
V | The orientation of the building blocks is similar to V but the building height varies. The highest buildings are situated at the nodal points of the public transport, whereas the lowest buildings as well as open urban spaces are situated between the nodal points. Buildings on the eastern side of the boulevard are generally higher. |
V | A so-called “Jin-Jang” block model, in which the buildings are similar to those in V but the base height is lower and tower-like structures set above the base. Thus the building shape and height are very irregular. |
Inflow Conditions | V | V | V | V |
---|---|---|---|---|
Boulevard | ||||
General | 0.193 | 0.162 | 0.169 | 0.213 |
(0.233) | (0.238) | (0.292) | (0.247) | |
Wintry | 0.221 | 0.168 | 0.159 | 0.178 |
(0.294) | (0.209) | (0.211) | (0.191) | |
Other street canyons | ||||
General | 0.085 | 0.078 | 0.247 | 0.117 |
(0.054) | (0.056) | (0.138) | (0.102) | |
Wintry | 0.115 | 0.141 | 0.180 | 0.102 |
(0.120) | (0.120) | (0.229) | (0.111) | |
Courtyards | ||||
General | 2.210 | 10 | 1.110 | 17.110 |
(10) | (0.810) | (1.210) | (16.710) | |
Wintry | 10 | 10 | 2.010 | 10 |
(0.510) | (10) | (10) | (10) | |
Surroundings | ||||
General | 0.038 | 0.039 | 0.058 | 0.045 |
(0.026) | (0.040) | (0.071) | (0.047) | |
Wintry | 0.043 | 0.041 | 0.045 | 0.037 |
(0.085) | (0.059) | (0.057) | (0.074) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurppa, M.; Hellsten, A.; Auvinen, M.; Raasch, S.; Vesala, T.; Järvi, L. Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective. Atmosphere 2018, 9, 65. https://doi.org/10.3390/atmos9020065
Kurppa M, Hellsten A, Auvinen M, Raasch S, Vesala T, Järvi L. Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective. Atmosphere. 2018; 9(2):65. https://doi.org/10.3390/atmos9020065
Chicago/Turabian StyleKurppa, Mona, Antti Hellsten, Mikko Auvinen, Siegfried Raasch, Timo Vesala, and Leena Järvi. 2018. "Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective" Atmosphere 9, no. 2: 65. https://doi.org/10.3390/atmos9020065
APA StyleKurppa, M., Hellsten, A., Auvinen, M., Raasch, S., Vesala, T., & Järvi, L. (2018). Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective. Atmosphere, 9(2), 65. https://doi.org/10.3390/atmos9020065