Fingerprint Classification Based on Multilayer Extreme Learning Machines
<p>General architecture of an original ELM.</p> "> Figure 2
<p>Representative structure of a multilayer ELM.</p> "> Figure 3
<p>General architecture of an ELM-AE. The colors indicate the type of neuron, following the same scheme as the original ELM.</p> "> Figure 4
<p>Samples concerning fingerprint image quality: (<b>a</b>) default; (<b>b</b>) HQNoPert; (<b>c</b>) VQAndPert.</p> "> Figure 5
<p>The accuracy in the training and validation phases in terms of the number of hidden neurons of the original ELM, considering Capelli02 as a descriptor.</p> "> Figure 6
<p>The accuracy vs. the number of hidden neurons of the original ELM in the training and validation phases when the descriptor corresponds to Hong08.</p> "> Figure 7
<p>The accuracy vs. the number of hidden neurons of the original ELM in the training and validation phases when the descriptor corresponds to Liu10.</p> "> Figure 8
<p>Accuracy in terms of the number of neurons of the two-layer hidden ELM considering the Capelli02 descriptor and the (<b>a</b>) default, (<b>b</b>) HQNoPert, and (<b>c</b>) VQAndPert databases.</p> "> Figure 9
<p>Accuracy in terms of the number of neurons of the ELM of two hidden layers considering the Hong08 descriptor and the (<b>a</b>) default, (<b>b</b>) HQNoPert, and (<b>c</b>) VQAndPert databases.</p> "> Figure 10
<p>Accuracy as a function of the number of neurons of the two-hidden-layer ELM considering the Liu10 descriptor and the (<b>a</b>) default, (<b>b</b>) HQNoPert, and (<b>c</b>) VQAndPert databases.</p> "> Figure 11
<p>Accuracy as a function of the number of neurons of the three-hidden-layer ELM, taking into account the Capelli02 descriptor and the (<b>a</b>) default, (<b>b</b>) HQNoPert, and (<b>c</b>) VQAndPert databases.</p> "> Figure 12
<p>Accuracy as a function of the number of neurons of the three-hidden-layer ELM, taking into account the Hong08 descriptor and the (<b>a</b>) default, (<b>b</b>) HQNoPert, and (<b>c</b>) VQAndPert databases.</p> "> Figure 13
<p>Accuracy as a function of the number of neurons of the three-hidden-layer ELM, taking into account the Liu10 descriptor and the (<b>a</b>) default, (<b>b</b>) HQNoPert, and (<b>c</b>) VQAndPert databases.</p> "> Figure 14
<p>Confusion matrices for the ELM-M2 and ELM-M3 models.</p> ">
Abstract
:1. Introduction
2. State of the Art
2.1. CNN and Images
2.2. ELM with Descriptors
2.3. Classical Methodologies
3. Theoretical Foundations
3.1. Feature Descriptors
3.2. Extreme Learning Machines
3.2.1. Original ELM
Algorithm 1 ELM Training Algorithm |
|
3.2.2. Multilayer ELM
Algorithm 2 Unsupervised Feature Extraction Phase (Autoencoder) |
|
Algorithm 3 Supervised Classifier Learning Phase (Standard ELM) |
|
4. Methods and Materials
5. Results and Discussion
5.1. Hyperparameter Optimization
5.2. Evaluation and Performance Comparison with the State of the Art
5.3. Complexity Analysis
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MLP | Multilayer perceptron |
SLFN | Single-hidden-layer feedforward neural network |
ELM | Extreme learning machine |
ELM-AE | Extreme learning machine autoencoder |
M-ELM | Multilayer extreme learning machine |
W-ELM | Unbalanced extreme learning machines |
ELM-M3 | Three-layer ELM |
SVM | Support vector machine |
CNN | Convolutional neural network |
NIST | National Institute of Standards and Technologies |
FVC | Fingerprint verification competition |
OM | Orientation map |
SFINGE | Synthetic fingerprint generator |
RELU | Rectified linear unit |
G-mean | Geometric mean |
Exac | Root mean square error |
PR | Absolute error of the penetration rate |
OF | Orientation field |
RF | Random forest |
DB | Database |
SGD | Stochastic gradient descent |
CDF | Center-to-delta flow |
MKL | Multi-space KL |
CT | Curvelet transform |
GLCM | Grey-level co-occurrence matrix |
HQNoPert | High-quality no perturbations |
VQandPert | Varying quality and perturbations |
HOG | Histogram of oriented gradients |
GUI | Graphic user interface |
PolyU | Polytechnic University |
LR | Logistic regression |
5-FCV | Five-fold cross-validation |
ROI | Singularity region of interest |
DT | Decision tree |
K-NN | K-nearest neighbors |
MSE | Mean squared error |
NIST-4 | Standards and Technology Special Database 4 |
OM | Orientation map |
MM | Minutiae map |
OC | Orientation collinearity |
References
- Guo, J.M.; Liu, Y.F.; Chang, J.Y.; Lee, J.D. Fingerprint classification based on decision tree from singular points and orientation field. Expert Syst. Appl. 2014, 41, 752–764. [Google Scholar] [CrossRef]
- Zabala-Blanco, D.; Hernández-García, R.; Barrientos, R.J.; Mora, M. Evaluation of the standard and regularized ELMs for gender and age classification based on palm vein images. In Proceedings of the 2021 40th International Conference of the Chilean Computer Science Society (SCCC), La Serena, Chile, 15–19 November 2021; IEEE: New York, NY, USA, 2021; pp. 1–8. [Google Scholar]
- Galar, M.; Derrac, J.; Peralta, D.; Triguero, I.; Paternain, D.; Lopez-Molina, C.; García, S.; Benítez, J.M.; Pagola, M.; Barrenechea, E.; et al. A survey of fingerprint classification Part I: Taxonomies on feature extraction methods and learning models. Knowl.-Based Syst. 2015, 81, 76–97. [Google Scholar] [CrossRef]
- Yaro, A.S.; Maly, F.; Prazak, P.; Maly, K. Enhancing Fingerprint Localization Accuracy with Inverse Weight-Normalized Context Similarity Coefficient-Based Fingerprint Similarity Metric. IEEE Access 2024, 12, 73642–73651. [Google Scholar] [CrossRef]
- Shrein, J.M. Fingerprint classification using convolutional neural networks and ridge orientation images. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 Novembe–1 December 2017; IEEE: New York, NY, USA, 2017; pp. 1–8. [Google Scholar]
- Wang, R.; Han, C.; Guo, T. A novel fingerprint classification method based on deep learning. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE: New York, NY, USA, 2016; pp. 931–936. [Google Scholar]
- Nguyen, H.T.; Nguyen, L.T. Fingerprints classification through image analysis and machine learning method. Algorithms 2019, 12, 241. [Google Scholar] [CrossRef]
- Abdul-Al, M.; Kyeremeh, G.K.; Qahwaji, R.; Ali, N.T.; Abd-Alhameed, R.A. A Novel Approach to Enhancing Multi-Modal Facial Recognition: Integrating Convolutional Neural Networks, Principal Component Analysis, and Sequential Neural Networks. IEEE Access 2024, 12, 140823–140846. [Google Scholar] [CrossRef]
- Nsekuye, J.B.; Hawbett, M.M.; Elouadi, A. Resnet-F: Fingerprint Analysis Using Cnns for Type Identification and Ridge Quantification. SSRN 2024, 4893120. [Google Scholar] [CrossRef]
- Peralta, D.; Triguero, I.; García, S.; Saeys, Y.; Benitez, J.M.; Herrera, F. On the use of convolutional neural networks for robust classification of multiple fingerprint captures. Int. J. Intell. Syst. 2018, 33, 213–230. [Google Scholar] [CrossRef]
- El Hamdi, D.; Elouedi, I.; Fathallah, A.; Nguyen, M.K.; Hamouda, A. Fingerprint Classification Using Conic Radon Transform and Convolutional Neural Networks. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, 19th International Conference, ACIVS 2018, Poitiers, France, 24–27 September 2018; Springer: Cham, Switzerland, 2018; pp. 402–413. [Google Scholar]
- Sureshkumar, V.; Prasad, R.S.N.; Balasubramaniam, S.; Jagannathan, D.; Daniel, J.; Dhanasekaran, S. Breast cancer detection and analytics using hybrid CNN and extreme learning machine. J. Pers. Med. 2024, 14, 792. [Google Scholar] [CrossRef]
- Zabala-Blanco, D.; Mora, M.; Barrientos, R.J.; Hernández-García, R.; Naranjo-Torres, J. Fingerprint Classification through Standard and Weighted Extreme Learning Machines. Appl. Sci. 2020, 10, 4125. [Google Scholar] [CrossRef]
- Hong, J.H.; Min, J.K.; Cho, U.K.; Cho, S.B. Fingerprint classification using one-vs-all support vector machines dynamically ordered with naïve Bayes classifiers. Pattern Recognit. 2008, 41, 662–671. [Google Scholar] [CrossRef]
- Xiao, D.; Li, B.; Mao, Y. A multiple hidden layers extreme learning machine method and its application. Math. Probl. Eng. 2017, 2017, 4670187. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In Proceedings of the 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), Budapest, Hungary, 25–29 July 2004; IEEE: New York, NY, USA, 2004; Volume 2, pp. 985–990. [Google Scholar]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Tang, J.; Deng, C.; Huang, G.B. Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Roth, D. Learning a sparse representation for object detection. In Proceedings of the European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; Springer: Cham, Switzerland, 2002; pp. 113–127. [Google Scholar]
- Agarwal, S.; Awan, A.; Roth, D. Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1475–1490. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Wong, S.F.; Cipolla, R. Tensor canonical correlation analysis for action classification. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; IEEE: New York, NY, USA, 2007; pp. 1–8. [Google Scholar]
- Kasun, L.L.C.; Zhou, H.; Huang, G.B.; Vong, C.M. Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 2013, 28, 31–34. [Google Scholar]
- Zia, T.; Ghafoor, M.; Tariq, S.A.; Taj, I.A. Robust fingerprint classification with Bayesian convolutional networks. IET Image Process. 2019, 13, 1280–1288. [Google Scholar] [CrossRef]
- Cappelli, R.; Maio, D.; Maltoni, D. A multi-classifier approach to fingerprint classification. Pattern Anal. Appl. 2002, 5, 136–144. [Google Scholar] [CrossRef]
- Liu, M. Fingerprint classification based on Adaboost learning from singularity features. Pattern Recognit. 2010, 43, 1062–1070. [Google Scholar] [CrossRef]
- Henry, E.R. Classification and Uses of Finger Prints; HM Stationery Office, Printed by Darling and Son, Limited: London, UK, 1913. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 1050–1059. [Google Scholar]
- Jian, W.; Zhou, Y.; Liu, H. Lightweight convolutional neural network based on singularity ROI for fingerprint classification. IEEE Access 2020, 8, 54554–54563. [Google Scholar] [CrossRef]
- Militello, C.; Rundo, L.; Vitabile, S.; Conti, V. Fingerprint Classification Based on Deep Learning Approaches: Experimental Findings and Comparisons. Symmetry 2021, 13, 750. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Saeed, F.; Hussain, M.; Aboalsamh, H.A. Classification of live scanned fingerprints using histogram of gradient descriptor. In Proceedings of the 2018 21st Saudi computer society national computer conference (NCC), Riyadh, Saudi Arabia, 25–26 April 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Zabala-Blanco, D.; Mora, M.; Hernández-García, R.; Barrientos, R.J. The Extreme Learning Machine Algorithm for Classifying Fingerprints. In Proceedings of the 2020 39th International Conference of the Chilean Computer Science Society (SCCC), Coquimbo, Chile, 16–20 November 2020; IEEE: New York, NY, USA, 2020; pp. 1–8. [Google Scholar]
- Ge, S.; Bai, C.; Liu, Y.; Liu, Y.; Zhao, T. Deep and discriminative feature learning for fingerprint classification. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; IEEE: New York, NY, USA, 2017; pp. 1942–1946. [Google Scholar]
- Michelsanti, D.; Ene, A.D.; Guichi, Y.; Stef, R.; Nasrollahi, K.; Moeslund, T.B. Fast fingerprint classification with deep neural networks. In Proceedings of the International Conference on Computer Vision Theory and Applications, Porto, Portugal, 7 February–1 March 2017; SCITEPRESS Digital Library: Setúbal, Portugal, 2017; pp. 202–209. [Google Scholar]
- Rajanna, U.; Erol, A.; Bebis, G. A comparative study on feature extraction for fingerprint classification and performance improvements using rank-level fusion. Pattern Anal. Appl. 2010, 13, 263–272. [Google Scholar] [CrossRef]
- Cao, K.; Pang, L.; Liang, J.; Tian, J. Fingerprint classification by a hierarchical classifier. Pattern Recognit. 2013, 46, 3186–3197. [Google Scholar] [CrossRef]
- Luo, J.; Song, D.; Xiu, C.; Geng, S.; Dong, T. Fingerprint classification combining curvelet transform and gray-level cooccurrence matrix. Math. Probl. Eng. 2014, 2014, 592928. [Google Scholar] [CrossRef]
- Spanier, A.B.; Steiner, D.; Sahalo, N.; Abecassis, Y.; Ziv, D.; Hefetz, I.; Kimchi, S. Enhancing Fingerprint Forensics: A Comprehensive Study of Gender Classification Based on Advanced Data-Centric AI Approaches and Multi-Database Analysis. Appl. Sci. 2024, 14, 417. [Google Scholar] [CrossRef]
- Galar, M.; Derrac, J.; Peralta, D.; Triguero, I.; Paternain, D.; Lopez-Molina, C.; García, S.; Benítez, J.M.; Pagola, M.; Barrenechea, E.; et al. A survey of fingerprint classification part II: Experimental analysis and ensemble proposal. Knowl.-Based Syst. 2015, 81, 98–116. [Google Scholar] [CrossRef]
- Cappelli, R.; Lumini, A.; Maio, D.; Maltoni, D. Fingerprint classification by directional image partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 402–421. [Google Scholar] [CrossRef]
- Cappelli, R.; Maltoni, D. Multispace KL for pattern representation and classification. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 977–996. [Google Scholar] [CrossRef]
- Karu, K.; Jain, A.K. Fingerprint classification. Pattern Recognit. 1996, 29, 389–404. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, H. Fingerprint classification based on extraction and analysis of singularities and pseudo ridges. Pattern Recognit. 2004, 37, 2233–2243. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, X.; Kot, A.C. Fingerprint reference-point detection. EURASIP J. Adv. Signal Process. 2005, 2005, 634350. [Google Scholar] [CrossRef]
- Bazen, A.M.; Gerez, S.H. Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 905–919. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, X.; Kot, A.C. Fingerprint retrieval by complex filter responses. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; IEEE: New York, NY, USA, 2006; Volume 1, p. 1042. [Google Scholar]
- Moreno-Torres, J.G.; Sáez, J.A.; Herrera, F. Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Zabala-Blanco, D.; Mora, M.; Azurdia-Meza, C.A.; Firoozabadi, A.D.; Játiva, P.J.P.; Montejo-Sánchez, S. Multilayer extreme learning machine as equalizer in OFDM-based radio-over-fiber systems. IEEE Lat. Am. Trans. 2021, 19, 1790–1797. [Google Scholar] [CrossRef]
- Wu, F.; Zhu, J.; Guo, X. Fingerprint pattern identification and classification approach based on convolutional neural networks. Neural Comput. Appl. 2020, 32, 5725–5734. [Google Scholar] [CrossRef]
- Cappelli, R.; Maio, D.; Maltoni, D. Synthetic fingerprint-database generation. In Proceedings of the Object Recognition Supported by User Interaction for Service Robots, Quebec City, QC, Canada, 11–15 August 2002; IEEE: New York, NY, USA, 2002; Volume 3, pp. 744–747. [Google Scholar]
- Watson, C.I.; Wilson, C.L. NIST special database 4. Fingerpr. Database Natl. Inst. Stand. Technol. 1992, 17, 5. [Google Scholar]
- Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K. FVC2000: Fingerprint verification competition. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 402–412. [Google Scholar] [CrossRef]
- Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K. FVC2002: Second fingerprint verification competition. In Proceedings of the Object Recognition Supported by User Interaction for Service Robots, Quebec City, QC, Canada, 11–15 August 2002; IEEE: New York, NY, USA, 2002; Voume 3, pp. 811–814. [Google Scholar]
- Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K. FVC2004: Third fingerprint verification competition. In Proceedings of the International conference on biometric authentication, Hong Kong, China, 15–17 July 2004; Springer: Cham, Switzerland, 2004; pp. 1–7. [Google Scholar]
- Cappelli, R.; Ferrara, M.; Franco, A.; Maltoni, D. Fingerprint verification competition 2006. Biom. Technol. Today 2007, 15, 7–9. [Google Scholar] [CrossRef]
- Dorizzi, B.; Cappelli, R.; Ferrara, M.; Maio, D.; Maltoni, D.; Houmani, N.; Garcia-Salicetti, S.; Mayoue, A. Fingerprint and on-line signature verification competitions at ICB 2009. In Proceedings of the International Conference on Biometrics, Alghero, Italy, 2–5 June 2009; Springer: Cham, Switzerland, 2009; pp. 725–732. [Google Scholar]
(a) Original ELM | Capelli02 | Hong08 | Liu10 | |||
Exac | Exac | Exac | ||||
Default | 1000 | 2000 | 750 | |||
HQNoPert | 1000 | 2000 | 750 | |||
VQAndPert | 1000 | 2000 | 750 | |||
(b) ELM-M2 | Capelli02 | Hong08 | Liu10 | |||
Exac | Exac | Exac | ||||
Default | 1000/1000 | 0.8604 | 1000/1000 | 0.9604 | 1000/1000 | 0.9045 |
HQNoPert | 1000/1000 | 0.8826 | 1000/1000 | 0.9730 | 1000/1000 | 0.9154 |
VQAndPert | 1000/1000 | 0.7864 | 1000/1000 | 0.9418 | 1000/1000 | 0.8603 |
(c) ELM-M3 | Capelli02 | Hong08 | Liu10 | |||
Exac | Exac | Exac | ||||
Default | 1000/250/1000 | 0.8609 | 250/250/1000 | 0.9634 | 250/250/250 | 0.9143 |
HQNoPert | 1000/1000/1000 | 0.8872 | 250/250/750 | 0.9740 | 250/250/250 | 0.9249 |
VQAndPert | 500/250/1000 | 0.8003 | 750/750/750 | 0.9471 | 500/500/500 | 0.8786 |
Original ELM | ELM-M2 | ELM-M3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Capelli02 | Hong08 | Liu10 | Capelli02 | Hong08 | Liu10 | Capelli02 | Hong08 | Liu10 | |
Default | 0.1430 | 0.0523 | 0.0976 | 0.1407 | 0.0466 | 0.0837 | 0.1322 | 0.0426 | 0.0789 |
HQNoPert | 0.1228 | 0.0381 | 0.0917 | 0.1183 | 0.0378 | 0.0749 | 0.1169 | 0.0335 | 0.0739 |
VQAndPert | 0.1865 | 0.0736 | 0.1138 | 0.1839 | 0.0591 | 0.1335 | 0.1777 | 0.0575 | 0.1154 |
Hong08 and Original ELM Original | Hong08 and ELM-M2 | Hong08 and ELM-M3 | Zabala-Blanco20 [13] | Peralta18 [10] | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Exac | Exac | Exac | Exac | Exac | ||||||
Default | 0.9302 | 0.0523 | 0.9604 | 0.0466 | 0.9634 | 0.0426 | 0.9300 | 0.0388 | 0.9807 | 0.0153 |
HQNoPert | 0.9512 | 0.0381 | 0.9730 | 0.0378 | 0.9740 | 0.0335 | 0.9400 | 0.0299 | 0.9960 | 0.0031 |
VQAndPert | 0.9044 | 0.0736 | 0.9418 | 0.0591 | 0.9471 | 0.0575 | 0.8800 | 0.0533 | 0.9640 | 0.0279 |
Hong08 and Original ELM | Hong08 and ELM-M2 | Hong08 and ELM-M3 | Zabala-Blanco20 [13] | Peralta18 [10] | |
---|---|---|---|---|---|
Default | 1.0259 (±0.0633) | 3.5320 (±0.2037) | 2.5688 (±0.1205) | 18.7819 (±0.3542) | 957 |
HQNoPert | 1.0545 (±0.0757) | 3.6884 (±0.1506) | 1.5860 (±0.0757) | 18.8498 (±0.6013) | 960 |
VQAndPert | 1.0963 (±0.0531) | 3.3228 (±0.1027) | 3.0118 (±0.2172) | 15.5062 (±0.3279) | 960 |
Hong08 and Original ELM | Hong08 and ELM-M2 | Hong08 and ELM-M3 | Zabala-Blanco20 [13] | Peralta18 [10] | |
---|---|---|---|---|---|
Default | 2000 (N1 = 2000) | 2000 (N1 = 1000 + N2 = 1000) | 1500 (N1 = 250 + N2 = 250 + N3 = 1000) | 5000 (N1 = 5000) | 14,875 |
HQNoPert | 2000 (N1 = 2000) | 2000 (N1 = 1000 + N2 = 1000) | 1250 (N1 = 250 + N2 = 250 + N3 = 750) | 5000 (N1 = 5000) | 14,875 |
VQAndPert | 2000 (N1 = 2000) | 2000 (N1 = 1000 + N2 = 1000) | 2250 (N1 = 750 + N2 = 750 + N3 = 750) | 5000 (N1 = 5000) | 14,875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quinteros, A.; Zabala-Blanco, D. Fingerprint Classification Based on Multilayer Extreme Learning Machines. Appl. Sci. 2025, 15, 2793. https://doi.org/10.3390/app15052793
Quinteros A, Zabala-Blanco D. Fingerprint Classification Based on Multilayer Extreme Learning Machines. Applied Sciences. 2025; 15(5):2793. https://doi.org/10.3390/app15052793
Chicago/Turabian StyleQuinteros, Axel, and David Zabala-Blanco. 2025. "Fingerprint Classification Based on Multilayer Extreme Learning Machines" Applied Sciences 15, no. 5: 2793. https://doi.org/10.3390/app15052793
APA StyleQuinteros, A., & Zabala-Blanco, D. (2025). Fingerprint Classification Based on Multilayer Extreme Learning Machines. Applied Sciences, 15(5), 2793. https://doi.org/10.3390/app15052793