Challenges and Prospects of Applying Nanocellulose for the Conservation of Wooden Cultural Heritage—A Review †
"> Figure 1
<p>Examples of industrial applications of cellulose and its derivatives (based on [<a href="#B30-forests-15-01174" class="html-bibr">30</a>,<a href="#B31-forests-15-01174" class="html-bibr">31</a>,<a href="#B32-forests-15-01174" class="html-bibr">32</a>,<a href="#B33-forests-15-01174" class="html-bibr">33</a>,<a href="#B34-forests-15-01174" class="html-bibr">34</a>,<a href="#B35-forests-15-01174" class="html-bibr">35</a>,<a href="#B36-forests-15-01174" class="html-bibr">36</a>]).</p> "> Figure 2
<p>Examples of physical wood damage caused by insects: (<b>A</b>,<b>D</b>)—ants, (<b>B</b>,<b>C</b>)—woodworms.</p> ">
Abstract
:1. Introduction
2. Cellulose and Nanocellulose
2.1. Cellulose
2.2. Nanocellulose
3. Wooden Cultural Heritage—Degradation Factors and Main Conservation Problems
3.1. Degradation of Wooden Artefacts
- -
- chemical, when quantitative and qualitative changes in wood chemical composition occur,
- -
- physical damage to the wood tissue, including swelling, shrinking, cracking, peeling, surface roughening, checking, colour changes, or holes and corridors caused by living organisms boring or gnawing on wood organic matter [70]. Figure 2 shows examples of physical damage caused by various insects to wood.
3.2. Conservation of Degraded Wood—Main Problems and Solutions
4. Nanocellulose for the Protection of Cultural Heritage
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tesser, R.; Vitiello, R.; Russo, V.; Turco, R.; Di Serio, M.; Lin, L.; Li, C. Oleochemistry Products. In Industrial Oil Plant: Application Principles and Green Technologies; Li, C., Xiao, Z., He, L., Serio, M.D., Xie, X., Eds.; Springer: Singapore, 2020; pp. 201–268. ISBN 9789811549205. [Google Scholar]
- Jang, D.; Woo, K.; Shim, B.S. Renewable Materials. In Disposable and Flexible Chemical Sensors and Biosensors Made with Renewable Materials; World Scientific (Europe): London, UK, 2017; pp. 9–45. ISBN 978-1-78634-386-4. [Google Scholar]
- Muneer, F.; Nadeem, H.; Arif, A.; Zaheer, W. Bioplastics from Biopolymers: An Eco-Friendly and Sustainable Solution of Plastic Pollution. Polym. Sci. Ser. C 2021, 63, 47–63. [Google Scholar] [CrossRef]
- Balador, Z.; Gjerde, M.; Isaacs, N.; Imani, M. Thermal and Acoustic Building Insulations from Agricultural Wastes. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–20. ISBN 978-3-319-48281-1. [Google Scholar]
- Brito, T.B.N.; Ferreira, M.S.L.; Fai, A.E.C. Utilization of Agricultural By-Products: Bioactive Properties and Technological Applications. Food Rev. Int. 2022, 38, 1305–1329. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, Y.; Lu, X.; Zhang, X.P.; He, H.; Pan, F.; Zhou, L.; Liu, X.; Ji, X.; Zhang, S. Cascade Utilization of Lignocellulosic Biomass to High-Value Products. Green Chem. 2019, 21, 3499–3535. [Google Scholar] [CrossRef]
- Broda, M.; Yelle, D.J.; Serwańska-Leja, K. Biodegradable Polymers in Veterinary Medicine—A Review. Molecules 2024, 29, 883. [Google Scholar] [CrossRef] [PubMed]
- Dingley, C.; Cass, P.; Adhikari, B.; Daver, F. Application of Superabsorbent Natural Polymers in Agriculture. Polym. Renew. Resour. 2024, 15, 210–255. [Google Scholar] [CrossRef]
- Angaria, N.; Saini, S.; Hussain, M.S.; Sharma, S.; Singh, G.; Khurana, N.; Kumar, R. Natural Polymer-Based Hydrogels: Versatile Biomaterials for Biomedical Applications. Int. J. Polym. Mater. Polym. Biomater. 2024. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural Fibers as Reinforcement Additives for Geopolymers—A Review of Potential Eco-Friendly Applications to the Construction Industry. Sustain. Mater. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H.; et al. Catalytic Conversion of Lignocellulosic Biomass into Chemicals and Fuels. Green Energy Environ. 2023, 8, 10–114. [Google Scholar] [CrossRef]
- Kouhi, M.; Prabhakaran, M.P.; Ramakrishna, S. Edible Polymers: An Insight into Its Application in Food, Biomedicine and Cosmetics. Trends Food Sci. Technol. 2020, 103, 248–263. [Google Scholar] [CrossRef]
- Walsh-Korb, Z. Sustainability in Heritage Wood Conservation: Challenges and Directions for Future Research. Forests 2022, 13, 18. [Google Scholar] [CrossRef]
- Martin The Sustainable Development Agenda. United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 10 May 2024).
- Walsh-Korb, Z.; Stelzner, I.; dos Santos Gabriel, J.; Eggert, G.; Avérous, L. Morphological Study of Bio-Based Polymers in the Consolidation of Waterlogged Wooden Objects. Materials 2022, 15, 681. [Google Scholar] [CrossRef] [PubMed]
- Passaretti, A.; Cuvillier, L.; Sciutto, G.; Guilminot, E.; Joseph, E. Biologically Derived Gels for the Cleaning of Historical and Artistic Metal Heritage. Appl. Sci. 2021, 11, 3405. [Google Scholar] [CrossRef]
- Infurna, G.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Dintcheva, N.T. Understanding the Effects of Crosslinking and Reinforcement Agents on the Performance and Durability of Biopolymer Films for Cultural Heritage Protection. Molecules 2021, 26, 3468. [Google Scholar] [CrossRef] [PubMed]
- Caruso, M.R.; D’Agostino, G.; Milioto, S.; Cavallaro, G.; Lazzara, G. A Review on Biopolymer-Based Treatments for Consolidation and Surface Protection of Cultural Heritage Materials. J. Mater. Sci. 2023, 58, 12954–12975. [Google Scholar] [CrossRef]
- Bassi, M.; Sassoni, E.; Franzoni, E. Experimental Study on an Innovative Biopolymeric Treatment Against Salt Deterioration of Materials in Cultural Heritage. Front. Mater. 2021, 8, 583112. [Google Scholar] [CrossRef]
- Broda, M.; Hill, C.A. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Sonaglia, E.; Schifano, E.; Sharbaf, M.; Uccelletti, D.; Felici, A.C.; Santarelli, M.L. Bacterial Nanocellulose Hydrogel for the Green Cleaning of Copper Stains from Marble. Gels 2024, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, L.; D’Orsi, R.; Operamolla, A. Nanocellulose for Paper and Textile Coating: The Importance of Surface Chemistry. ChemPlusChem 2022, 87, e202200204. [Google Scholar] [CrossRef] [PubMed]
- Fornari, A.; Rossi, M.; Rocco, D.; Mattiello, L. A Review of Applications of Nanocellulose to Preserve and Protect Cultural Heritage Wood, Paintings, and Historical Papers. Appl. Sci. 2022, 12, 12846. [Google Scholar] [CrossRef]
- Cianci, C.; Chelazzi, D.; Poggi, G.; Modi, F.; Giorgi, R.; Laurati, M. Hybrid Fibroin-Nanocellulose Composites for the Consolidation of Aged and Historical Silk. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127944. [Google Scholar] [CrossRef]
- Laserna, O.G.; Zarandona, I.; Romani, M.; Caruso, F.; Nualart-Torroja, A.; Martí, A.P.; Frøysaker, T.; Cutajar, J.D.; Lizundia, E.; Maguregui, M. Nanocellulose Aerogels and Hydrogels as New Generation Materials for The Green Transition in Painting Conservation. In Proceedings of the Chemistry for Cultural Heritage, Bratislava, Slovakia, 2 July 2024; p. 67. [Google Scholar]
- Bridarolli, A.; Nechyporchuk, O.; Odlyha, M.; Oriola, M.; Bordes, R.; Holmberg, K.; Anders, M.; Chevalier, A.; Bozec, L. Nanocellulose-Based Materials for the Reinforcement of Modern Canvas-Supported Paintings. Stud. Conserv. 2018, 63, 332–334. [Google Scholar] [CrossRef]
- Xu, Q.; Poggi, G.; Resta, C.; Baglioni, M.; Baglioni, P. Grafted Nanocellulose and Alkaline Nanoparticles for the Strengthening and Deacidification of Cellulosic Artworks. J. Colloid Interface Sci. 2020, 576, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Farooq, A.; Patoary, M.K.; Zhang, M.; Mussana, H.; Li, M.; Naeem, M.A.; Mushtaq, M.; Farooq, A.; Liu, L. Cellulose from Sources to Nanocellulose and an Overview of Synthesis and Properties of Nanocellulose/Zinc Oxide Nanocomposite Materials. Int. J. Biol. Macromol. 2020, 154, 1050–1073. [Google Scholar] [CrossRef] [PubMed]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Jamsheera, C.P.; Pradeep, B.V. Production of Bacterial Cellulose from Acetobacter Species and Its Applications—A Review. J. Pure Appl. Microbiol. 2021, 15, 544–555. [Google Scholar] [CrossRef]
- El-Gendi, H.; Taha, T.H.; Ray, J.B.; Saleh, A.K. Recent Advances in Bacterial Cellulose: A Low-Cost Effective Production Media, Optimization Strategies and Applications. Cellulose 2022, 29, 7495–7533. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Liu, K.; Nie, S.; Xu, T.; Zhang, X.; Si, C. Fabrication and Applications of Cellulose-Based Nanogenerators. Adv. Compos. Hybrid Mater. 2021, 4, 865–884. [Google Scholar] [CrossRef]
- Chen, Z.; Aziz, T.; Sun, H.; Ullah, A.; Ali, A.; Cheng, L.; Ullah, R.; Khan, F.U. Advances and Applications of Cellulose Bio-Composites in Biodegradable Materials. J. Polym. Environ. 2023, 31, 2273–2284. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y.; Shen, Y.; Li, H. Research Progress on Chemical Modification and Application of Cellulose: A Review. Mater. Sci. 2022, 28, 60–67. [Google Scholar] [CrossRef]
- Song, S.; Li, H.; Liu, P.; Peng, X. Applications of Cellulose-Based Composites and Their Derivatives for Microwave Absorption and Electromagnetic Shielding. Carbohydr. Polym. 2022, 287, 119347. [Google Scholar] [CrossRef]
- Sepahvand, S.; Ashori, A.; Jonoobi, M. Application of Cellulose Nanofiber as a Promising Air Filter for Adsorbing Particulate Matter and Carbon Dioxide. Int. J. Biol. Macromol. 2023, 244, 125344. [Google Scholar] [CrossRef] [PubMed]
- Courtenay, J.C.; Sharma, R.I.; Scott, J.L. Recent Advances in Modified Cellulose for Tissue Culture Applications. Molecules 2018, 23, 654. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Gao, X.; Zhang, J.; Yu, J.; Zhang, J. Cellulose Nanosphere: Preparation and Applications of the Novel Nanocellulose. Carbohydr. Polym. 2022, 277, 118863. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Hussin, M.H.; Haafiz, M.K.; Thakur, V. Recent Progress in Cellulose Nanocrystals: Sources and Production. Nanoscale 2017, 9, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Choi, S.; Lee, J. Fabrication of Regenerated Cellulose Nanoparticles/Waterborne Polyurethane Nanocomposites. J. Appl. Polym. Sci. 2018, 135, 46633. [Google Scholar] [CrossRef]
- Qi, Y.; Guo, Y.; Liza, A.A.; Yang, G.; Sipponen, M.H.; Guo, J.; Li, H. Nanocellulose: A Review on Preparation Routes and Applications in Functional Materials. Cellulose 2023, 30, 4115–4147. [Google Scholar] [CrossRef]
- Nicu, R.; Ciolacu, F.; Ciolacu, D.E. Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics 2021, 13, 1125. [Google Scholar] [CrossRef]
- Rahmani, S.; Khoubi-Arani, Z.; Mohammadzadeh-Komuleh, S.; Maroufkhani, M. Electrospinning of Cellulose Nanofibers for Advanced Applications. In Handbook of Nanocelluloses; Springer: Cham, Switzerland, 2022; pp. 263–296. ISBN 978-3-030-89621-8. [Google Scholar]
- Campuzano, F.; Escobar, D.M.; Torres López, A.M. Simple Method for Obtaining Regenerated Cellulose Nanoparticles from Delignified Coffee Parchment, and Their Use in Fabricating Blended Films. Cellulose 2023, 30, 7681–7694. [Google Scholar] [CrossRef]
- Gorgieva, S.; Trček, J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials 2019, 9, 1352. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Hamid, N.H.A.; Ishak, K.A.; Norrrahim, M.N.F.; Thiagamani, S.M.K.; Rangappa, S.M.; Siengchin, S.; Bangar, S.P.; Nurazzi, N.M. 16—Advanced Applications of Biomass Nanocellulose-Reinforced Polymer Composites. In Synthetic and Natural Nanofillers in Polymer Composites; Nurazzi, N.M., Ilyas, R.A., Sapuan, S.M., Khalina, A., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2023; pp. 349–385. ISBN 978-0-443-19053-7. [Google Scholar]
- Joshi, G.; Shukla, S.R.; Chauhan, S.S. Nanocellulose Extraction from Lignocellulosic Materials and Its Potential Applications: A Review. J. Indian Acad. Wood Sci. 2023, 21, 1–23. [Google Scholar] [CrossRef]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zheng, H.; Duan, Y.; Xu, T.; Xie, H.; Du, H.; Si, C. Nanocellulose-Graphene Composites: Preparation and Applications in Flexible Electronics. Int. J. Biol. Macromol. 2023, 253, 126903. [Google Scholar] [CrossRef] [PubMed]
- Firmanda, A.; Fahma, F.; Warsiki, E.; Syamsu, K.; Arnata, I.W.; Sartika, D.; Suryanegara, L.; Qanytah; Suyanto, A. Antimicrobial Mechanism of Nanocellulose Composite Packaging Incorporated with Essential Oils. Food Control 2023, 147, 109617. [Google Scholar] [CrossRef]
- Yang, J.; Han, X.; Yang, W.; Hu, J.; Zhang, C.; Liu, K.; Jiang, S. Nanocellulose-Based Composite Aerogels toward the Environmental Protection: Preparation, Modification and Applications. Environ. Res. 2023, 236, 116736. [Google Scholar] [CrossRef] [PubMed]
- Seydibeyoğlu, M.Ö.; Dogru, A.; Wang, J.; Rencheck, M.; Han, Y.; Wang, L.; Seydibeyoğlu, E.A.; Zhao, X.; Ong, K.; Shatkin, J.A.; et al. Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers 2023, 15, 984. [Google Scholar] [CrossRef] [PubMed]
- Marakana, P.G.; Dey, A.; Saini, B. Isolation of Nanocellulose from Lignocellulosic Biomass: Synthesis, Characterization, Modification, and Potential Applications. J. Environ. Chem. Eng. 2021, 9, 106606. [Google Scholar] [CrossRef]
- Shavyrkina, N.A.; Budaeva, V.V.; Skiba, E.A.; Mironova, G.F.; Bychin, N.V.; Gismatulina, Y.A.; Kashcheyeva, E.I.; Sitnikova, A.E.; Shilov, A.I.; Kuznetsov, P.S.; et al. Scale-Up of Biosynthesis Process of Bacterial Nanocellulose. Polymers 2021, 13, 1920. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhou, W.; Quan, Y.; Chen, M.; Tian, Q.; Han, X.; Xu, J.; Chen, J. Facile and Green Synthesis of Nanocellulose with the Assistance of Ultraviolet Light Irradiation for High-Performance Quasi-Solid-State Zinc-Ion Batteries. J. Colloid Interface Sci. 2022, 628, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Wu, L.; Siciliano, A.P.; Chen, C.; Li, T.; Hu, L. The Critical Roles of Water in the Processing, Structure, and Properties of Nanocellulose. ACS Nano 2023, 17, 22196–22226. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Liu, H.; Liu, K.; Du, H.; Kumar, A.; Sharma, G.; Si, C. Recent Advances in Hydrophobic Modification of Nanocellulose. Curr. Org. Chem. 2021, 25, 417–436. [Google Scholar] [CrossRef]
- Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a Tiny Fiber with Huge Applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Jorfi, M.; Foster, E.J. Recent Advances in Nanocellulose for Biomedical Applications. J. Appl. Polym. Sci. 2015, 41719. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Naficy, S.; Chandrawati, R.; Dehghani, F. Nanocellulose for Sensing Applications. Adv. Mater. Interfaces 2019, 6, 1900424. [Google Scholar] [CrossRef]
- Perumal, A.B.; Nambiar, R.B.; Moses, J.A.; Anandharamakrishnan, C. Nanocellulose: Recent Trends and Applications in the Food Industry. Food Hydrocoll. 2022, 127, 107484. [Google Scholar] [CrossRef]
- Vineeth, S.K.; Gadhave, R.V.; Gadekar, P.T. Nanocellulose Applications in Wood Adhesives—Review. Open J. Polym. Chem. 2019, 9, 63. [Google Scholar] [CrossRef]
- Chugh, M.; Chandak, T.; Jha, S.; Rawtani, D. Chapter 13—Nanocellulose in Paper and Wood Industry. In Nanocellulose Materials; Oraon, R., Rawtani, D., Singh, P., Hussain, C.M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 247–264. ISBN 978-0-12-823963-6. [Google Scholar]
- Jasmani, L.; Rusli, R.; Khadiran, T.; Jalil, R.; Adnan, S. Application of Nanotechnology in Wood-Based Products Industry: A Review. Nanoscale Res. Lett. 2020, 15, 207. [Google Scholar] [CrossRef]
- Lengowski, E.C.; Bonfatti Júnior, E.A.; Kumode, M.M.N.; Carneiro, M.E.; Satyanarayana, K.G. Nanocellulose-Reinforced Adhesives for Wood-Based Panels. In Sustainable Polymer Composites and Nanocomposites; Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1001–1025. ISBN 978-3-030-05399-4. [Google Scholar]
- Kong, L.; Xu, D.; He, Z.; Wang, F.; Gui, S.; Fan, J.; Pan, X.; Dai, X.; Dong, X.; Liu, B.; et al. Nanocellulose-Reinforced Polyurethane for Waterborne Wood Coating. Molecules 2019, 24, 3151. [Google Scholar] [CrossRef]
- Kluge, M.; Veigel, S.; Pinkl, S.; Henniges, U.; Zollfrank, C.; Rössler, A.; Gindl-Altmutter, W. Nanocellulosic Fillers for Waterborne Wood Coatings: Reinforcement Effect on Free-Standing Coating Films. Wood Sci. Technol. 2017, 51, 601–613. [Google Scholar] [CrossRef]
- Arpaci, S.S.; Tomak, E.D.; Ermeydan, M.A.; Yildirim, I. Natural Weathering of Sixteen Wood Species: Changes on Surface Properties. Polym. Degrad. Stab. 2021, 183, 109415. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G. Wood-Water Relationships and Their Role for Wood Susceptibility to Fungal Decay. Appl. Microbiol. Biotechnol. 2020, 104, 3781–3795. [Google Scholar] [CrossRef]
- Feist, W.C. Outdoor Wood Weathering and Protection. In Archaeological Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1989; Volume 225, pp. 263–298. ISBN 978-0-8412-1623-5. [Google Scholar]
- Teacă, C.A.; Roşu, D.; Bodîrlău, R.; Roşu, L. Structural Changes in Wood under Artificial UV Light Irradiation Determined by FTIR Spectroscopy and Color Measurements–A Brief Review. BioResources 2013, 8, 1478–1507. [Google Scholar] [CrossRef]
- Blanchette, R.A. Microbial Degradation of Wood from Aquatic and Terrestrial Environments. In Cultural Heritage Microbiology: Fundamental Studies In Conservation Science; ASM Press: Washington, DC, USA, 2010; pp. 179–218. [Google Scholar]
- Björdal, C.G.; Daniel, G.; Nilsson, T. Depth of Burial, an Important Factor in Controlling Bacterial Decay of Waterlogged Archaeological Poles. Int. Biodeterior. Biodegrad. 2000, 45, 15–26. [Google Scholar] [CrossRef]
- Blanchette, R.A. A Review of Microbial Deterioration Found in Archaeological Wood from Different Environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef] [PubMed]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal Biodegradation and Enzymatic Modification of Lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36–50. [Google Scholar]
- Abdel-Hamid, A.M.; Solbiati, J.O.; Cann, I.K.O. Chapter One—Insights into Lignin Degradation and Its Potential Industrial Applications. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 82, pp. 1–28. [Google Scholar]
- Hadar, Y. Biodegradation of Aromatic Toxic Pollutants by White Rot Fungi. In Encyclopedia of Mycology; Zaragoza, Ó., Casadevall, A., Eds.; Elsevier: Oxford, UK, 2021; pp. 197–204. ISBN 978-0-323-85180-0. [Google Scholar]
- Langer, G.J.; Bußkamp, J.; Terhonen, E.; Blumenstein, K. Chapter 10—Fungi Inhabiting Woody Tree Tissues. In Forest Microbiology; Asiegbu, F.O., Kovalchuk, A., Eds.; Forest Microbiology; Academic Press: Cambridge, MA, USA, 2021; pp. 175–205. ISBN 978-0-12-822542-4. [Google Scholar]
- Zabel, R.A.; Morrell, J.J. Chapter Six—The Decay Setting: Some Structural, Chemical, and Moisture Features of Wood Features of Wood in Relation to Decay Development. In Wood Microbiology, 2nd ed.; Zabel, R.A., Morrell, J.J., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 149–183. ISBN 978-0-12-819465-2. [Google Scholar]
- Krajewski, A.; Witomski, P. Korozja Biologiczna Drewna Materialnych dóbr Kultury: Poradnik Konserwatorski; Wydawnictwo SGGW: Warsaw, Poland, 2012. [Google Scholar]
- Tláskal, V.; Brabcová, V.; Větrovský, T.; Jomura, M.; López-Mondéjar, R.; Oliveira Monteiro, L.M.; Saraiva, J.P.; Human, Z.R.; Cajthaml, T.; Nunes da Rocha, U.; et al. Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition. mSystems 2021, 6, e01078-20. [Google Scholar] [CrossRef]
- Blanchette, R.A.; Nilsson, T.; Daniel, G.; Abad, A. Biological Degradation of Wood. In Archaeological Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1989; Volume 225, pp. 141–174. ISBN 978-0-8412-1623-5. [Google Scholar]
- Barclay, R.; Mathias, C. An Epoxy/Microballoon Mixture for Gap Filling in Wooden Objects. J. Am. Inst. Conserv. 1989, 28, 31–42. [Google Scholar] [CrossRef]
- Baglioni, P.; Giorgi, R. Soft and Hard Nanomaterials for Restoration and Conservation of Cultural Heritage. Soft Matter 2006, 2, 293–303. [Google Scholar] [CrossRef]
- Schniewind, A.P. Consolidation of Dry Archaeological Wood by Impregnation with Thermoplastic Resins. In Archaeological Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1989; Volume 225, pp. 361–371. ISBN 978-0-8412-1623-5. [Google Scholar]
- Wang, Y.; Schniewind, A.P. Consolidation of Deteriorated Wood with Soluble Resins. J. Am. Inst. Conserv. 1985, 24, 77–91. [Google Scholar] [CrossRef]
- Sakuno, T.; Schniewind, A.P. Adhesive Qualities of Consolidants for Deteriorated Wood. J. Am. Inst. Conserv. 1990, 29, 33–44. [Google Scholar] [CrossRef]
- Muhcu, D.; Terzi, E.; Kartal, S.N.; Yoshimura, T. Biological Performance, Water Absorption, and Swelling of Wood Treated with Nano-Particles Combined with the Application of Paraloid B72®. J. For. Res. 2017, 28, 381–394. [Google Scholar] [CrossRef]
- Vasilca, S.; Virgolici, M.; Cutrubinis, M.; Moise, V.; Mereuta, P.; Sirbu, R.; Medvedovici, A.V. Wood Consolidation through an Epoxy-Acrylic Gamma-Crosslinked Three-Dimensional System. Polym. Adv. Technol. 2024, 35, e6381. [Google Scholar] [CrossRef]
- Avram, A.; Ionescu, C.S.; Lunguleasa, A. A Consolidation of Degraded Lime Wooden Support from Heritage Objects Using Two Types of Consolidant. BioResources 2023, 18, 4580–4597. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B.; Radka, K. Methyltrimethoxysilane as a Stabilising Agent for Archaeological Waterlogged Wood Differing in the Degree of Degradation. J. Cult. Herit. 2019, 35, 129–139. [Google Scholar] [CrossRef]
- Glastrup, J.; Shashoua, Y.; Egsgaard, H.; Mortensen, M.N. Degradation of PEG in the Warship Vasa. Macromol. Symp. 2006, 238, 22–29. [Google Scholar] [CrossRef]
- Hoffmann, P. On the Long-Term Visco-Elastic Behaviour of Polyethylene Glycol (PEG) Impregnated Archaeological Oak Wood. Holzforschung 2010, 64, 725–728. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Ke, D.; Wang, C.; Pan, H.; Chen, K.; Zhang, H. Modified Lignin Nanoparticles as Potential Conservation Materials for Waterlogged Archaeological Wood. ACS Appl. Nano Mater. 2023, 6, 12351–12363. [Google Scholar] [CrossRef]
- Antonelli, F.; Galotta, G.; Sidoti, G.; Zikeli, F.; Nisi, R.; Petriaggi, B.D.; Romagnoli, M. Cellulose and Lignin Nano-Scale Consolidants for Waterlogged Archaeological Wood. Front. Chem. 2020, 8, 32. [Google Scholar] [CrossRef]
- Cipriani, G.; Salvini, A.; Baglioni, P.; Bucciarelli, E. Cellulose as a Renewable Resource for the Synthesis of Wood Consolidants. J. Appl. Polym. Sci. 2010, 118, 2939–2950. [Google Scholar] [CrossRef]
- Christensen, M.; Larnøy, E.; Kutzke, H.; Hansen, F.K. Treatment of Waterlogged Archaeological Wood Using Chitosan-and Modified Chitosan Solutions. Part 1: Chemical Compatibility and Microstructure. J. Am. Inst. Conserv. 2015, 54, 3–13. [Google Scholar] [CrossRef]
- Walsh, Z.; Janeček, E.-R.; Jones, M.; Scherman, O.A. Natural Polymers as Alternative Consolidants for the Preservation of Waterlogged Archaeological Wood. Stud. Conserv. 2017, 62, 173–183. [Google Scholar] [CrossRef]
- Cipriani, G.; Salvini, A.; Fioravanti, M.; Di Giulio, G.; Malavolti, M. Synthesis of Hydroxylated Oligoamides for Their Use in Wood Conservation. J. Appl. Polym. Sci. 2013, 127, 420–431. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B.; Dutkiewicz, A. Organosilicon Compounds with Various Active Groups as Consolidants for the Preservation of Waterlogged Archaeological Wood. J. Cult. Herit. 2019, 35, 123–128. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Hueckel, T.; Cavallaro, G.; Sacanna, S.; Lazzara, G. Pickering Emulsions Based on Wax and Halloysite Nanotubes: An Ecofriendly Protocol for the Treatment of Archeological Woods. ACS Appl. Mater. Interfaces 2020, 13, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Milioto, S.; Parisi, F.; Lazzara, G. Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods. ACS Appl. Mater. Interfaces 2018, 10, 27355–27364. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Ruisi, F. Nanocomposites Based on Esterified Colophony and Halloysite Clay Nanotubes as Consolidants for Waterlogged Archaeological Woods. Cellulose 2017, 24, 3367–3376. [Google Scholar] [CrossRef]
- Walsh, Z.; Janeček, E.-R.; Hodgkinson, J.T.; Sedlmair, J.; Koutsioubas, A.; Spring, D.R.; Welch, M.; Hirschmugl, C.J.; Toprakcioglu, C.; Nitschke, J.R. Multifunctional Supramolecular Polymer Networks as Next-Generation Consolidants for Archaeological Wood Conservation. Proc. Natl. Acad. Sci. USA 2014, 111, 17743–17748. [Google Scholar] [CrossRef] [PubMed]
- Podmaniczky, M.S. Structural Fillsfor Large Wood Objects: Contrasting and Complementary Approaches. J. Am. Inst. Conserv. 1998, 37, 111–116. [Google Scholar] [CrossRef]
- Broda, M.; Kryg, P.; Ormondroyd, G.A. Gap-Fillers for Wooden Artefacts Exposed Outdoors—A Review. Forests 2021, 12, 606. [Google Scholar] [CrossRef]
- Grattan, D.W.; Barclay, R.L. A Study of Gap-Fillers for Wooden Objects. Stud. Conserv. 1988, 33, 71–86. [Google Scholar] [CrossRef]
- Montaser, E.M.; El Hadidi, N.M.N.; Abo Elenen Amin, E. Evaluation of Wood Gap Fillers Composed of Microcrystalline Cellulose, Paper Pulp, and Glass Microballoons. Pigment Resin Technol. 2022, 52, 422–430. [Google Scholar] [CrossRef]
- Invernizzi, C.; Fiocco, G.; Iwanicka, M.; Targowski, P.; Piccirillo, A.; Vagnini, M.; Licchelli, M.; Malagodi, M.; Bersani, D. Surface and Interface Treatments on Wooden Artefacts: Potentialities and Limits of a Non-Invasive Multi-Technique Study. Coatings 2021, 11, 29. [Google Scholar] [CrossRef]
- de Ferri, L.; Strojecki, M.; Bertolin, C. Preliminary Results on Surface Treatments on Wood. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012094. [Google Scholar] [CrossRef]
- Kryg, P.; Mazela, B.; Broda, M. Dimensional Stability and Moisture Properties of Gap-Fillers Based on Wood Powder and Glass Microballoons. Stud. Conserv. 2020, 65, 142–151. [Google Scholar] [CrossRef]
- Niinivaara, E.; Cranston, E.D. Bottom-up Assembly of Nanocellulose Structures. Carbohydr. Polym. 2020, 247, 116664. [Google Scholar] [CrossRef] [PubMed]
- Waked, A.M. Nano Materials Applications for Conservation of Cultural Heritage. WIT Trans. Built Environ. 2011, 118, 577–588. [Google Scholar]
- Christensen, M.; Kutzke, H.; Hansen, F.K. New Materials Used for the Consolidation of Archaeological Wood–Past Attempts, Present Struggles, and Future Requirements. J. Cult. Herit. 2012, 13, S183–S190. [Google Scholar] [CrossRef]
- Santos, S.M.; Carbajo, J.M.; Gómez, N.; Quintana, E.; Ladero, M.; Sánchez, A.; Chinga-Carrasco, G.; Villar, J.C. Use of Bacterial Cellulose in Degraded Paper Restoration. Part II: Application on Real Samples. J. Mater. Sci. 2016, 51, 1553–1561. [Google Scholar] [CrossRef]
- Camargos, C.H.M.; Figueiredo, J.C.D.; Pereira, F.V. Cellulose Nanocrystal-Based Composite for Restoration of Lacunae on Damaged Documents and Artworks on Paper. J. Cult. Herit. 2017, 23, 170–175. [Google Scholar] [CrossRef]
- Gregory, D.J.; Shashoua, Y.; Hansen, N.B.; Jensen, P. Anyone for a Nice Cup of Tea?: The Use of Bacterial Cellulose for Conservation of Waterlogged Archaeological Wood. In Proceedings of the ICOM-CC 18th Triennial Conference Preprints, Copenhagen, Denmark, 4–7 September 2017. [Google Scholar]
- Völkel, L.; Ahn, K.; Hähner, U.; Gindl-Altmutter, W.; Potthast, A. Nano Meets the Sheet: Adhesive-Free Application of Nanocellulosic Suspensions in Paper Conservation. Herit. Sci. 2017, 5, 23. [Google Scholar] [CrossRef]
- Basile, R.; Bergamonti, L.; Fernandez, F.; Graiff, C.; Haghighi, A.; Isca, C.; Lottici, P.P.; Pizzo, B.; Predieri, G. Bio-Inspired Consolidants Derived from Crystalline Nanocellulose for Decayed Wood. Carbohydr. Polym. 2018, 202, 164–171. [Google Scholar] [CrossRef]
- Hamed, S.A.A.K.M.; Hassan, M.L. A New Mixture of Hydroxypropyl Cellulose and Nanocellulose for Wood Consolidation. J. Cult. Herit. 2019, 35, 140–144. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, X.; Weng, J.; Zhang, J.; Zhang, M. Protective Coating of Paper Works: ZnO/Cellulose Nanocrystal Composites and Analytical Characterization. J. Cult. Herit. 2019, 38, 64–74. [Google Scholar] [CrossRef]
- Bergamonti, L.; Potenza, M.; Haghighi Poshtiri, A.; Lorenzi, A.; Sanangelantoni, A.M.; Lazzarini, L.; Lottici, P.P.; Graiff, C. Ag-Functionalized Nanocrystalline Cellulose for Paper Preservation and Strengthening. Carbohydr. Polym. 2020, 231, 115773. [Google Scholar] [CrossRef]
- Völkel, L.; Prohaska, T.; Potthast, A. Combining Phytate Treatment and Nanocellulose Stabilization for Mitigating Iron Gall Ink Damage in Historic Papers. Herit. Sci. 2020, 8, 86. [Google Scholar] [CrossRef]
- Ma, X.; Tian, S.; Li, X.; Fan, H.; Fu, S. Combined Polyhexamethylene Guanidine and Nanocellulose for the Conservation and Enhancement of Ancient Paper. Cellulose 2021, 28, 8027–8042. [Google Scholar] [CrossRef]
- Operamolla, A.; Mazzuca, C.; Capodieci, L.; Di Benedetto, F.; Severini, L.; Titubante, M.; Martinelli, A.; Castelvetro, V.; Micheli, L. Toward a Reversible Consolidation of Paper Materials Using Cellulose Nanocrystals. ACS Appl. Mater. Interfaces 2021, 13, 44972–44982. [Google Scholar] [CrossRef]
- Abdel-Hamied, M.; Hassan, R.R.A.; Salem, M.Z.M.; Ashraf, T.; Mohammed, M.; Mahmoud, N.; El-din, Y.S.; Ismail, S.H. Potential Effects of Nano-Cellulose and Nano-Silica/Polyvinyl Alcohol Nanocomposites in the Strengthening of Dyed Paper Manuscripts with Madder: An Experimental Study. Sci. Rep. 2022, 12, 19617. [Google Scholar] [CrossRef]
- Camargos, C.H.M.; Poggi, G.; Chelazzi, D.; Baglioni, P.; Rezende, C.A. Protective Coatings Based on Cellulose Nanofibrils, Cellulose Nanocrystals, and Lignin Nanoparticles for the Conservation of Cellulosic Artifacts. ACS Appl. Nano Mater. 2022, 5, 13245–13259. [Google Scholar] [CrossRef]
- Elmetwaly, T.E.; Darwish, S.S.; Attia, N.F.; Hassan, R.R.A.; El Ebissy, A.A.; Eltaweil, A.S.; Omer, A.M.; El-Seedi, H.R.; Elashery, S.E.A. Cellulose Nanocrystals and Its Hybrid Composite with Inorganic Nanotubes as Green Tool for Historical Paper Conservation. Prog. Org. Coat. 2022, 168, 106890. [Google Scholar] [CrossRef]
- Völkel, L.; Beaumont, M.; Johansson, L.-S.; Czibula, C.; Rusakov, D.; Mautner, A.; Teichert, C.; Kontturi, E.; Rosenau, T.; Potthast, A. Assessing Fire-Damage in Historical Papers and Alleviating Damage with Soft Cellulose Nanofibers. Small 2022, 18, 2105420. [Google Scholar] [CrossRef] [PubMed]
- Bellia, L.; De Natale, A.; Fragliasso, F.; Graiff, C.; Petraretti, M.; Pollio, A.; Potenza, M. Chromatic Alterations Induced by Preservation Treatments on Paper: The Case of Ag-Functionalized Nanocrystalline Cellulose. J. Cult. Herit. 2023, 64, 120–131. [Google Scholar] [CrossRef]
- Chen, X.; Ding, L.; Ma, G.; Yu, H.; Wang, X.; Zhang, N.; Zhong, J. Use of Bacterial Cellulose in the Restoration of Creased Chinese Xuan Paper. J. Cult. Herit. 2023, 59, 23–29. [Google Scholar] [CrossRef]
- Harandi, D.; Moradienayat, M. Multifunctional PVB Nanocomposite Wood Coating by Cellulose Nanocrystal/ZnO Nanofiller: Hydrophobic, Water Uptake, and UV-Resistance Properties. Prog. Org. Coat. 2023, 179, 107546. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Cavallaro, G.; Lazzara, G.; Milioto, S. Supramolecular Systems Based on Chitosan and Chemically Functionalized Nanocelluloses as Protective and Reinforcing Fillers of Paper Structure. Carbohydr. Polym. Technol. Appl. 2023, 6, 100380. [Google Scholar] [CrossRef]
- Younis, O.M.; El Hadidi, N.M.N.; Darwish, S.S.; Mohamed, M.F. Preliminary Study on the Strength Enhancement of Klucel E with Cellulose Nanofibrils (CNFs) for the Conservation of Wooden Artifacts. J. Cult. Herit. 2023, 60, 41–49. [Google Scholar] [CrossRef]
- Younis, O.; El Hadidi, N.; Darwish, S.; Mohamed, M. Enhancing the Mechanical Strength of Klucel E/CNC Composites for the Conservation f Wooden Artifacts. Egypt. J. Archaeol. Restor. Stud. 2023, 13, 13–26. [Google Scholar] [CrossRef]
- Gmelch, L.; D’Emilio, E.M.L.; Geiger, T.; Effner, C. Degraded Paper: Stabilization and Strengthening Through Nanocellulose Application. J. Pap. Conserv. 2024, 25, 6–19. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Liu, L.; Zhang, B.; Jiang, L. Preparation of Bacterial Cellulose for Xylitol-Reinforced Waterlogged Wood. Archaeometry 2024, 66, 618–632. [Google Scholar] [CrossRef]
- Thakur, V.; Guleria, A.; Kumar, S.; Sharma, S.; Singh, K. Recent Advances in Nanocellulose Processing, Functionalization and Applications: A Review. Mater. Adv. 2021, 2, 1872–1895. [Google Scholar] [CrossRef]
- Tahir, D.; Karim, M.R.A.; Hu, H.; Naseem, S.; Rehan, M.; Ahmad, M.; Zhang, M. Sources, Chemical Functionalization, and Commercial Applications of Nanocellulose and Nanocellulose-Based Composites: A Review. Polymers 2022, 14, 4468. [Google Scholar] [CrossRef] [PubMed]
Type of Nanocellulose | Cellulose Nanocrystal (CNC) | Cellulose Nanofibril (CNF) | Regenerated Nanocellulose (RNC) | Bacterial Nanocellulose (BNC) |
Synonyms | whiskers, cellulose nanocrystals, rod-like cellulose crystallites [37] | nanofibrils, nanofibrillated cellulose [37] | cellulose nanospheres [38] | bacterial cellulose, microbial cellulose, biocellulose [37] |
Typical sources/precursor materials | wood, cotton, hemp, flax, wheat straw, algal cellulose, bacterial cellulose, bast fibres, microcrystalline cellulose, tunicin [37,39] | wood, potato tuber, sugar beet, flax delamination, and hemp [37] | cellulose I or II molecules [38,40] | low-molecular-weight sugars and alcohols [37] |
Shape and size | Rod- or needle-like particles with high crystallinity, a diameter of 3–50 nm, a length of 100 nm to several µm, and an aspect ratio of 5–50 [39,41] | intertwined, network-like structure including at least one elementary fibril consisting of both crystalline regions and amorphous regions, with crystallinity lower than CNC, a diameter of 3–500 nm, a length of up to several µm, and an aspect ratio of 60–100 [41,42] | spherical molecules with high crystallinity and a diameter ranging from 10 to 500 nm [38] | different types of nanofiber networks and ribbon-shaped fibrils with high crystallinity, a diameter of 20–100 nm, a length of up to several µm, and an aspect ratio of 600–6000 [37,41,42] |
Production method | acid hydrolysis [39,41] | mechanical treatment before and/or after chemical or enzymatic treatment, electrospinning [37,43] | dissolution and precipitation/regeneration [38] | mostly synthesised by bacteria [37,41] |
Properties | high hardness, cellulose chains stacked neatly, optical transparency, low thermal expansion, gas impermeability, brittleness, Young modulus of 140–160 GPa, tensile strength of 8–10 GPa, particles are rigid [39,41,42] | low density, high strength, hydrophilicity, manipulated porosity, Young modulus of 30–40 GPa, tensile strength of 0.8–1 GPa, particles are flexible [42,43] | high purity, good thermal properties [44] | relatively pure, translucent and gelatinous, Young modulus of 15–130 GPa, tensile strength of 0.2–2 GPa [42,45] |
Researcher, Year | Aim of the Study | Research Material Used in the Studies | Nanocellulose form Applied | Tests Performed | Results |
---|---|---|---|---|---|
Christensen et al., 2012 [116] | application of CNC to consolidate degraded wood | degraded Viking Age wood | CNC | scanning electron microscopy (SEM) | CNC does not penetrate thoroughly into the wood but adheres well to its surface CNC can act as a gap-filler and form the desired open structure PEG1000 used as a stabiliser improves CNC penetration |
Santos et al., 2016 [117] | verification of the suitability of BNC to rebuild degraded old papers | three books made with chemical pulp from cereal straw, chemical and semi-chemical pulp from softwood, softwood mechanical pulp | BNC | burst and tear strength brightness, opacity and yellowness air permanence specular gloss static and dynamic water contact angles (WCA) SEM | mechanical properties of paper lined with BNC are as good as those obtained with traditional Japanese paper letters in books lined with BNC are more legible BNC improves the quality of deteriorated paper without altering the information contained therein, and this improvement is maintained over time |
Camargos et al., 2017 [118] | application of CNC-based paper pulp for filling of lacunae of documents and artworks on paper | wood cellulose paper sheets with lacunae | CNC CNC-based paper pulp | surface pH measurements Fourier transform infrared spectroscopy (FT-IR) SEM tensile testing visual examinations with fluorescent light | CNC grafting shows very similar stress–strain behaviour to those presented by wood cellulose pulp paper, confirming the compatibility factor between restored paper and CNC grafting CNC grafting allows for achieving very regular and uniform filling surfaces |
Gregory et al., 2017 [119] | determination of the potential of growing BCN directly onto waterlogged wood | model paper: pure cellulosic Munktell filter paper, glossy poster paper and Japanese Kozo paper wood: ash spear shafts from the waterlogged site of Nydam Mos | BNC | BNC does not bond to glossy poster paper but attaches well to Kozo paper and Munktell filter paper (after pre-treatment with acetone) BNC can grow on the surface and inside the pores of heavily degraded waterlogged wood | |
Völkel et al., 2017 [120] | application of nanocellulose suspensions for historical papers stabilisation | rag paper Whatman filter paper book paper without lignin book paper with lignin newsprint paper | BNC CNF | surface pH measurements FT-IR SEM tensile testing visual and haptic characterisation ISO brightness | BNC and CNF provide stabilisation for mechanically damaged papers BNC and CNF coat small losses and cracks in degraded paper BNC and CNF films formed on the paper surface induce small optical and haptic changes the use of pure nanocellulose suspension eliminates side effects caused by additives |
Basile et al., 2018 [121] | application of CNC as a consolidant for degraded wood | old beams of Norway spruce (Picea abies L.) taken from a dismantled roof of a 17th-century villa in North Italy | CNC CNC mixed with lignin and/or siloxane derivatives | X-ray diffraction (XRD) FT-IR and Raman spectroscopy dynamic light scattering DLS Dynamic Mechanical Analysis (DMA) AFM | consolidation efficiency of CNC has been confirmed on old rotted wood CNC treatment was most effective on the highest degraded wood due to its best penetration into degraded wood tissue the effectiveness of CNC treatment depends on the degree of wood degradation and the number of impregnation cycles CNC treatment increases the stiffness of treated wood |
Hamed and Hassan 2019 [122] | application of hydroxypropyl cellulose (Klucel E) and nanocellulose for consolidation of based artefacts | beech wood—hardwood | mixture of hydroxypropyl cellulose Klucel E and nanocellulose | retention of consolidant in treated wood colourimetry SEM FT-IR compression test | NC addition provides increasing penetration within the wood structure and compression strength of the treated samples NC addition does not cause colour changes the use of NC has no side effects, even after ageing NC addition effectively enhances wood consolidation |
Jia et al., 2019 [123] | application of ZnO nanoparticles in CNC to improve antibacterial and mechanical properties of historical papers | historical paper: the school newspapers of Renmin University of China 1960 | composite of ZnO nanoparticles and CNC | FT-IR and UV–vis absorption spectroscopy SEM, XRD EDS elemental mapping image folding endurance, tensile strength antibacterial and antifungal effect | coating paper with ZnO/CNC provides good colour stability CNC provides an effective dispersion matrix for ZnO nanoparticles ZnO/CNC nanocomposites have stronger antibacterial properties than unmodified ZnO ZnO/CNC nanocomposites can be modified to meet the desired application |
Antonelli et al., 2020 [97] | application of lignin nanoparticles (LNP), BNC and CNC for consolidation of waterlogged archaeological wood | softwood: stone pine (Pinus pinea L.), silver fir (Abies alba Mill.), cypress (Cupressus sempervirens L.) hardwood: elm (Ulmus sp.) and probably holm oak (Quercus ilex L.) | LNP BNC CNC | anti-shrink efficiency equilibrium moisture content | LNP and BC addition cause colour changing problems with LNP and CNC penetration can be solved by modifying the impregnation conditions BNC addition provided a satisfying penetration, but the consolidating effect was not substantial |
Bergamonti et al., 2020 [124] | application of CNC for paper preservation and consolidation | Whatman paper | CNC with Ag nanoparticles | DLS and electrophoretic light scattering (ELS) transmission electron microscope (TEM) and XRD FT-IR and Raman spectroscopy colourimetry antibacterial and mechanical tests | CNC/Ag coating prevents the growth of Aspergillus niger on Whatman paper CNC coating improves the mechanical properties of Whatman paper (stretch and toughness) presence of Ag does not affect the aesthetic appearance of the paper |
Völkel et al., 2020 [125] | integration of the nanocellulose application into a multi-stage calcium phytate/calcium hydrogen carbonate treatment to combine deacidification and stabilisation of historic papers | rag papers from a collection of handwritten sermons from the years 1839 and 1840 | CNF with calcium phytate/calcium hydrogen carbonate | colourimetry water contact angle SEM-EDX laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) | CNF is effective in the mechanical stabilisation of iron gall ink paper and can be combined with calcium phytate/calcium hydrogen carbonate treatment for the chemical stabilisation of iron gall inks CNF forms a stabilising network, has little to no optical interference and does not change the haptic properties of the manuscripts CNF stabilises and protects paper during accelerated degradation |
Xu et al., 2020 [27] | application of ethanol-based nanocellulose (CNC) and alkaline nanoparticle “hybrids” on strongly degraded cellulosic artworks for its deacidification and consolidation | filter paper | ethanol-based “hybrids” containing grafted nanocellulose (CNC) and alkaline nanoparticles (Ca(OH)2 or CaCO3) | rheology small-angle X-ray scattering | ethanol and alkaline nanoparticles increase the interactions between grafted CNC, leading to the formation of dispersions suitable for conservation purposes treatment of filter paper with “hybrids” improves its mechanical properties and increases the pH |
Ma et al., 2021 [126] | application of CNC and polyhexamethylene guanidine (PHMG) for reinforcing and improving mould-resistant properties of ancient books | historical paper published in 1954 | suspension of CNC and PHMG | mechanical tests brightness test SEM XRD anti-mould test | CNC-PHMG enhances mechanical properties and improves the folding strength of treated paper CNC-PHMG treated paper slightly changes the whiteness CNC-PHMG treated paper retained good mechanical properties after ageing CNC-PHMG treated paper has excellent biocidal activity |
Operamolla et al., 2021 [127] | application of sulphated nanocellulose (S_CNC) for consolidation of degraded paper | Whatman filter paper A book from 1738 | S_CNC CNC | AFM, FE-SEM glancing incidence X-ray diffraction colourimetry pH experiments FT-IR ζ-potential measurements elemental analysis tensile tests | S_CNC can be removed from the surface using Gellan hydrogel S_CNC improves the optical quality and mechanical properties of paper pH of S_CNC treated paper decreases under accelerated ageing, posing a negative effect on the conserved paper artefact in the long-term non-sulphated CNC do not compromise paper pH and mechanical properties with ageing |
Abdel-Hamied et al., 2022 [128] | evaluation of nanocomposites of mesoporous silica nanoparticle (MPSNP)/polyvinyl alcohol (PVA) and CNF/PVA for the consolidation of dyed paper manuscripts with madder extract | deteriorated dyed manuscript “DiwanShaar” | MPSNP/PVA CNF/PVA | SEM, TEM, AFM and XRD DLS FT-IR colourimetry mechanical tests (tensile strength and elongation) | MPSNP/PVA was more effective than CNF/PVA in consolidating degraded manuscript MPSNP/PVA treatment gave lower colour change, improved tensile strength and elongation, and stabilised and protected cellulosic fibres in the document against accelerated thermal ageing |
Camargos et al., 2022 [129] | application of CNC, CNF and nanolignin for protecting diverse cellulose-based substrates | balsa wood (Ochroma pyramidale) white cotton paper | coating formulations of CNC in water nanolignin in water carnauba wax nanoparticles in water | moist-heat accelerated ageing thickness measurements water vapour permeability diffuse reflectance spectroscopy colourimetry surface morphology analyses water contact angle 2D Micro-FT-IR | nanocomposite coatings effectively protected the coated substrates against deterioration and moist-heat ageing coatings ensure effective presented UV-blocking properties nanocomposite-coated surface retained its morphology, roughness and vapour permeability nanocomposite-coated hydrophilic substrates demonstrated a more controlled wettability nanocellulose/nanolignin coatings are reversible treatments |
Elmetwaly et al., 2022 [130] | application of CNC and inorganic nanotubes for historical paper consolidation | historical paper | colloidal solutions of CNC Halloysite nanotubes CNC-HNT | SEM TEM FT-IR thermogravimetric analysis tensile strength colourimetry | significant reinforcement of historical paper by using CNC-HNT coating CNC-HNT coating provides exceptional clarity and good optical properties of coated paper CNC-HNT coating provides superior protection against harmful UV rays CNC-HNT coating forms hydrogen bonds with the historic paper fibre matrix |
Völkel et al., 2022 [131] | application of CNF coatings to preserve historical paper severely damaged by fire | historical paper samples damaged in an undefined and complex way during the fire of the Duchess Anna Amalia Library Weimar 2004 | CNF | thermogravimetric analysis X-ray photoelectron spectroscopy (XPS) WCA roughness measurements SEM, AFM gel permeation chromatography | CNF coating enables the reliable preservation of the paper and retrieval of the contained historical information CNF fibres form a flexible, transparent film on the paper surface and adhere strongly to it, reducing its fragility, providing stability, and enabling digitalisation and handling |
Walsh-Korb et al., 2022 [15] | analysis of the drying behaviour of CNC used as a wood consolidant | fresh and archaeological waterlogged oak wood (Quercus robur L.) | CNC | light microscopy, SEM, freeze-drying microscope (FDM) thermal analysis | CNC coats wood with an open, porous network, but it does not completely fill the wood cells despite its low viscosity CNC has a relatively low affinity for wood surface chemistry CNC interacts solely with the cellulose component of the treated wood, which makes it potentially unsuitable for waterlogged wood conservation, where cellulose is usually highly degraded |
Bellia et al., 2023 [132] | application of suspension made of CNC with silver nanoparticles to preserve paper against fungal degradation; analysis of the suspension effect on the optical characteristics of the paper | Whatman and Amalfi paper | CNC and Ag-functionalized CNC | ATR-FR-IR colourimetry | chromatic variations in CNC/Ag-treated samples are higher than those treated with CNC the two types of paper reacted differently to the treatments alterations are not stable over time—for Whatman paper, they become more evident after one month |
Chen et al., 2023 [133] | application of BNC for the conservation of creased Chinese painting scrolls | Xuan paper of Jinpi type | BNC | folding resistance tensile and tear strength pH SEM and XRD thickness | BCN treatment improved the flexibility, strength and folding resistance of paper BCN treatment was more effective than the traditional paper strip reinforcement method BNC treatment had an excellent effect on conserving the creased artwork on Xuan paper aesthetically and improved its physical properties |
Harandi and Moradienayat 2023 [134] | application of polyvinyl butyral (PVB) nanocomposite with nanocrystalline cellulose/ZnO nanofibers for wood coating | silver fir (Abies alba Mill.) wood | PVB/CNC/ZnO nanocomposite | SEM colourimetry ATR-FT-IR, SEM | PVB/CNs/ZnO improve wood protection against UV radiation and humidity high amounts of ZnO and CNC protect better against photochemical degradation |
Lisuzzo et al., 2023 [135] | application of supramolecular systems based on chitosan and CNF with a different surface modification (TEMPO-oxidation and carboxymethylation) as paper consolidants | paper | chitosan and CNF with a different surface modification (TEMPO-oxidation and carboxymethylation) | isothermal titration calorimetry (ITC) ζ-potential and DLS conductivity and rheological measurements mechanical tests, flame resistance WCA | the electrostatic interactions between chitosan and functionalised nanocellulose drive the formation of hybrid fillers suitable for paper consolidation CNF coated with chitosan have improved capacity to penetrate the paper structure, enhancing its mechanical resistance and hydrophobising its surface chitosan/CNF create a protective barrier for heat transfer that prevents the combustion of paper |
Younis et al., 2023 [136] | synthesis of Klucel E/CNF nanocomposites with enhanced mechanical properties for degraded wood consolidation | Ficus sycomorus L. wood | CNF/Klucel E nanocomposites | TEM, SEM and XRD mechanical testing | addition of CNF to Klucel E improves its mechanical properties increase in CNF within the composite dramatically increases the Young’s modulus and hardness wood treatment with Klucel E/30% CNF increases the compression strength value by 14.5% compared to untreated wood |
Younis et al., 2023 [137] | synthesis of Klucel E/CNC films with the best mechanical properties to enhance the properties of degraded wood | Ficus sycomorus L. wood | CNC/Klucel E nanocomposite films | SEM and XRD mechanical testing (tensile strength, elongation at break, elastic modulus) viscosity colour change, FT-IR compression strength | Klucel E/CNC composite with a 30% CNC content has the highest mechanical strength, acceptable crystallinity and dispersion and is suitable for wood conservation CNC added as a filler to Klucel E significantly improves its strength, reduces its viscosity and improves the penetration into the wood tissue enhancing the compression strength of treated wood |
Gmelch et al., 2024 [138] | testing the performance of CNF and CNC in stabilising fragile papers | Whatman filter paper naturally aged newsprint paper | CNF CFC a mixture of CNF and CNC | fluorescence microscopy pH, conductivity and rheology of suspensions pH of paper tensile strength | treatment with NC suspensions increases the tensile strength of the paper in general surface inhomogeneity and hydrophobicity make a historical newspaper more difficult to treat than Whatman CNF/CNC mixture increased the strength of historical newspapers but had a minimal effect on Whatman |
Hu et al., 2024 [139] | application of BNC with xylitol to reinforce simulated waterlogged wooden artefacts | artificially degraded birch (Betula) veneers | BNC and xylitol | anti-shrinking efficacy (ASE) SEM mechanical strength (a three-point bending test) | BNC alone had limited effectiveness but showed enhanced reinforcing properties when mixed with xylitol BNC/xylitol improved bending strength and reduced deformation of treated wood the use of BC for wood reinforcement may darken the wood surface BNC alone was ineffective due to the inability to fill the gaps in the wood and the strong acidity of the solution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kryg, P.; Mazela, B.; Perdoch, W.; Broda, M. Challenges and Prospects of Applying Nanocellulose for the Conservation of Wooden Cultural Heritage—A Review. Forests 2024, 15, 1174. https://doi.org/10.3390/f15071174
Kryg P, Mazela B, Perdoch W, Broda M. Challenges and Prospects of Applying Nanocellulose for the Conservation of Wooden Cultural Heritage—A Review. Forests. 2024; 15(7):1174. https://doi.org/10.3390/f15071174
Chicago/Turabian StyleKryg, Paulina, Bartłomiej Mazela, Waldemar Perdoch, and Magdalena Broda. 2024. "Challenges and Prospects of Applying Nanocellulose for the Conservation of Wooden Cultural Heritage—A Review" Forests 15, no. 7: 1174. https://doi.org/10.3390/f15071174