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Abstract: Fingerprint recognition is one of the most effective and widely adopted methods
for person identification. However, the computational time required for the querying of
large databases is excessive. To address this, preprocessing steps such as classification are
necessary to speed up the response time to a query. Fingerprints are typically categorized
into five classes, though this classification is unbalanced. While advanced classification
algorithms, including support vector machines (SVMs), multilayer perceptrons (MLPs),
and convolutional neural networks (CNNs), have demonstrated near-perfect accuracy
(approaching 100%), their high training times limit their widespread applicability across
institutions. In this study, we introduce, for the first time, the use of a multilayer ex-
treme learning machine (M-ELM) for fingerprint classification, aiming to improve training
efficiency. A comparative analysis is conducted with CNNs and unbalanced extreme
learning machines (W-ELMs), as these represent the most influential methodologies in
the literature. The tests utilize a database generated by SFINGE software, which simu-
lates realistic fingerprint distributions, with datasets comprising hundreds of thousands
of samples. To optimize and simplify the M-ELM, widely recognized descriptors in the
field—Capelli02, Liu10, and Hong08—are used as input features. This effectively reduces
dimensionality while preserving the representativeness of the fingerprint information. A
brute-force heuristic optimization approach is applied to determine the hyperparameters
that maximize classification accuracy across different M-ELM configurations while avoid-
ing excessive training times. A comparison is made with the aforementioned approaches
in terms of accuracy, penetration rate, and computational cost. The results demonstrate
that a two-layer hidden ELM achieves superior classification of both majority and minority
fingerprint classes with remarkable computational efficiency.

Keywords: feature descriptors; fingerprint classification; identification systems; biometry;
multilayer extreme learning machines

1. Introduction
The use of fingerprints as a biometric identifier for person recognition is considered

robust and reliable due to their unique, unalterable, and enduring characteristics over
time [1]. While other biometric techniques share similar attributes—such as facial and iris
recognition for identification of individuals or palm print identification [2] for classification
of age and gender—fingerprints stand out as more accessible and cost-effective, particularly
regarding scanning technology [3]. Two primary applications of person recognition can be
identified. The first straightforward and expedient method involves validating whether an
individual is who they claim to be, a process commonly referred to as identity verification.
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In this scenario, a fingerprint is compared to the corresponding record stored in a database
(DB) using a one-to-one matching procedure. The second application, which is the primary
focus of this study, addresses situations where an individual’s identity is unknown. In such
cases, the fingerprint must be matched against the entire DB, requiring a one-to-many
comparison process. Recent advances in fingerprint localization have focused on improving
accuracy through the use of novel similarity metrics [4].

Due to the constant growth of the human population, large fingerprint databases
are continuously generated, making it increasingly complex for identification systems to
provide instant and precise results [5]. To improve the response times of these identification
systems, a preprocessing step—fingerprint classification—is employed to reduce the global
search space. Addressing this challenge, convolutional neural networks (CNNs) achieve
100% accuracy but at the expense of excessive computational costs [6,7]. Techniques such
as the use of an orientation field (OF), support vector machines (SVMs), and random
forests (RFs) have been reported to yield satisfactory results. In [6], a threshold above
1 resulted in 100% accuracy, while a threshold of 0.6 achieved over 93% accuracy using
the National Institute of Standards and Technology Special Database 4 (NIST-4), which
contains 4000 samples. Nevertheless, this excellent performance was impacted by the high
structural similarity of ridges in certain samples. As the threshold increases, classifica-
tion confusion also rises [6]. Despite the high accuracy achieved by CNNs in fingerprint
classification, their application in real-world scenarios is often impractical due to their
high computational demands and extensive training requirements [8]. In situations where
decisions must be made in real time or within strict time constraints, such as in medical
service provision or border control systems, the inference time of CNNs can become a
critical bottleneck. These applications require rapid processing and reliable identification
without depending on specialized high-performance hardware. Consequently, alterna-
tive models that balance accuracy and computational efficiency are necessary to ensure
practical implementation in large-scale fingerprint identification systems [9]. The authors
of [7] evaluated SVM and RF performance using several databases, including DB-HLG,
the fingerprint verification competition (FVC) datasets (2000, 2002, and 2004), and NIST-4.
The SVM achieved an accuracy of ≥95.5% and a mean squared error (MSE) of ≤0.321,
with computational times of 7, 9, and 5 h for each database, respectively. The RF obtained
an accuracy of ≥96.75%; an MSE of ≤0.274; and computational times of 8, 12, and 18 h
for the same databases. As evidenced, machine learning offers significant advantages in
fingerprint classification. However, these networks require high-performance computa-
tional architectures, which often render their application impractical. To address these
limitations, this work proposes the use of a multilayer extreme learning machine (M-ELM)
for efficient fingerprint classification, with the primary objective of improving training
times and computational costs.

The standard Extreme Learning Machine (ELM) is characterized by its rapid process-
ing and low computational cost while achieving accuracy levels comparable to those of
CNNs [10–12]. An ELM with a single hidden layer was demonstrated in [13], where a
standard ELM was compared to two types of CNNs (a CaffeNet variant and the CNN pro-
posed in [10]) for fingerprint classification. The study found that when using Hong08 [14]
as a descriptor and the ELM as a classifier, an accuracy of 94% and a penetration rate of
0.0332 were achieved, compared to the 99% accuracy obtained by the CNNs.

ELM networks were proposed by Huang for the training of single-hidden-layer feed-
forward neural networks (SLFNs). In ELM, the hidden nodes are initialized randomly, then
trained without iterative methods. The weights and hidden neuron biases are randomly as-
signed, while the output weights are determined using the Moore–Penrose pseudoinverse
under the least squares criterion [15]. In ELM, the hidden nodes (or neurons) may or may
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not be of the same size. The only parameters that need to be learned are the connections (or
weights) between the hidden layer and the output layer. Consequently, ELM is formulated
as a linear model. In comparison with traditional learning methods such as SVM, CNNs,
etc., ELM is notably efficient and tends to achieve a globally optimal solution. Field studies
have proven that even with randomly generated hidden nodes, ELM retains the universal
approximation capability of SLFNs [16,17].

M-ELMs are networks formed by extreme learning machine autoencoders (ELM-AEs),
proposed as a new multilayer perceptron (MLP) training scheme aimed at addressing the
deficiencies of ELMs. Notably, a standard ELM does not perform well when processing
natural signals such as sounds and images. In [18], imaging tests were conducted, including
car detection, gesture recognition, and incremental online tracking. For car recognition,
the UrbanaChampaign dataset from the University of Illinois [19,20] was used in both
the training and testing phases. Images with dimensions of 100 × 40 pixels achieved an
accuracy of 95.5% with a training time of 46.7 s. In the second experiment, the Cambridge
gestures dataset was used [21], comprising 900 image sequences of novel hand gesture
types, which are divided into three hand shapes and three movements. Each type contains
100 image sequences with dimensions of 60 × 80 × 10 pixels. In the first phase, static
gestures were analyzed, while the second phase included movements. This experiment
achieved an average test accuracy of 99.4%, with a training time of 57.7 s.

The M-ELM training architecture is structurally divided into two phases: a hierarchi-
cal representation of unsupervised features and a supervised feature classification phase.
ELM-AEs are stacked to enable learning across multiple hidden layers (unsupervised),
except for the final layer, which consists of a standard ELM (supervised) that performs
classification [22]. The M-ELM model was proposed to improve generalization capacity,
which directly depends on the characteristics of the training dataset. By addressing the two
primary issues of the original ELM—network stability and computational complexity—the
M-ELM enhances generalization capacity and simplifies computations. Specifically, the out-
put weights are calculated using the generalized inverse of the hidden-layer output and the
system’s actual outputs [15]. As mentioned earlier, this study introduces, for the first time,
the use of an M-ELM as a fingerprint classifier. To achieve this, we optimize the hyperpa-
rameters using brute force and determine the optimal number of neurons for each hidden
layer. The results are validated using five-fold cross-validation, employing metrics such as
training time, accuracy, and penetration rate [5,23]. These metrics enable a fair comparison
with the most recent studies, highlighting their relevance in the literature [10,13]. The main
contributions of this research are the introduction of novel alternatives for fingerprint
classification, combining the best descriptors presented in the literature with the M-ELM
approach. This method demonstrates a 4% improvement in performance compared to ap-
proaches using commercial computers [13], although it is accompanied by a slight decrease
in the penetration rate (PR) of 0.0003. Additionally, the training time is significantly reduced
by approximately 17 s compared to ELM-based approaches. These results emphasize the
scalability of the proposed method, as it evaluates the impact of varying the number of
hidden neurons across different classifier configurations, including one hidden layer for
the ELM and two or three hidden layers.

The remainder of this article is structured as follows: Section 2 provides a review of
the state of the art, summarizing the most significant contributions from the past decade
that are directly relevant to this study, focusing on the two dominant trends: CNNs for
image-based classification and ELMs for descriptor-based classification. Section 3 discusses
the descriptors, along with the theoretical and mathematical foundations employed for
feature extraction and fingerprint classification using multilayer ELMs. Section 4 describes
the validation process and performance metrics applied in this study, along with details
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about the database, including the quality and quantity of fingerprints. Section 5 presents
the heuristic optimization process, considering different hidden layers for the multilayer
ELM algorithm (one, two, and three hidden layers) using various descriptors and databases.
It also includes tables summarizing the results, offering a comparison of completeness
and computational cost in terms of the general and specific performance of the proposed
approach relative to the most recent and high-performing studies. Finally, Section 6
concludes the manuscript by summarizing the findings and outlining potential directions
for future research.

2. State of the Art
This section is divided into three main subsections—CNN and Images, ELM with

Descriptors, and Classical Methodologies—with the aim of improving understanding and
distinguishing the main trends in addressing the problem of classifying individuals through
fingerprint analysis.

2.1. CNN and Images

In previous studies, various techniques have been proposed for fingerprint classifica-
tion using neural networks, with two primary approaches dominating the field: CNNs for
image-based classification and ELMs for descriptor-based classification.

Regarding CNN-based methods, the work of Peralta [10] stands out, in which a convo-
lutional neural network with softmax functions—a modification of AlexNet—was proposed
for fingerprint classification. This approach eliminates the need for an explicit feature ex-
traction process while addressing challenges related to image noise or disturbances in
fingerprint imaging. For comparison, tests were conducted using three additional classi-
fiers: SVM, decision trees (DTs), and K-Nearest Neighbors (K-NN). For feature extraction,
three descriptors were used: Capelli02 [24], Hong08 [14], and Liu10 [25]. The databases
were SFinGe and NIST-4 [3]. A five-fold cross-validation (5-FCV) scheme was applied,
where each database was randomly divided into five subsets with identical class distribu-
tions, enabling the calculation of average performance across all tests. KEEL software (3.0)
(Knowledge Extraction based on Evolutionary Learning) was used to implement the SVM,
DT, and K-NN classifiers, while the CNNs were implemented using Caffe. The experiments
were conducted on a computer with an Intel Core i7-3820 processor (3.60 GHz) and 27 GB
of RAM (Santa Clara, CA, USA). The CNN was run with an Nvidia GeForce GTX TITAN
GPU (2688 cores, 6144 MB GDDR5 RAM) (Santa Clara, CA, USA). This study aimed to eval-
uate classification methods from the perspectives of robustness and efficiency, analyzing
both the accuracy and computational performance of different approaches. The proposed
network achieved an accuracy of 99.60% for the HQNoPert database, corresponding to
only 120 errors out of 30,000 fingerprint test samples. The CNN outperformed all combi-
nations of feature extractors and state-of-the-art classifiers, achieving a penetration rate
of 29.79%, compared to 39.99% for the original CaffeNet. Furthermore, the CNN demon-
strated competitive computational performance, requiring an average of 960 s, which was
significantly faster than the 230 s required, on average, by the combination of feature
extraction and classification.

Zia [23] sought to improve the efficiency of fingerprint classification by using deep
convolutional neural networks (DCNNs) in combination with a Bayesian model to ad-
dress false positives. This approach, termed Bayesian DCNN (B-DCNN), highlights the
advantages of incorporating Bayesian methods over traditional DCNNs. Two fingerprint
databases were used in the experimentation: NIST-4 and 1-A (FVC DB1-A) from 2002
and 2004, respectively. The classification was based on the five-class system proposed by
Henry [26] (arch, left loop, right loop, tented arch, and whorl). While some researchers
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exclude these fingerprints from the database, others consider these labels valid. To en-
sure fair experiments, this study used two versions of the NIST-4 database: the complete
database, denoted as NIST-4 (2000), and a version with 350 fingerprints, having multiple
deleted labels, referred to as NIST-4 (1650). The results showed accuracies of 96.1% for
NIST-4 and 95.3% for the FVC 2002 and 2004 databases. The findings demonstrate that the
B-DCNN approach outperforms conventional DCNN models, yielding improvements in
accuracy of 0.8% and 1.0% compared to the work presented by Gal et al. [27]. The train-
ing times for the National Institute of Standards and Technology (NIST) and Fingerprint
Verification Competition (FVC) databases were 4.393 and 3.801 s, respectively.

Jian [28] proposed a lightweight CNN architecture focused on the singularity region of
interest (ROI). The principal dataset was the NIST-4, which contains 4000 grayscale fingerprint
images. To enhance the dataset, four data augmentation techniques were applied—vertical
flip, horizontal rotation, small-angle rotation, and Gaussian noise—generating an additional
16,000 images. Thus, the final experimental database comprised 20,000 fingerprint images.
In the first experiment, the performance of five popular non-neural network classifiers was
compared. The second experiment aimed to explore and identify an optimal lightweight
neural network architecture for fingerprint classification. The third experiment compared
the proposed CNN architecture with three other recently published neural network archi-
tectures. The experimental results demonstrate that the proposed architecture achieved an
accuracy of 93%, significantly outperforming non-neural network classifiers, including RF,
K()NN, logistic regression (LR), SVM, and radial basis function (RBF). More importantly,
when compared to other recently published CNN architectures, the proposed structure
achieved similar or even better performance, with a parameter scale ranging from 1 = 12 to
1 = 38, thereby accelerating both training and testing. Moreover, the proposed CNN model,
with fewer neurons, exhibited better overfitting suppression and greater noise robustness.

Militello [29] presented a study on the performance of pre-trained CNNs—specifically,
AlexNet, GoogLeNet, and ResNet—tested on two fingerprint databases: the Hong Kong
Polytechnic University (PolyU) and NIST databases. The study also compared these re-
sults with other works in the literature to determine which classification approach yielded
superior performance in terms of accuracy and efficiency. This research represents the
first comprehensive analysis comparing widely used CNN architectures for fingerprint
classification across four, five, and eight classes. The experimental results revealed that the
tested CNN architectures achieved the best performance on the PolyU dataset, likely due
to the larger size and higher quality of the sample. To validate the reliability of the find-
ings, statistical analysis was performed using the McNemar test. Together, the databases
used in the study—the PolyU and NIST datasets—comprise a total of 7800 fingerprint
images. The three established CNN architectures tested in the study were AlexNet [30],
GoogLeNet [31], and ResNet [32]. The primary objective of this study was to determine
the approach that leads to the best performance among three CNN architectures when
used with different datasets, considering the type of dataset as part of the classification
task. A Graphic User Interface (GUI) was provided to display the performance of each
CNN in relation to the different datasets. The performance of each network can be easily
calculated by: (1) using a different dataset and classification task; (2) uploading an image
from any database to classify it, selecting the neural network and the number of classes; and
(3) identifying the CNN with the best performance for any given fingerprint image. These
features make the GUI both a powerful analysis tool and a simple test implementation.

In [33], a new fingerprint classification method based on the Histogram of Oriented
Gradients (HOG) descriptor was proposed. This method enhances the calculation of ridge
patterns within the HOG descriptor, improving its ability to robustly represent a fingerprint,
as the resulting orientation clearly delineates the ridges forming the fingerprint image.
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An ELM with an RBF kernel is employed as the classifier. Experiments were conducted
using the FVC-2004 fingerprint database. The proposed method achieved an average
accuracy of 98.7%, outperforming the latest fingerprint classification methods based on
CNNs [6].

2.2. ELM with Descriptors

In [13], a novel fingerprint classification approach based on feature extraction models
and both basic and modified ELMs was proposed, marking the first time this approach was
adopted. In general, ELMs produce good results when dealing with imbalanced data, as in
this case, where fingerprint types were distributed across five imbalanced classes. The de-
scriptors used in [10], Capelli02 [24], Hong08 [14], and Liu10 [25], are based on the most
relevant visual characteristics of fingerprints. Given the imbalanced classes in fingerprint
identification schemes, the ELM was optimized (standard, weighted, and decay-weighted)
in terms of geometric mean, estimating its hyperparameters (regularization parameter,
number of hidden neurons, and disintegration parameter). SFinGe software (v.4.1.1746)
was used to generate the dataset, creating synthetic fingerprints with realistic appearances,
varying quality levels (translations, rotations, and geometric deformations), and true class
labels. To emulate different scenarios, three quality profiles were used to generate finger-
prints: High Quality No Perturbations (HQNoPert), Default, and Varying Quality and
Perturbations (VQandPert). The HQNoPert database consists of high-quality fingerprints
without perturbations. The default database contains medium-quality fingerprints with
slight localization and rotational disturbances. The VQAndPert database includes finger-
prints of varying quality with location, rotation, and geometric disturbances. The quality
of the images is the only difference among the databases. A total of 30,000 fingerprints
were generated, with 10,000 for each quality level. Classic metrics such as precision and
rate of penetration were calculated for comparison with superior CNN-based methods
reported in the literature. Experimental results show that the weighted ELM 2 (W-ELM2)
with the golden ratio in the weighted matrix generally outperforms other ELMs (with
0.95% accuracy and a 0.0332% penetration rate). The combination of the Hong08 extractor
and W-ELM2 competes with CNNs in terms of fingerprint classification efficacy, but the
ELM-based methods demonstrate faster training speeds in all contexts.

In [34], a fingerprint classification system utilizing the ELM algorithm was presented,
employing a heuristic approach to maximize classification precision. This optimization
was achieved by determining the optimal parameters—the activation mapping function
and number of hidden neurons—that yield the best results. The optimal configuration
attained a classification accuracy of 95.5%, using the bounded sign mapping function,
the SFinGe ACSP quality database, the Hong08 [14] descriptor, and 1832 hidden nodes.
The evaluation was performed using the NIST-4 and SFinGe databases under the following
conditions. (1) NIST-4: This dataset comprises 4000 fingerprint images, each with dimensions
of 512 × 480 pixels. Each fingerprint was scanned twice at a resolution of 500 DPI. The finger-
prints are distributed naturally across five classes, but due to class similarities, 350 finger-
prints are labeled with dual-class identifiers. Consistent with prior studies [3,5,10,23,35],
fingerprints with dual-class labels were excluded, resulting in a final dataset of 1650 finger-
prints (3300 images in total). (2) SFinGe: Following the methodology outlined in previous
works [3,10], SFinGe software was used to generate three datasets of synthetic fingerprints
with varying image quality and natural class distribution. The software parameters in-
cluded an acquisition area of 14.6 × 19.6 mm2, a resolution of 500 DPI, and an image size of
288 × 384 pixels. The three generated quality levels were: high quality undisturbed (HQU),
default (D), and quality with variant disturbance (QVD). Each of these datasets contains
120,000 samples. The obtained optimal classifiers were compared against the most recent
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fingerprint classification methods reported in the state of the art [3,10,23,35,36] in terms of
classification accuracy, robustness, and computational complexity. Results indicate that
the ELM classifier, using the Hong08 [14] descriptor, achieved a high accuracy of 95.55%
with a low penetration rate (0.299) for the NIST-4 database. Moreover, the training and
testing times were significantly lower compared to CNN-based approaches, with 0.3811 s
for training and 0.0466 s for testing.

2.3. Classical Methodologies

Beyond the two trends mentioned above, other studies have explored statistical ma-
chine learning algorithms without employing neural networks. For instance, Rajanna [37]
conducted a comparative analysis of four feature extraction methods for fingerprint
classification—orientation map (OM), Gabor feature, minutiae map (MM), and orientation
collinearity (OC)—which were combined using a rank-based fusion scheme to improve
performance. Using the NIST-4 dataset, the combination of OM with OC surpassed the
performance of classifiers employing Gabor filters, achieving a classification accuracy of
97.761%. However, the training time was not reported.

Cao [38] proposed a hierarchical classifier consisting of five steps, utilizing SVM and
K-NN. The process includes (1) distinguishing as many arch fingerprints as possible using
complex filters, (2) identifying the largest subset of whorl fingerprints using central points
and a ridge-line flow classifier, (3) applying K-NN to classify the two main categories
based on OC features and responses from complex filters, (4) distinguishing loops from
non-whorl classes using ridge-line flow, and (5) using an SVM for final classification. Tests
conducted on the NIST-DB4 dataset reported an accuracy of 95.9%, with a classification
time of 4.31 s.

Guo [1] proposed a rule-based fingerprint classification method using decision trees,
relying on singular points and their counts for analysis. For illegible fingerprints, additional
features such as Center-to-Delta Flow (CDF) and Balance Arm Flow (BAF) were introduced.
The method achieved accuracies of 92.74% and 97.2%, respectively, in classifying four
classes without rejection, using three databases from FVC versions (2000, 2002, and 2004).
However, processing times were not reported.

Luo [39] introduced an algorithm for fingerprint classification that combines Curvelet
Transform (CT) with Grey-Level Co-occurrence Matrices (GLCMs). First, the original image
is divided into five scales to reduce noise. Subsequently, the curvelet transform and GLCMs
are calculated at a larger scale, generating 16 texture features based on four GLCMs. A total
of 49 features are then derived across the remaining four scales. Finally, the classification
process is carried out using the K-NN algorithm, employing the NIST-4 dataset consisting
of 4000 fingerprint images. This approach achieves an accuracy of 94.6% in 1.47 s.

3. Theoretical Foundations
This section presents the theoretical and mathematical foundations employed for

fingerprint feature extraction and classification. Three high-performance feature extraction
methods reported in the literature [14,24,25] are considered. These methods are referenced
by the first author and the year of publication: Capelli02, Liu10, and Hong08. Furthermore,
this study introduces, for the first time, a multilayer perceptron network based on an
ELM-AE and the original ELM as a classification algorithm.

3.1. Feature Descriptors

Fingerprint classification is the most commonly employed technique to reduce the
penetration rate in fingerprint identification datasets [40]. Most researchers adopt the
five-class system proposed by Henry [26], which categorizes fingerprints based on distinct
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visual patterns. These classes are unevenly distributed as follows: arch (3.7%), left loop
(33.8%), right loop (31.7%), tented arch (2.9%), and whorl (27.9%).

Fingerprint classification algorithms typically rely on global fingerprint features, such
as OM, ridge structures, and singular points (SPs). Singular points are commonly detected
using the Poincaré method. While OMs are generally extracted through gradient-based
methods, alternative approaches, such as cleft-based or skeleton-tracking techniques, have
also been proposed. Based on several analyses, Peralta already compared various finger-
print extraction (FE) methods (SVM, 5NN, 10NN, and Kappa) across multiple databases.
These evaluations consistently show that the Capelli02, Hong08, and Liu10 methods deliver
the best performance [3,41]. Hong08 maintains an accuracy of 93.55% and a Kappa of
0.9083 using K-NN (k = 5, Euclidean distance), suggesting that K-NN may be more suitable
for low-quality fingerprint classification than SVM. The Jain method, also using K-NN,
shows similar performance, with an accuracy of 93.47% and a Kappa of 0.9072. As the
database difficulty increases, the extraction of the new features introduced by Hong08
becomes more challenging. Nevertheless, Hong08 remains the best option compared to
other methods, demonstrating a strong ability to handle fingerprints of varying quality.
Capelli02 [24] is a method based on the fingerprint OM; the OM is aligned using a central
point detected by the Poincaré method. A dynamic mask is applied to each class, gener-
ating a five-element vector. The orientations are also recorded as part of the feature set.
The authors combined two distinct approaches for feature extraction and classification.
Additionally, features from the earlier Capelli99a [42] method were incorporated into the
feature vector. Once the OM is registered, it is enhanced following the procedure described
in Capelli99a. Finally, orientations are recorded in radians within the feature vector, whose
size depends on the original image dimensions. These features are then processed using
the Multi-space KL (MKL) classification method [43].

The Hong08 [14] method extends the FingerCode feature vector (derived from Gabor
filters) by incorporating pseudo-ridges traced from the fingerprint center, along with the
number of singular points (nucleus and deltas), and their distance and location. This
approach builds upon the FingerCode method proposed by Jain, adding ten new features
derived from the SPs and pseudo-ridges. SPs are extracted using the Karu method [44],
while the pseudo-ridge is based on the Zhang04 method [45]. In this case, pseudo-ridges
are traced from the center of the fingerprint, which is defined as the closest central point
detected or remains unchanged if no central point is identified. Once the SP and pseudo-
ridge are calculated, ten additional features are added to the FingerCode feature vector.
These features include the number of nuclei and deltas, as well as the relative location
and distance of the deltas and the endpoints of pseudo-ridges in relation to the fingerprint
center. It should be noted that these features are categorical, as distances and relative
locations are discretized into four and six values, respectively.

The Liu10 approach [25] differs significantly from other methods by exclusively con-
sidering relative measures of SPs as features. A total of 16 features are extracted at four
different scales to enhance robustness against noise. All features are related to the primary
central point, including its position, orientation, and degree of freedom. Additional features
are defined as relative measures between the central point and the other SPs. The Liu10
method can be summarized in four main steps. First, the OM is extracted using a gradient
method, incorporating an additional smoothing step based on the coherence concept [46].
Subsequently, the fingerprint is segmented following the method proposed by Bazen and
Gerez [47]. The key phase involves SP extraction, which is performed using complex filters
and a multiscale model [48]. This extraction process is repeated across four different OM
scales to improve the reliability of SP detection. Finally, the feature vector is formed based
on the extracted SP measurements.
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3.2. Extreme Learning Machines
3.2.1. Original ELM

The concept of an ELM was proposed for the training of single-layer feedforward
neural networks (SLFNs) in 2006 [17]. ELMs have gained significant popularity due to their
ease of implementation. Huang et al. [17] demonstrated that ELMs outperform gradient-
based artificial neural networks and SVMs in terms of prediction performance for both
classification and regression tasks, offering the unquestionable advantage of negligible
computation time, even when executed on standard commercial computers [13].

Given a training dataset containing M samples, a basic ELM maps inputs (data sam-
ples) to outputs (labels) using a single hidden layer comprising N nodes. The ELM can be
expressed as follows [13]:

Hγ = T, (1)

H =


f (c1 · x1 + b1) · · · f (cM · x1 + bN)

... f (cj · xi + bj)
...

f (c1 · xM + b1) · · · f (cM · xM + bN)

,

γ =
[
γT

1 , · · · , γT
N

]t
,

T =
[
tT
1 , · · · , tT

M

]t
,

where H represents the output matrix of the hidden layer, γ denotes the matrix of output
weights between the hidden layer and the output layer, and T corresponds to the label ma-
trix. The function f (·) is the activation function, which is a nonlinear piecewise continuous
function, such as a sigmoid function. The cj vector is the input weight connecting the input
node and the j-th hidden node, and xi ∈ Rn represents the i-th input data point, where n is
the dimensionality of the input layer. The bj parameter is the bias of the j-th hidden node,
and γj denotes the output weight vector connecting the j-th hidden neuron to the output
nodes. Finally, ti ∈ Rm is the m-dimensional target vector corresponding to xi.

Additionally, cj and bj are derived from any continuous probability distribution, such
as the uniform distribution, reducing the need for manual intervention. This simplification
affects the cj · xi term, which is calculated as part of the mapping process. The original
structure of the ELM is illustrated in Figure 1, where all parameters, including inputs and
outputs, are detailed for clarity and comprehension.
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Figure 1. General architecture of an original ELM.
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Moreover, the least squares solution with a minimum norm can be calculated analyti-
cally through the generalized Moore–Penrose inverse of H as follows [13]:

γ =

{(
HT H + I/C

)−1HTT M > N
HT(HT H + I/C

)−1T M ≤ N
, (2)

where I is an identity matrix and C is a regularization parameter (∈ R+). The dimensions
of I depend on the ratio between N and M, and C is added to balance the training error and
the norm of the output weights, avoiding overfitting. To simplify the analysis, the second
term, I/C, is omitted from the equation. This removes the regularization factor, allowing
the use of a standard ELM and thereby reducing the model’s complexity. To summarize the
ELM training process, its algorithm is presented below (Algorithm 1) [13].

Algorithm 1 ELM Training Algorithm
Given the training set ϕ = {(xi, ti) | i = 1, . . . , M}, set the hyperparameters, including the
activation function f (·), and the number of hidden neurons N.

1: Set the input weights ci and biases bi randomly.
2: Compute the output of the hidden layer matrix H.
3: Set the output weights γ.

3.2.2. Multilayer ELM

The features of the dataset influence the learnability during both the training and the
testing phases for the ELM algorithm. Consequently, feature design becomes essential,
as it allows for a more effective representation of the data’s inherent structure. However,
this task requires expertise in the area, as well as human ingenuity, to develop suitable
features. To address this challenge, AEs can be employed to train multilayer perceptron
networks. An AE can be defined as an SLFN with multiple hidden layers [29]—in this
sense, an unsupervised training paradigm, where the outputs and inputs are the identical.
The goal of the AE is to reproduce the input signal as accurately as possible through the
connections between its neurons and the biases in its hidden layers.

This paper presents an ELM based on AEs that learns singular feature values to
learn feature representations and classify fingerprints while reducing the penetration
rate in identification databases. An AE-based multilayer M-ELM is constructed with a
training architecture divided into two distinct phases: an unsupervised hierarchical feature
representation phase and a supervised label classification phase (see Figure 2). In the initial
phase, the ELM-AE is designed to extract sparse multilayer features from the input data
using unsupervised learning. In the subsequent phase, a standard ELM is employed for
final decision making. The detailed processes for each phase are presented in Algorithm 2
(unsupervised feature extraction using ELM-AE) and Algorithm 3 (supervised classifier
learning phase (standard ELM)). These algorithms outline the step-by-step procedures for
both phases, ensuring clarity and reproducibility of the proposed approach. Building on
the supervised learning process outlined in the previous subsection, the training procedure
for the unsupervised AE block in the M-ELM architecture is systematically developed. This
two-phase approach ensures robust feature extraction and efficient classification.
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Figure 2. Representative structure of a multilayer ELM.

An ELM-AE can be conceptualized as a neural network comprising an input layer,
a hidden layer, and an output layer (see Figure 3). It is characterized by having a number
(n) of neurons in the input layer, d neurons in the hidden layer, and n neurons in the
output layer and employing a nonlinear activation function ( f (·)) for the hidden neurons.
In contrast, the neurons in the output layer are typically limited to performing summation
operations. For a set of M distinct samples (xi ∈ RM×j, i = 1, . . . , M), the weights (c) and
biases (b) corresponding to the hidden-layer nodes are randomly generated based on a
probability density function. These weights and biases are subject to the orthogonality
condition, which enhances the training capacity of the neural network. The output of the
hidden layer in the ELM-AE and the parameters between the input and output layers can
be mathematically expressed as follows:

h = f (cx + b), (3)

subject to
cTc = I, (4)

and
bTb = 1, (5)

where c = [c1, . . . , cM] denotes the orthogonal random weight between the input and
hidden layer, b = [b1, . . . , bM] represents the orthogonal random biases between the input
nodes and the hidden nodes, I corresponds to the identity matrix, and ϵ refers to the output
of the connections between the last hidden layer and the output nodes. As demonstrated,
the standard ELM is modified for unsupervised learning by using the input data as the
output data. It is worth mentioning that the ELM-AE is designed to effectively extract input
features through three distinct approaches: (1) a compressed approach, which represents
entities from a higher dimensional input data space to a lower dimensional entity space;
(2) a sparse approach, which is the opposite of the compressed approach; and (3) an
equal-dimensional approach , where entities maintain their dimensionality in order to
maximize the performance of the ELM. Due to the ELM-AE’s output weights, it is possible
to transform features from the entity space back to the input data space. Across all ELM-AE
representations, the output weights can be expressed in the following form:

γ =

(HT H)−1HTX M > N

HT(HT H)−1X M ≤ N
(6)
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where H = [h1, . . . , hM] represents the outputs of the hidden layer of the ELM-AE, de-
notes the operator associated with the generalized Moore–Penrose inverse of a matrix, and
X = [x1, . . . , xM] corresponds to both input and output data of the ELM-AE (unsupervised
training. Additionally, N denotes the number of hidden nodes. The output weights of
the ELM-AE are specifically designed to effectively extract features (or entities) from the
input data by leveraging singular values. The parameter of regularization (C) is excluded
in ELM-AEs for simplicity.
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Figure 3. General architecture of an ELM-AE. The colors indicate the type of neuron, following the
same scheme as the original ELM.

Algorithm 2 Unsupervised Feature Extraction Phase (Autoencoder)

Dataset X = {x1, x2, . . . , xM}, where xi ∈ Rn×j, number of hidden neurons d, activation
function f (·) Extracted features from the autoencoder
1: Initialize random weights c = {c1, c2, . . . , cM} and biases b = {b1, b2, . . . , bM} such that
cTc = I and bTb = 1
where I is the identity matrix
2: For each sample xi, calculate the hidden layer output:

hi = f (cxi + b)

3: Construct the hidden layer output matrix H = [h1, h2, . . . , hM]
4: Calculate the output weights γ by solving the linear system:

γ =

{
(HT H)−1HTX if M > N
HT(HT H)−1X if M ≤ N

5: Return the learned features H.

The ELM-AE is stacked layer by layer following a hierarchical structure. Prior to su-
pervised least squares optimization, the weights of each M-ELM hidden layer are initialized
using the ELM-AE, which performs unsupervised learning at the layer level, excluding ran-
dom entity mapping. Mathematically, the output of each hidden layer is written as follows:

Hi = f [(γi)T Hi−1], (7)

where Hi represents the output matrix of the i-th hidden layer (for i − 1 = 0 is the input
layer, and the inputs to the M-ELM are represented as Hi−1). Once the features of the
previous hidden layer have been computed, the weights and hyperparameters (including
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the activation function and the number of hidden neurons) for the current hidden layer
are determined. Within this multilayer learning framework, the AE functions as a feature
extractor, utilizing the encoded results to approximate the original inputs while minimizing
reconstruction errors. The output of the connections between the final hidden layer and the
output node (ti ∈ RN×m, i = 1, . . . , N) can be determined analytically by solving a linear
system, similar to the standard ELM approach.

Algorithm 3 Supervised Classifier Learning Phase (Standard ELM)
Extracted features H from AE, labels T, number of hidden neurons N, activation function
f (·) Trained classifier output weights γELM
1: Initialize random weights and biases for the ELM hidden layer.
2: Compute the hidden layer output matrix HELM using the extracted features H:

HELM = f (W · H + b)

where W are the weights and b are the biases for the hidden layer.
3: Solve for the output weights γELM by minimizing the least squares error:

γELM = (HT
ELM HELM)−1HT

ELMT

4: Return the trained classifier output weights γELM.

4. Methods and Materials
To evaluate performance, the 5-FCV scheme is used [49], ensuring unbiased and precise

classification metrics [10,13]. This is because the validation and training sets are not static
but come from five parts the DB. Thus, 20% is taken for validation, while the remaining
four parts are used for training. For each database, feature descriptor, and ELM approach,
the overall results are reported from an average of five runs. Evidently, the validation
set is intended to find the ELM hyperparameters that maximize its classification ability,
and only the number of hidden neurons (N) is considered for heuristic optimization for
simplicity and performance purposes (see next section). Accuracy and absolute error of the
PR. Accuracy is chosen, as it is a widely accepted metric for artificial intelligence models
and aligns with previous studies used for comparison [10,13,29,50,51]. PR, on the other
hand, is particularly relevant for addressing unbalanced datasets, making it a standard
metric in fingerprint analysis [10,13]. The absolute value of PR allows for straightforward
identification of the superior model, with values approaching zero indicating a better
penetration rate. Given the naturally unbalanced distribution of the database, the target PR
for this study is 0.2948 [13].

In this study, SFINGE software [52] was utilized to facilitate comparisons with signif-
icant and recent works reported in the state of the art [10,13]. In addition, this software
generates a substantial database consisting of thousands of fingerprint samples, enabling
conclusive observations regarding fingerprint-based individual classification [10,13,51].
SFINGE software produces synthetic fingerprints of different quality levels (low, medium,
and high) with a realistic class distribution (unbalanced classes). These synthetic finger-
prints generated by SFINGE simulate fingerprints obtained by optical scanners, which
are much closer to real systems, such as NIST-4 [53]. Moreover, it is worth noting that
the feasibility of adopting the SFINGE database has already been demonstrated in several
editions of the FVC [54–58], where it achieved results comparable to those of real finger-
print databases, following the natural class distribution. To emulate various scenarios,
three quality profiles were generated using SFINGE: HQNoPert, Default, and VQandPert
(see Figure 4). The HQNoPert database consists of high-quality, undisturbed fingerprints.
The default database includes fingerprints of medium quality and slight perturbations
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in localization and rotation. The VQAndPert database comprises fingerprint of varying
quality levels, incorporating perturbations related to the location, rotation, and geometric
distortions. The primary distinction among the databases lies in the quality of the generated
images. In total, 10,000 fingerprints were generated for each quality category, resulting in
a comprehensive dataset of 30,000 fingerprints. The generation of 10,000 fingerprints per
category ensures a fair and consistent basis for comparison with the studies reported in the
state of the art [10,13]. 

 

 

 

Figure 4. Samples concerning fingerprint image quality: (a) default; (b) HQNoPert; (c) VQAndPert.

5. Results and Discussion
This section addresses three key aspects: hyperparameter optimization, evaluation

and comparison with the state of the art, and complexity analysis. In hyperparameter
optimization, hidden neurons and additional layers in the ELM models were adjusted
to improve generalization and robustness. In the comparison with the state of the art,
the performance of the ELM-M3 model was evaluated against the benchmarking models
in fingerprint classification tasks. Finally, the complexity analysis shows that, while ELM-
M3 is computationally more expensive than its original version, it is more efficient than
CNN-based approaches, achieving a balance between simplicity and performance.

5.1. Hyperparameter Optimization

For this study, the sigmoid function (g(x) = 1/[1 − exp(x)]) is considered as the ac-
tivation function, since it guarantees the universal approximation of the SLFNs, making
it suitable for any ELM algorithm dealing with nonlinear problems. In addition, the reg-
ularization parameter (C) is omitted across all ELM versions for simplicity. It should be
noted that the inclusion of the regularization parameter (C) in the model serves to prevent
overfitting by balancing the training error and the norm of the output weights. Hyperpa-
rameter optimization for the different ELM models is first performed heuristically with the
aim of maximizing their performance while minimizing complexity, thereby avoiding over-
training. This process considers various feature extractors (Capelli02, Hong08, and Liu10)
and fingerprint qualities (Default, HQNoPert, and VQAndPert). Figures 5–7 illustrate the
performance in terms of the number of hidden neurons in the original ELM (single hidden
layer), showing results from both the training and validation stages. The training results
demonstrate the successful convergence of single-hidden-layer networks trained with the
ELM algorithm while highlighting the issue of overfitting that occurs as network complex-
ity (i.e., the number of hidden neurons) increases. The validation results, however, are more
indicative of the generalization capacity of the model, since they reflect performance on
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unseen data. For each descriptor, there is a number of hidden neurons that maximizes the
generalization ability of the ELM. This number is only slightly dependent on the fingerprint
quality. Nevertheless, for robustness and generalization purposes (so that the results are
independent of the fingerprint quality), the following numbers of hidden neurons are
adopted: 1000, 2000, and 750 for the Capelli02, Hong08, and Lui10 descriptors, respectively.
The accuracies achieved by these numbers of neurons are highlighted with markers. Note
that the number of hidden neurons is constrained to 8000 samples, since, theoretically, it
has been shown that to achieve the best performance of an ELM, the number of hidden
neurons must be less than the number of samples. The following subsection discusses the
results regarding fingerprint quality and descriptors in a particular and general manner.
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Figure 5. The accuracy in the training and validation phases in terms of the number of hidden
neurons of the original ELM, considering Capelli02 as a descriptor.
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Figure 6. The accuracy vs. the number of hidden neurons of the original ELM in the training and
validation phases when the descriptor corresponds to Hong08.
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Figure 7. The accuracy vs. the number of hidden neurons of the original ELM in the training and
validation phases when the descriptor corresponds to Liu10.

The results regarding the optimization of two- and three-hidden-layer ELM models
(M-ELM) are presented below in Figures 8–13.

In Figures 8–10, performance is displayed as contour plots, showing the relationship
between the number of neurons in the first and second layers. An irregular zone can be
observed where the accuracy reaches its highest value, which is slightly dependent on the
quality and, more noticeably, on the descriptor. To avoid overfitting, the optimization yields
the following configuration: both the first and second hidden layers contain 1000 neurons
(N1 = N2 = 1000). Increasing the complexity of the ELM (e.g., adding more neurons in each
hidden layer) does not necessarily maximize performance, as evidenced by the significant
decrease in accuracy when N1 = N2 = 7000. Furthermore, the optimal performance is achieved
when the first hidden layer contains more neurons than the second. This is because one of
the functions of unsupervised learning in ELM autoencoders is to derive meaningful feature
representations at the input level. Thus, simplifying the network architecture in deeper layers
is logical to maintain optimal performance.

The optimization results for the three-hidden-layer M-ELM model are shown in
Figures 11–13, where different descriptors and fingerprint qualities are considered to
ensure robustness in the findings. The results exhibit a volumetric irregularity in the
optimized hidden-node values, with accuracy approaching 1.

To achieve efficient generalization, a simple architecture is selected; each figure in-
cludes an arrow to indicate the relevant feature. In addition, for visualization purposes,
the desired accuracies are highlighted with larger characters (cloud of squares). Once more,
it is observed that as additional hidden layers are incorporated, the number of required neu-
rons decreases. This reduction is attributed to the fact that the initial layers are responsible
for extracting the primary features of the fingerprints.
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Figure 8. Accuracy in terms of the number of neurons of the two-layer hidden ELM considering the
Capelli02 descriptor and the (a) default, (b) HQNoPert, and (c) VQAndPert databases.
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Figure 9. Accuracy in terms of the number of neurons of the ELM of two hidden layers considering
the Hong08 descriptor and the (a) default, (b) HQNoPert, and (c) VQAndPert databases.
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Figure 10. Accuracy as a function of the number of neurons of the two-hidden-layer ELM considering
the Liu10 descriptor and the (a) default, (b) HQNoPert, and (c) VQAndPert databases.
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Figure 11. Accuracy as a function of the number of neurons of the three-hidden-layer ELM, taking into
account the Capelli02 descriptor and the (a) default, (b) HQNoPert, and (c) VQAndPert databases.
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Figure 12. Accuracy as a function of the number of neurons of the three-hidden-layer ELM, taking
into account the Hong08 descriptor and the (a) default, (b) HQNoPert, and (c) VQAndPert databases.
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Figure 13. Accuracy as a function of the number of neurons of the three-hidden-layer ELM, taking
into account the Liu10 descriptor and the (a) default, (b) HQNoPert, and (c) VQAndPert databases.

The accuracy of the optimized hyperparameters for the various ELM models is sum-
marized in Table 1. Notably, the Hong08 descriptor, coupled with high-quality fingerprints
(HQNoPert), yields the best performance. Moreover, the addition of a second hidden
layer generally improves the classification accuracy by approximately 0.02 compared to the
original ELM. The introduction of a third hidden layer further increases accuracy by an
additional 0.01. The absolute values of the penetration rates for different ELM models are
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provided in Table 2, considering the various descriptors (Capelli02, Hong08, and Liu10)
and fingerprint qualities (default, HQNoPert, and VQAndPert). These results demonstrate
the robustness of the proposed models in dealing with imbalanced learning problems,
where success in the minority class is as important as in the majority class. The Hong08
descriptor demonstrates notable performance across various fingerprint qualities, similar
to its behavior with accuracy metrics. Specifically, the improvement in the absolute value
of the penetration rate achieved by the two-hidden-layer ELM compared to the original
ELM (independent of fingerprint quality) is 0.0045, while the difference between the two-
and three-hidden-layer ELMs is 0.0055. Consequently, only the results associated with the
Hong08 descriptor are considered in subsequent analyses. In contrast, the worst perfor-
mance is observed using the Capelli02 descriptor, not only across all fingerprint qualities
but also across all evaluated metrics. This limitation arises from the method applied in
Capelli02, which combines two approaches based on feature extraction via orientation
maps (OMs). Furthermore, the Cappelli99a [42] method, which segments OMs into areas
with similar orientations and compares them to predefined templates for each fingerprint
class (arch, left loop, right loop, tented arch, and whorl) using a defined cost function,
exhibits additional limitations. The class with the lowest segmentation cost is selected,
and the resulting orientation map is used to populate the second part of the feature vector,
centered on the Poincaré-determined core point. This approach is more prone to class
confusion compared to Hong08 and Liu10. Experimental evidence from previous stud-
ies has consistently identified the Hong08 descriptor as the most reliable and effective
option [10,13,34].

Table 1. Numbers of hidden neurons that maximize the prediction of the (a) original ELM,
(b) ELM-M2, and (c) ELM-M3.

(a) Original ELM
Capelli02 Hong08 Liu10

N1 Exac N1 Exac N1 Exac

Default 1000 0.8256 2000 0.9302 750 0.8939

HQNoPert 1000 0.8477 2000 0.9512 750 0.9085

VQAndPert 1000 0.7635 2000 0.9044 750 0.8559

(b) ELM-M2
Capelli02 Hong08 Liu10

N1/N2 Exac N1/N2 Exac N1/N2 Exac

Default 1000/1000 0.8604 1000/1000 0.9604 1000/1000 0.9045

HQNoPert 1000/1000 0.8826 1000/1000 0.9730 1000/1000 0.9154

VQAndPert 1000/1000 0.7864 1000/1000 0.9418 1000/1000 0.8603

(c) ELM-M3
Capelli02 Hong08 Liu10

N1/N2/N3 Exac N1/N2/N3 Exac N1/N2/N3 Exac

Default 1000/250/1000 0.8609 250/250/1000 0.9634 250/250/250 0.9143

HQNoPert 1000/1000/1000 0.8872 250/250/750 0.9740 250/250/250 0.9249

VQAndPert 500/250/1000 0.8003 750/750/750 0.9471 500/500/500 0.8786
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Table 2. Absolute values of the penetration rate obtained by the different ELMs according to the
studied databases and descriptors.

Original ELM ELM-M2 ELM-M3

Capelli02 Hong08 Liu10 Capelli02 Hong08 Liu10 Capelli02 Hong08 Liu10

Default 0.1430 0.0523 0.0976 0.1407 0.0466 0.0837 0.1322 0.0426 0.0789

HQNoPert 0.1228 0.0381 0.0917 0.1183 0.0378 0.0749 0.1169 0.0335 0.0739

VQAndPert 0.1865 0.0736 0.1138 0.1839 0.0591 0.1335 0.1777 0.0575 0.1154

5.2. Evaluation and Performance Comparison with the State of the Art

Recent studies have employed ELMs for biometric classification tasks, such as fin-
gerprint and [10,13,33,34] palm vein recognition [2], with an emphasis on age and gender
detection using single-layer ELMs that include a regularization parameter. In order to
compare our proposal with the most recent and important studies reported in the literature,
performance metrics such as accuracy (overall performance of all classes) and penetration
rate (performance of each class) are considered, making this comparison more conclusive.
Table 3 compares the results obtained in this work using the Hong08 descriptor with the
performances reported by Peralta et al. [10] and Zabala et al. [13]. The results of [33,34] are
omitted. The work by Peralta et al. [10] achieved an accuracy of 98.7% but only considered
a DB of scare fingerprint samples (FVC-2004 with 880 samples). Moreover, details about
the ELM algorithm (hyperparameters) were not exposed, since the study focused on the fin-
gerprint feature descriptor. The second study, apart from obtaining lower accuracy results
(83.45%), performed heuristic optimization considering a lower number of hidden nodes
than the number of training samples for the SFINGE database, meaning that optimization
presented local and not global maxima. On the one hand, it is appreciated that the work
based on a CNN [10] achieved the best performance for both accuracy (99.6%) and the
absolute value of the penetration rate (0.31). This is practically perfect if the fingerprint is
acquired in an ideal manner (HQNoPert). The superiority of the approach proposed in [10]
is distinguishable for all fingerprint qualities, being only 0.02 better in terms of accuracy
and 0.03 in terms of PT than the three-hidden-layer ELM proposed in this paper. The CNN
developed by Peralta et al. [10], which incorporates a modified version of AlexNet with
softmax functions, demonstrates superior performance compared to the architecture pro-
posed in this study. The AlexNet architecture is characterized by five convolutional hidden
layers and three fully connected hidden layers, designed based on the ELM algorithm.
In [10], modifications were made to the number of units within the network to simplify the
search space during training and enhance both the speed and convergence of the process.
The network was trained using the stochastic gradient descent (SGD) algorithm, which
reduced computational costs by utilizing only a subset of training instances in each iteration.
This approach introduces a bias in error calculation relative to the optimum but signifi-
cantly accelerates the process. In addition, this network is used together with images to
classify fingerprints without requiring an explicit feature extraction process. This approach
addresses challenges associated with noise or distorted fingerprint images more effectively
than our proposed method, which relies on descriptor layers based on an ELM. While our
approach demonstrates a 0.04 improvement in accuracy compared to the unbalanced ELM
method characterized by the golden ratio, as proposed by Zabala-Blanco20 [13], it exhibits
a marginal disadvantage of 0.0003 in terms of PR. This slight drawback can be attributed to
variance in the sample mean of the measurements. When evaluating performance relative
to fingerprint quality (independent of the classification model), it is evident that finger-
prints of the highest quality (HQNoPert) achieve approximately 0.02 higher accuracy and
0.05 higher Pr rates compared to those of average quality (default). Similarly, HQNoPert
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fingerprints outperform those of the lowest quality (VQAndPert) by 0.04 in accuracy and
0.03 in PR, highlighting the influence of image quality on classification performance.

Table 3. Performance comparison between the best identified methodologies and the other
considered approaches.

Hong08 and Original
ELM Original Hong08 and ELM-M2 Hong08 and ELM-M3 Zabala-Blanco20 [13] Peralta18 [10]

Exac | PR | Exac | PR | Exac | PR | Exac | PR | Exac | PR |

Default 0.9302 0.0523 0.9604 0.0466 0.9634 0.0426 0.9300 0.0388 0.9807 0.0153

HQNoPert 0.9512 0.0381 0.9730 0.0378 0.9740 0.0335 0.9400 0.0299 0.9960 0.0031

VQAndPert 0.9044 0.0736 0.9418 0.0591 0.9471 0.0575 0.8800 0.0533 0.9640 0.0279

5.3. Complexity Analysis

Another important parameter to consider when comparing different learning tech-
niques is the computational cost, particularly the training time. The computational complex-
ity of the proposed models was evaluated on a computer equipped with an Intel® Core™
i7-6700 processor, 8 GB of RAM, and a 64-bit Windows 10 operating system (Santa Clara,
CA, USA). Table 4 reports the training times (in seconds), along with the sample mean and
standard deviation, for different fingerprint qualities. A total of 1000 simulations were
conducted to ensure representative results for each case to validate the observations. It is
important to mention that the results presented for [10] were directly replicated using high-
performance hardware—specificallym an Nvidia GeForce GTX TITAN GPU (2688 cores,
6144 MB GDDR5 RAM) and a 2.6 GHz Intel Core i5 processor with 4 GB of RAM (Santa
Clara, CA, USA). Regarding the software environment, Peralta et al. [10] employed the
C++ Caffe library, a low-level language offering faster execution than the programming
language utilized in this study (MATLAB 2024a). Given the focus of this work on ELMs
and acknowledging the hardware and software limitations compared to the CNN-based
model, a complexity analysis was performed. Our method is notoriously disadvantaged in
terms of hardware/software. As demonstrated in Table 4, the ELM architecture with three
hidden layers emerges as the optimal alternative in this study, a conclusion supported by
the performance metrics discussed in the preceding subsection. Although the three-layer
ELM (ELM-M3) is more computationally expensive than the original ELM, it is significantly
more efficient in terms of computational cost compared to ELM-M2, the unbalanced ELM,
and the CNN-based approach (Figure 14). Notably, the computational cost of ELM-M3
is influenced by fingerprint quality, as its performance-optimizing hyperparameters are
dependent on the SFINGE database, which accounts for variations in quality. These ob-
servations are supported by the number of neurons used in each artificial intelligence
approach, as detailed in Table 5. As anticipated, learning time is directly proportional to
the model’s parameters. Considering the dual objectives of simplicity and performance,
the proposed ELM-M3 emerges as the most viable alternative for fingerprint classification.

While deeper architectures like ELM-M3 may offer improvements in classification ac-
curacy, it is important to consider the trade-offs associated with their increased complexity.
For example, longer training times and a higher number of hidden neurons may result
in higher inference times, especially in real-time systems. The ELM-M3 model employs
1250 hidden neurons distributed across three layers, which contributes to its improved
performance. However, the increased complexity also comes with higher computational
costs. This trade-off is particularly relevant when considering real-world applications,
where inference time and system efficiency are critical. On the other hand, when comparing
the results obtained by the ELM with three hidden layers with the work of Zabala et al. [13],
an improvement of 0.034 in accuracy is observed. However, the penetration rate of the pro-
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posed model is 0.0036 lower than that reported in [13]. This discrepancy can be attributed
to differences in the learning approaches: the current work does not account for unbalanced
learning where classes have varying probabilities of occurrence, whereas the approach
proposed in [13] does. Furthermore, the optimization criterion in this study is based on raw
accuracy, while that proposed in [13] optimizes performance using the geometric mean,
considering class-specific averages. When comparing training times, the proposed ELM-M3
demonstrates substantial improvements, underscoring its computational efficiency. This is
further validated by the number of hidden nodes in the architectures: the ELM-M3 employs
1250 hidden nodes (N1 = 250, N2 = 250, N3 = 750), whereas the model proposed in [13]
utilizes 5000 hidden nodes. Thus, the reduced complexity of ELM-M3 offers a notable
advantage in terms of computational cost.

Table 6 presents a comparison of testing times for the best proposed methodology
and state-of-the-art approaches. Unfortunately, Peralta’s manuscript does not report these
times, and replicating his work is challenging due to the use of a high-performance compu-
tational architecture.
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Figure 14. Confusion matrices for the ELM-M2 and ELM-M3 models.

Table 4. Evaluation of the computational times of the training of the best methodologies found in this
work and other noteworthy approaches in the literature.

Hong08 and Original ELM Hong08 and ELM-M2 Hong08 and ELM-M3 Zabala-Blanco20 [13] Peralta18 [10]

Default 1.0259 (±0.0633) 3.5320 (±0.2037) 2.5688 (±0.1205) 18.7819 (±0.3542) 957

HQNoPert 1.0545 (±0.0757) 3.6884 (±0.1506) 1.5860 (±0.0757) 18.8498 (±0.6013) 960

VQAndPert 1.0963 (±0.0531) 3.3228 (±0.1027) 3.0118 (±0.2172) 15.5062 (±0.3279) 960

Table 5. Number of total hidden neurons.

Hong08 and Original ELM Hong08 and ELM-M2 Hong08 and ELM-M3 Zabala-Blanco20 [13] Peralta18 [10]

Default 2000 (N1 = 2000) 2000 (N1 = 1000 + N2 = 1000) 1500 (N1 = 250 + N2 = 250 + N3 = 1000) 5000 (N1 = 5000) 14,875

HQNoPert 2000 (N1 = 2000) 2000 (N1 = 1000 + N2 = 1000) 1250 (N1 = 250 + N2 = 250 + N3 = 750) 5000 (N1 = 5000) 14,875

VQAndPert 2000 (N1 = 2000) 2000 (N1 = 1000 + N2 = 1000) 2250 (N1 = 750 + N2 = 750 + N3 = 750) 5000 (N1 = 5000) 14,875

Table 6. Evaluation of the computational testing times of the best methodologies found in this work
and other noteworthy approaches in the literature.

Hong08 and ELM-M3 Zabala-Blanco20 [13] Peralta18 [10]

HQNoPert 1.5827 2.6321 not reported
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6. Conclusions and Future Works
The continuous growth of the human population has led to a corresponding increase

in the size of fingerprint databases, resulting in billions of records and significantly slowing
down fingerprint recognition processes. In this context, fingerprint classification serves
as an effective preprocessing step to reduce the response times of biometric fingerprint
systems. It is worth noting that fingerprint classification is a natural process, given that fin-
gerprints can be categorized into five distinct classes. CNNs are currently the most accurate
tools for fingerprint classification, achieving nearly 100% accuracy. However, their high
computational cost and reliance on high-performance hardware make them impractical for
widespread use. This manuscript introduces an alternative approach for fingerprint classi-
fication aimed at person recognition. The proposed method achieves competitive accuracy
while minimizing computational costs, employing two- and three-hidden-layer ELMs, both
based on the M-ELM architecture. These models significantly reduce training time—on
the order of seconds—compared to state-of-the-art approaches reported in the literature.
Additionally, computational resource requirements are substantially lowered, enabling
the use of standard commercial machines without the need for high-performance GPUs.
The results demonstrate that the three-layer ELM achieves the best accuracy while main-
taining low computational costs and minimal training times. However, a slight decrease in
TP rates is observed compared to the literature methods. The approach proposed in this
study outperforms the unbalanced ELM described by Zabala et al. [13], both in terms of
performance and complexity. The comparison with the method proposed by Zabala-Blanco
et al. [13] is particularly relevant, as their method has shown excellent results on small- to
medium-sized databases (1000 to 3000 samples).

In the literature, two commonly recognized databases for evaluating fingerprint veri-
fication algorithms are NIST [6,23,27,29,34,37–39] and FVC [1,7,23,27,33,54–58]. However,
the NIST database presents significant limitations due to its balanced classes, making it
unsuitable for real-world data scenarios; therefore, its use can be disregarded. On the
other hand, the FVC database could be considered in future work to validate our results,
although it also has challenges. Its main drawback is the limited number of samples (less
than 800 per version), which reduces the robustness of experiments, and it does not address
a five-class classification problem, an important aspect to consider when developing more
complex verification models (to reduce the penetration rate).

Future work will focus on developing faster M-ELM approaches using numerical meth-
ods to optimize the computation of weights in the hidden and output layers of the ELM-AE.
Heuristic optimization techniques will also be explored to fine tune all hyperparameters of
the M-ELM, further improving performance and reducing computational costs. Additionally,
testing will be conducted on larger databases emulating real-world scenarios such as the
populations of countries like Chile (19 million), Spain (47 million), and Germany (83 million).
Another promising avenue involves integrating the unbalanced learning approach of Za-
bala et al. [13] into the final layer of the M-ELM to maximize performance on unbalanced
datasets. A comparative analysis of computational costs will also be carried out using consis-
tent software and hardware configurations across different ELM models in order to provide
irrefutable evidence of the advantages of M-ELM in terms of efficiency and scalability.
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ELM-AE Extreme learning machine autoencoder
M-ELM Multilayer extreme learning machine
W-ELM Unbalanced extreme learning machines
ELM-M3 Three-layer ELM
SVM Support vector machine
CNN Convolutional neural network
NIST National Institute of Standards and Technologies
FVC Fingerprint verification competition
OM Orientation map
SFINGE Synthetic fingerprint generator
RELU Rectified linear unit
G-mean Geometric mean
Exac Root mean square error
PR Absolute error of the penetration rate
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RF Random forest
DB Database
SGD Stochastic gradient descent
CDF Center-to-delta flow
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CT Curvelet transform
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HQNoPert High-quality no perturbations
VQandPert Varying quality and perturbations
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