Comparative Studies on Nanocellulose as a Bio-Based Consolidating Agent for Ancient Wood
<p>SEM micrograph of CNC.</p> "> Figure 2
<p>FTIR spectrum of CNC.</p> "> Figure 3
<p>Wood samples treated with CNC (A), Paraloid B-72 (B), and Regalrez 1126 (C), and samples untreated (NT) during the processes of impregnation: (<b>1</b>) before treatment; (<b>2</b>) immediately after; (<b>3</b>) after 19 h; and (<b>4</b>) after 50 days.</p> "> Figure 4
<p>Detailed images of samples treated with (<b>a</b>) CNC, (<b>b</b>) Paraloid B-72, and (<b>c</b>) Regalrez 1126, immediately after application.</p> "> Figure 5
<p>Reflected light microscope images of samples that were not-treated (NT) and those treated with CNC (A), Paraloid B-72 (B), and Regalrez 1126 (C). Images with UV light and 5× magnification (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>); images with visible light and 2.5× magnification (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>). White arrows indicate in all samples the signs of degradation due to the action of xylophagous insects.</p> "> Figure 6
<p>Reflectance spectra of untreated (NT) and treated samples (CNC, Paraloid B-72, Regalrez 1126), acquired in SCI and SCE mode 24 h after the consolidation treatment.</p> "> Figure 7
<p>Reflectance spectra of untreated (NT) and treated samples (CNC, Paraloid B-72, Regalrez 1126), acquired in SCI and SCE mode, one month after the consolidation treatment.</p> "> Figure 8
<p>Reflectance spectra of untreated (NT) and treated samples (CNC, Paraloid B-72, Regalrez 1126), acquired in SCI and SCE mode, three years after the first consolidating treatment.</p> "> Figure 9
<p>Reflectance spectra of untreated (NT) and treated samples (CNC, Paraloid B-72, Regalrez 1126), acquired in SCI and SCE mode, one week after the second consolidating treatment, carried out three years after the first treatment.</p> "> Figure 10
<p>SEM images of untreated wood sample; cross section in correspondence of a woodworm hole (<b>a</b>); longitudinal sections (<b>b</b>,<b>c</b>); magnification of a fiber channel (<b>c</b>).</p> "> Figure 11
<p>SEM images of untreated sample (<b>1</b>) and of the consolidant coating films of CNC (<b>2</b>), Paraloid B-72 (<b>3</b>), and Regalrez 1126 (<b>4</b>).</p> "> Figure 12
<p>SEM images of longitudinal section of wood samples, where it is possible to see the fibers channels: untreated sample (<b>1</b>); sample treated with CNC (<b>2</b>), Paraloid B-72 (<b>3</b>), Regalrez 1126 (<b>4</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Aqueous suspension of cellulose nanocrystals (CNC), used as synthesized;
- Paraloid B-72 and Regalrez 1126 were dissolved in 10% acetone and in 15% white spirit, respectively, and applied.
2.2. Scanning Electron Microscopy (SEM) Characterization
2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Conductometry and pH Evaluation
2.5. Optical Microscopy
2.6. Colorimetric Analysis
3. Results and Discussion
3.1. CNC Characterizations
3.2. Characterization of Treated Degraded Wood Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mokhena, T.C.; John, M.J. Cellulose Nanomaterials: New Generation Materials for Solving Global Issues. Cellulose 2020, 27, 1149–1194. [Google Scholar] [CrossRef]
- Green Nanomaterials: Processing, Properties, and Applications; Ahmed, S.; Ali, W. (Eds.) Advanced Structured Materials; Springer: Singapore, 2020; Volume 126. [Google Scholar] [CrossRef]
- Dhali, K.; Ghasemlou, M.; Daver, F.; Cass, P.; Adhikari, B. A Review of Nanocellulose as a New Material towards Environmental Sustainability. Sci. Total Environ. 2021, 775, 145871. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Mishra, R.K.; Sabu, A.; Tiwari, S.K. Materials Chemistry and the Futurist Eco-Friendly Applications of Nanocellulose: Status and Prospect. J. Saudi Chem. Soc. 2018, 22, 949–978. [Google Scholar] [CrossRef]
- Hernández-Varela, J.D.; Chanona-Pérez, J.J.; Calderón Benavides, H.A.; Cervantes Sodi, F.; Vicente-Flores, M. Effect of Ball Milling on Cellulose Nanoparticles Structure Obtained from Garlic and Agave Waste. Carbohydr. Polym. 2021, 255, 117347. [Google Scholar] [CrossRef] [PubMed]
- Potenza, M.; Bergamonti, L.; Lottici, P.P.; Righi, L.; Lazzarini, L.; Graiff, C. Green Extraction of Cellulose Nanocrystals of Polymorph II from Cynara scolymus L.: Challenge for a “Zero Waste” Economy. Crystals 2022, 12, 672. [Google Scholar] [CrossRef]
- Kumar, R.; Rai, B.; Gahlyan, S.; Kumar, G. A Comprehensive Review on Production, Surface Modification and Characterization of Nanocellulose Derived from Biomass and Its Commercial Applications. Express Polym. Lett. 2021, 15, 104–120. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941. [Google Scholar] [CrossRef]
- Chu, Y.; Sun, Y.; Wu, W.; Xiao, H. Dispersion Properties of Nanocellulose: A Review. Carbohydr. Polym. 2020, 250, 116892. [Google Scholar] [CrossRef]
- Fornari, A.; Rossi, M.; Rocco, D.; Mattiello, L. A Review of Applications of Nanocellulose to Preserve and Protect Cultural Heritage Wood, Paintings, and Historical Papers. Appl. Sci. 2022, 12, 12846. [Google Scholar] [CrossRef]
- Hamed, S.A.A.K.M.; Hassan, M.L. A New Mixture of Hydroxypropyl Cellulose and Nanocellulose for Wood Consolidation. J. Cult. Herit. 2019, 35, 140–144. [Google Scholar] [CrossRef]
- Vineeth, S.K.; Gadhave, R.V.; Gadekar, P.T. Chemical Modification of Nanocellulose in Wood Adhesive: Review. OJPChem 2019, 9, 86–99. [Google Scholar] [CrossRef]
- Bridarolli, A.; Nechyporchuk, O.; Odlyha, M.; Oriola, M.; Bordes, R.; Holmberg, K.; Anders, M.; Chevalier, A.; Bozec, L. Nanocellulose-Based Materials for the Reinforcement of Modern Canvas-Supported Paintings. Stud. Conserv. 2018, 63 (Suppl. S1), 332–334. [Google Scholar] [CrossRef]
- Antonelli, F.; Galotta, G.; Sidoti, G.; Zikeli, F.; Nisi, R.; Davidde Petriaggi, B.; Romagnoli, M. Cellulose and Lignin Nano-Scale Consolidants for Waterlogged Archaeological Wood. Front. Chem. 2020, 8, 32. [Google Scholar] [CrossRef]
- Xu, Q.; Poggi, G.; Resta, C.; Baglioni, M.; Baglioni, P. Grafted Nanocellulose and Alkaline Nanoparticles for the Strengthening and Deacidification of Cellulosic Artworks. J. Colloid. Interface Sci. 2020, 576, 147–157. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Kolman, K.; Bridarolli, A.; Odlyha, M.; Bozec, L.; Oriola, M.; Campo-Francés, G.; Persson, M.; Holmberg, K.; Bordes, R. On the Potential of Using Nanocellulose for Consolidation of Painting Canvases. Carbohydr. Polym. 2018, 194, 161–169. [Google Scholar] [CrossRef]
- Bergamonti, L.; Berzolla, A.; Chiappini, E.; Feci, E.; Maistrello, L.; Palanti, S.; Predieri, G.; Vaccari, G. Polyamidoamines (PAAs) Functionalized with Siloxanes as Wood Preservatives against Fungi and Insects. Holzforschung 2017, 71, 65–75. [Google Scholar] [CrossRef]
- Chelazzi, D.; Giorgi, R.; Baglioni, P. Microemulsions, Micelles, and Functional Gels: How Colloids and Soft Matter Preserve Works of Art. Angew. Chem. Int. Ed. 2018, 57, 7296–7303. [Google Scholar] [CrossRef]
- Giorgi, R.; Dei, L.; Ceccato, M.; Schettino, C.; Baglioni, P. Nanotechnologies for Conservation of Cultural Heritage: Paper and Canvas Deacidification. Langmuir 2002, 18, 8198–8203. [Google Scholar] [CrossRef]
- Poggi, G.; Toccafondi, N.; Chelazzi, D.; Canton, P.; Giorgi, R.; Baglioni, P. Calcium Hydroxide Nanoparticles from Solvothermal Reaction for the Deacidification of Degraded Waterlogged Wood. J. Colloid. Interface Sci. 2016, 473, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Teri, G.-L.; Chao, X.-L.; Li, J.; Li, Y.-H.; Yang, H. Modified Graphene-FEVE Composite Coatings: Application in the Repair of Ancient Architectural Color Paintings. Coatings 2020, 10, 1162. [Google Scholar] [CrossRef]
- Imchalee, N.; Meesupthong, R.; Torgbo, S.; Sukyai, P. Cellulose Nanocrystals as Sustainable Material for Enhanced Painting Efficiency of Watercolor Paint. Surf. Interfaces 2021, 27, 101570. [Google Scholar] [CrossRef]
- Kolman, K.; Nechyporchuk, O.; Persson, M.; Holmberg, K.; Bordes, R. Combined Nanocellulose/Nanosilica Approach for Multiscale Consolidation of Painting Canvases. ACS Appl. Nano Mater. 2018, 1, 2036–2040. [Google Scholar] [CrossRef]
- Basile, R.; Bergamonti, L.; Fernandez, F.; Graiff, C.; Haghighi, A.; Isca, C.; Lottici, P.P.; Pizzo, B.; Predieri, G. Bio-Inspired Consolidants Derived from Crystalline Nanocellulose for Decayed Wood. Carbohydr. Polym. 2018, 202, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Camargos, C.H.M.; Poggi, G.; Chelazzi, D.; Baglioni, P.; Rezende, C.A. Protective Coatings Based on Cellulose Nanofibrils, Cellulose Nanocrystals, and Lignin Nanoparticles for the Conservation of Cellulosic Artifacts. ACS Appl. Nano Mater. 2022, 5, 13245–13259. [Google Scholar] [CrossRef]
- Younis, O.; El-Hadidi, N.; Darwish, S.; Mohamed, M. Enhancing the Mechanical Strength of Klucel E/Cnc Composites for the Conservation of Wooden Artifacts. Egypt. J. Archaeol. Restor. Stud. 2023, 13, 13–26. [Google Scholar] [CrossRef]
- Younis, O.; El-Hadidi, N.M.N.; Darwish, S.S.; Mohamed, M.F. Cellulose-Based Materials for The Consolidation of Archaeological Wooden Artifacts: Review Article. Adv. Res. Conserv. Sci. 2024, 5, 42–63. [Google Scholar] [CrossRef]
- Kryg, P.; Mazela, B.; Perdoch, W.; Broda, M. Challenges and Prospects of Applying Nanocellulose for the Conservation of Wooden Cultural Heritage—A Review. Forests 2024, 15, 1174. [Google Scholar] [CrossRef]
- UNIEN 15886:2010; Conservation of Cultural Property—Test Methods—Colour Measurement of Surfaces. Ente Nazionale Italiano di Unificazione (UNI): Roma, Italy, 2010.
- Mekonnen, T.H.; Haile, T.; Ly, M. Hydrophobic Functionalization of Cellulose Nanocrystals for Enhanced Corrosion Resistance of Polyurethane Nanocomposite Coatings. Appl. Surf. Sci. 2021, 540, 148299. [Google Scholar] [CrossRef]
- Wulandari, W.T.; Rochliadi, A.; Arcana, I.M. Nanocellulose Prepared by Acid Hydrolysis of Isolated Cellulose from Sugarcane Bagasse. In Proceedings of the IOP Conference Series: Materials Science and Engineering, 10th Joint Conference on Chemistry, Solo, Indonesia, 8–9 September 2015; Volume 107, p. 012045. [Google Scholar] [CrossRef]
- Khanjanzadeh, H.; Behrooz, R.; Bahramifar, N.; Gindl-Altmutter, W.; Bacher, M.; Edler, M.; Griesser, T. Surface Chemical Functionalization of Cellulose Nanocrystals by 3-Aminopropyltriethoxysilane. Int. J. Biol. Macromol. 2018, 106, 1288–1296. [Google Scholar] [CrossRef]
- Broda, M.; Popescu, C.-M.; Curling, S.F.; Timpu, D.I.; Ormondroyd, G.A. Effects of Biological and Chemical Degradation on the Properties of Scots Pine Wood—Part I: Chemical Composition and Microstructure of the Cell Wall. Materials 2022, 15, 2348. [Google Scholar] [CrossRef] [PubMed]
- Fackler, K.; Schwanninger, M. How Spectroscopy and Microspectroscopy of Degraded Wood Contribute to Understand Fungal Wood Decay. Appl. Microbiol. Biotechnol. 2012, 96, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, B.; Pecoraro, E.; Sozzi, L.; Salvini, A. Collapsed and Re-Swollen Archaeological Wood: Efficiency and Effects on the Chemical and Viscoelastic Characteristics of Wood. J. Cult. Herit. 2021, 51, 79–88. [Google Scholar] [CrossRef]
- Pizzo, B.; Pecoraro, E.; Alves, A.; Macchioni, N.; Rodrigues, J.C. Quantitative Evaluation by Attenuated Total Reflectance Infrared (ATR-FTIR) Spectroscopy of the Chemical Composition of Decayed Wood Preserved in Waterlogged Conditions. Talanta 2015, 131, 14–20. [Google Scholar] [CrossRef] [PubMed]
Sample | Before | After 19 h | After 1 Month |
---|---|---|---|
A1 | 1.343 g | 1.356 g | 1.342 g |
A2 | 1.021 g | 1.031 g | 1.020 g |
A3 | 1.301 g | 1.312 g | 1.298 g |
B1 | 1.280 g | 1.406 g | 1.392 g |
B2 | 1.305 g | 1.408 g | 1.396 g |
B3 | 0.974 g | 1.061 g | 1.050 g |
C1 | 0.989 g | 1.073 g | 1.061 g |
C2 | 1.376 g | 1.529 g | 1.509 g |
C3 | 1.673 g | 1.791 g | 1.773 g |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
NT | SCI | 64.82 | 9.30 | 24.03 | ΔL | ΔC | ΔE | |
SCE | 64.71 | 9.34 | 24.12 | SCI | −0.84 | 0.32 | 0.90 | |
Nanocellulose TR | SCI | 63.98 | 9.04 | 24.21 | SCE | −0.85 | 0.33 | 0.91 |
SCE | 63.86 | 9.08 | 24.32 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
NT | SCI | 64.82 | 9.30 | 24.03 | ΔL | ΔC | ΔE | |
SCE | 64.71 | 9.34 | 24.12 | SCI | −13.58 | 6.68 | 15.14 | |
Paraloid B72 TR | SCI | 51.24 | 14.07 | 28.71 | SCE | −13.74 | 6.81 | 15.34 |
SCE | 50.97 | 14.17 | 28.92 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
NT | SCI | 64.82 | 9.30 | 24.03 | ΔL | ΔC | ΔE | |
SCE | 64.71 | 9.34 | 24.12 | SCI | −12.90 | 4.13 | 13.54 | |
Regalrez 1126 TR | SCI | 51.92 | 13.08 | 25.70 | SCE | −13.00 | 4.17 | 13.66 |
SCE | 51.71 | 13.15 | 25.81 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
NT POST | SCI | 63.06 | 9.41 | 23.30 | ΔL | ΔC | ΔE | |
SCE | 62.99 | 9.43 | 23.38 | SCI | −1.29 | 0.57 | 1.41 | |
Nanocellulose POST | SCI | 61.77 | 9.06 | 23.75 | SCE | −1.31 | 0.58 | 1.43 |
SCE | 61.68 | 9.09 | 23.84 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
NT POST | SCI | 63.06 | 9.41 | 23.30 | ΔL | ΔC | ΔE | |
SCE | 62.99 | 9.43 | 23.38 | SCI | −11.18 | 4.62 | 12.10 | |
Paraloid B72 POST | SCI | 51.88 | 12.96 | 26.25 | SCE | −11.29 | 4.66 | 12.21 |
SCE | 51.70 | 13.01 | 26.36 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
NT POST | SCI | 63.06 | 9.41 | 23.30 | ΔL | ΔC | ΔE | |
SCE | 62.99 | 9.43 | 23.38 | SCI | −10.66 | 4.92 | 11.74 | |
Regalrez 1126 POST | SCI | 52.40 | 12.99 | 26.68 | SCE | −10.69 | 4.94 | 11.78 |
SCE | 52.30 | 13.03 | 26.75 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
NT PRE | SCI | 64.82 | 9.30 | 24.03 | ΔL | ΔC | ΔE | |
SCE | 64.71 | 9.34 | 24.12 | SCI | −1.76 | 0.74 | 1.91 | |
NT POST | SCI | 63.06 | 9.41 | 23.30 | SCE | −1.72 | 0.75 | 1.88 |
SCE | 62.99 | 9.43 | 23.38 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Nanocellulose PRE | SCI | 63.98 | 9.04 | 24.21 | ΔL | ΔC | ΔE | |
SCE | 63.86 | 9.08 | 24.32 | SCI | −2.21 | 0.47 | 2.26 | |
Nanocellulose POST | SCI | 61.77 | 9.06 | 23.75 | SCE | −2.18 | 0.48 | 2.23 |
SCE | 61.68 | 9.09 | 23.84 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Paraloid B72 PRE | SCI | 51.24 | 14.07 | 28.71 | ΔL | ΔC | ΔE | |
SCE | 50.97 | 14.17 | 28.92 | SCI | 0.64 | 2.69 | 2.77 | |
Paraloid B72 POST | SCI | 51.88 | 12.96 | 26.25 | SCE | 0.73 | 2.81 | 2.91 |
SCE | 51.70 | 13.01 | 26.36 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Regalrez 1126 PRE | SCI | 51.92 | 13.08 | 25.70 | ΔL | ΔC | ΔE | |
SCE | 51.71 | 13.15 | 25.81 | SCI | 0.48 | 0.99 | 1.10 | |
Regalrez 1126 POST | SCI | 52.40 | 12.99 | 26.68 | SCE | 0.59 | 0.95 | 1.12 |
SCE | 52.30 | 13.03 | 26.75 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
NT 2021 | SCI | 63.06 | 9.41 | 23.30 | ΔL | ΔC | ΔE | |
SCE | 62.99 | 9.43 | 23.38 | SCI | 1.88 | 1.64 | 2.50 | |
NT 2024 | SCI | 64.94 | 9.56 | 24.93 | SCE | 2.06 | 1.86 | 2.77 |
SCE | 65.05 | 9.64 | 25.22 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Nanocellulose 2021 | SCI | 61.77 | 9.06 | 23.75 | ΔL | ΔC | ΔE | |
SCE | 61.68 | 9.09 | 23.84 | SCI | 0.63 | 0.23 | 0.67 | |
Nanocellulose 2024 | SCI | 62.40 | 8.99 | 23.53 | SCE | 0.53 | 0.28 | 0.60 |
SCE | 62.21 | 9.02 | 23.58 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Paraloid B72 2021 | SCI | 51.88 | 12.96 | 26.25 | ΔL | ΔC | ΔE | |
SCE | 51.70 | 13.01 | 26.36 | SCI | −0.42 | 5.54 | 5.56 | |
Paraloid B72 2024 | SCI | 51.46 | 15.43 | 31.21 | SCE | −0.38 | 5.54 | 5.55 |
SCE | 51.32 | 15.47 | 31.32 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Regalrez 1126 2021 | SCI | 52.40 | 12.99 | 26.68 | ΔL | ΔC | ΔE | |
SCE | 52.30 | 13.03 | 26.75 | SCI | 1.25 | 4.47 | 4.65 | |
Regalrez 1126 2024 | SCI | 53.65 | 15.42 | 30.43 | SCE | 1.26 | 4.45 | 4.63 |
SCE | 53.55 | 15.46 | 30.49 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Nanocellulose PRE 2024 | SCI | 62.40 | 8.99 | 23.53 | ΔL | ΔC | ΔE | |
SCE | 62.21 | 9.02 | 23.58 | SCI | 0.34 | 2.88 | 2.90 | |
Nanocellulose POST 2024 | SCI | 62.75 | 9.81 | 26.29 | SCE | 0.38 | 2.96 | 2.98 |
SCE | 62.59 | 9.85 | 26.42 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Paraloid B72 PRE 2024 | SCI | 51.46 | 15.43 | 31.21 | ΔL | ΔC | ΔE | |
SCE | 51.32 | 15.47 | 31.32 | SCI | −2.35 | 1.23 | 2.65 | |
Paraloid B72 POST 2024 | SCI | 49.11 | 15.55 | 29.99 | SCE | −2.25 | 1.08 | 2.49 |
SCE | 49.07 | 15.64 | 30.25 |
L* (D65) | a* (D65) | b* (D65) | ||||||
---|---|---|---|---|---|---|---|---|
Regalrez 1126 PRE 2024 | SCI | 53.65 | 15.42 | 30.43 | ΔL | ΔC | ΔE | |
SCE | 53.55 | 15.46 | 30.49 | SCI | −2.48 | 1.85 | 3.09 | |
Regalrez 1126 POST 2024 | SCI | 51.17 | 14.57 | 28.80 | SCE | −2.44 | 1.90 | 3.09 |
SCE | 51.12 | 14.58 | 28.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornari, A.; Rocco, D.; Mattiello, L.; Bortolami, M.; Rossi, M.; Bergamonti, L.; Graiff, C.; Bani, S.; Morresi, F.; Pandolfi, F. Comparative Studies on Nanocellulose as a Bio-Based Consolidating Agent for Ancient Wood. Appl. Sci. 2024, 14, 7964. https://doi.org/10.3390/app14177964
Fornari A, Rocco D, Mattiello L, Bortolami M, Rossi M, Bergamonti L, Graiff C, Bani S, Morresi F, Pandolfi F. Comparative Studies on Nanocellulose as a Bio-Based Consolidating Agent for Ancient Wood. Applied Sciences. 2024; 14(17):7964. https://doi.org/10.3390/app14177964
Chicago/Turabian StyleFornari, Anastasia, Daniele Rocco, Leonardo Mattiello, Martina Bortolami, Marco Rossi, Laura Bergamonti, Claudia Graiff, Stefania Bani, Fabio Morresi, and Fabiana Pandolfi. 2024. "Comparative Studies on Nanocellulose as a Bio-Based Consolidating Agent for Ancient Wood" Applied Sciences 14, no. 17: 7964. https://doi.org/10.3390/app14177964